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ABSTRACT Intelligent monitoring systems can effectively predict or detect anomalies and issues in
smart working systems and ecosystems and implement the proper countermeasures. However, for their
effective and efficient use, attributes like responsiveness, performance, and quality should be properly tested
and assessed before integrating the monitoring system into an ecosystem. The work aims to present a
framework, called MOnitoring TEsting Framework (MOTEF), focused on the testing and evaluation of a
generic monitoring system performance. In particular, the framework allows testing the monitoring system
in isolation or when used in a smart environment to provide functional or non-functional property predictions.
By simulating the runtime execution of a smart environment, MOTEF lets testing and assessment of a
generic monitoring system establish its working boundaries. The results collected can be used to design
a smart environment architecture to fulfil its global performance constraints better. This work presents
the architecture of MOTEF and its preliminary implementation. It also validated and showcased the use
of MOTEF in evaluating the performance of an existing monitoring system in isolation and when it is
used in a smart environment. The results have been assessed by considering two research questions about
the monitoring system’s responsiveness and effectiveness in proving required functional or non-functional
property predictions.

INDEX TERMS Monitoring, testbed, empirical evaluation, testing.

I. INTRODUCTION
In recent years, smart environments have become daily
software engineering and development process solutions for
maximizing productivity, improving cooperation, and timely
targeting operational and business goals. Often, in such
dynamic contexts, to avoid uncontrolled situations, guarantee
the established quality attributes, and promptly recognize or
predict possible functional or functional properties deviation,
a common choice is to integrate into the smart environment
an intelligent monitoring system [1], [2], [3], [4].

They can collect events or evidence from heteroge-
neous sources (such as applications, components, sensors,
or devices) and infer complex patterns to assess observed
behaviors. Additionally, intelligent monitoring can promptly
predict or detect anomalies and issues and implement
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the proper countermeasures by working in strict synergy
with the operational environment’s tools and components.
However, the efficiency of the smart environment requires
that its systems, components, and processes are effective
and efficient in terms of responsiveness, performance, and
quality. In particular, the monitoring system should not be
a bottleneck of the smart environment in which it operates.
Therefore, attributes like responsiveness, performance, and
quality must be tested and assessed to select the most
appropriate monitor solution before integrating it into the
smart environment. Focusing particularly on monitoring
responsiveness, this paper describes a framework called
MOTEF (MOnitoring TEsting Framework), which is focused
on testing and evaluating a generic monitoring system
performance. In particular, the framework allows testing a
monitoring system in isolation or when used in a smart
environment to provide functional or non-functional property
predictions. Considering that the overall cost of testing is
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around 40% of the total development costs of a typical
software project [5], [6], using automatic frameworks to
reduce the verification, validation, and assessment impact is
a stringent need, especially in the industrial environment.
MOTEF replies to this exigence by providing a practical
means for automatically assessing the performance and
peculiarities of monitoring systems.

In particular, MOTEF was conceived to simulate the
runtime behavior of a smart environment by integrating
a monitoring system. In its realization, MOTEF takes
as a reference for the smart environment description the
Smart Monitoring Framework (SMF) architecture presented
in [7]. Therefore, MOTEF includes components for the
simulation of the SMFmain facilities (i.e. aGUI, a Predictive
Simulation, an Ontology Manager, and a Communication
Channel) and specialized one helpful in executing the testing
and assessment of a generic monitoring system instance
(i.e. a TestBed Orchestrator and an Events generator.)
The paper’s contribution can be summarized as in the

following:
• defining the reference architecture of MOTEF;
• providing the MOTEF preliminary implementation;
• validation and showcase the MOTEF usage with an
existing runtime monitoring implementation.

• discuss the obtained results and future work.
When used in testing and assessing a generic instantiation

of a monitoring system, the preliminary implementation of
the MOnitoring TEsting Framework (MOTEF) provided in
this paper can be used for answering the following Research
Questions (RQs):
RQ1 (Standalone Performance): What are the perfor-

mances of the runtime monitoring in terms of
responsiveness? The aim is to investigate whether the
runtime monitoring is suitable for promptly providing
functional and non-functional properties evaluation.

RQ2 (Effective Prediction): Can the runtime monitoring
ensure effective, timely prediction of functional and
non-functional properties? The aim is to establish the
minimum time interval required for providing smart
predictions so that systems like Digital Twin (TD),
Artificial Intelligence (AI), or Machine Learning (ML)
can use them in their operational execution.

For research questions data collection, MOTEF implemen-
tation includes two experiment settings:
1) Using MOTEF to evaluate the performance of runtime

monitoring in isolation and
2) UsingMOTEF to evaluate runtime monitoring for effec-

tive prediction, i.e., calculating the execution boundaries
of monitoring in case of prediction forecasting.

Outline: The remainder of this article is organized as
follows. The main background and related works are pre-
sented in Section II, while the description of the MOnitoring
TEsting Framework (MOTEF) Reference Architecture and
its reference behavior are described in Section III. The pre-
liminary instantiation of MOTEF is presented in Section IV

and showcased by using an existing monitoring system
in Section V. The experimental results are evaluated and
discussed in Section VI. Finally, in Section VIII, conclusions
and possible future work are highlighted.

II. BACKGROUND AND RELATED WORK
This section overviews the main background and related
work regardingmonitoring, predictive simulation, and testing
frameworks.

A. ON THE MONITORING
Runtime monitoring systems have become increasingly
important in various applications, from industrial automation
to healthcare to smart cities. These systems use sensors and
other data sources to monitor the environment and assess or
predict behavioral patterns and properties using algorithms
and analytics. Usually, runtime monitoring is grounded on
an event-based system that analyzes events sent by the target
environment’s component, sensors, or subsystem when the
status changes or specific operations occur. This results in
more efficient use of resources and lower performance and
cost impacts. Indeed, an event-driven approach is character-
ized by loosely coupled components communicating through
events rather than a traditional request-response model
and provides greater flexibility and scalability since each
component can operate independently and asynchronously.
In an event-driven system, components only react when they
receive an event that matches their specific interest rather
than continuously polling the system. Themonitoring activity
can improve the quality of service (QoS), prevent or reduce
violations of properties, and provide recovery mechanisms
in case of detected problems [8], [9], especially in dynamic
environments where unpredictable events may occur.
Usually, the runtime monitor includes a rule-based com-

plex event processor [10], [11], [12], [13]. The rules evolve
automatically based on the data (events) collected during
the execution according to the concept of observability [14],
[15]. In this case, rule evolution is based on meta-rules [16],
enriched and enacted through events generated and aggre-
gated at runtime.
Researchers have explored runtime monitoring in various

domains, such as industrial automation, healthcare monitor-
ing, and smart cities. Available proposals include: monitoring
based on logical or axiomatic approaches [17], [18], [19]:
monitoring focused on instrumentation algorithm for asyn-
chronous components [20], [21]. Cited works highlighted the
advantages of the event-driven approach due to its flexibility,
scalability, and ability to handle large volumes of data in
real time. However, there are also some limitations to the
event-driven approach, such as the need for careful event
management and the potential for latency in some cases.
Due to its peculiarity, before integrating a runtime

monitoring system into a smart environment, it is necessary
to test and evaluate the boundaries of its performances,
especially the responsiveness and time constraints. These
values can be crucial for deciding how and under which
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conditions the monitor can adequately work, and avoiding it
becomes a blind spot of the overall environment execution.
The testing results could also be used for deciding to deploy,
lock, or purchase additional resources to improve monitoring
activities [22].

B. ON THE PREDICTIVE SIMULATION
Predictive Simulation aims at detecting malicious deviations
using techniques like Machine Learning (ML), Artificial
Intelligence (AI) [23], or Digital Twin (DT), developed
specifically for reaching this goal. Considering, in particular,
the usage of DT, it enables a concern-directed prediction
of the trustworthiness of intelligent software behavior [24],
[25]. Different models of the system behavior are created to
enable this approach, including functional models that enable
runtime evaluation of functional interaction, temporal models
that enable timing predictions used in evaluating a software
smart agent’s synchronization capability, andmodels that will
allow the runtime evaluation of the communication protocol.
From the usage of all these models, according to the temporal
logic model used to validate the accuracy of DTs in terms of
timing abstraction, monitoring of the conformity of what is
going to be executed and what is supposed to be executed
(DT) [26] can be made.

C. ON THE TESTING FRAMEWORK
Testing is one of the primary approaches for assessing
and validating the quality attributes of different systems.
Considering, in particular, the criticalities and quality levels
required for IoT systems and smart environments, the
possibility of automatically executing testing activity and
collecting evidence about the peculiarities and performances
of their components before integration into a unique envi-
ronment is becoming a stringent need. In this context, this
section overviews the testing proposals for assessing the
monitoring system’s quality aspects and possible solutions
for automatically testing and simulating its behavior.

Among related proposals, that provided by [27] and
[28] describes a framework for validation of the robotic
applications developed using the Robot Operating System
(ROS) while [29] provides testing approaches for checking
the consistency and the correctness runtime systems to ensure
their trustworthiness.

However, considering the runtime monitoring peculiar-
ities, most currently available solutions are not explicitly
conceived. Contrarily the available literature, this paper
proposes a specific testing framework for the runtime
monitoring infrastructure that can evaluate the performance
of smart monitoring systems based on the event-driven
approach using a real testbed from a smart building
scenario.

The following sections will provide more specific details
about MOTEF architecture and instantiation. The evaluation
of a specific event-driven Runtime Monitoring will be
presented, and the relevant results will be discussed.

III. MOTEF REFERENCE ARCHITECTURE
This section describes MOTEF reference architecture, which
emulates the component needed for executing a Runtime
Monitoring in a Smart Monitoring Framework (SMF) that
has already been described in [7]. Section III-A provides
basic details about SMF, while Section III-B details MOTEF
architecture instantiation.

A. SMART MONITORING FRAMEWORK
By referring to [7] for more details, the features of SMF are:

1) providing mechanisms for specifying functional and
non-functional properties;

2) integrating predictive mechanisms of leveraging the
monitoring of preventive activity;

3) collecting and managing the data generated by different
and heterogeneous sources (HW/SW) and at different
levels (application stack or system layers);

4) assessing functional or non-functional properties;
5) rising alarms or enacting countermeasures in case of

property violation;
6) providing user interaction mechanism.

Figure 1, describes, according to the standard UML com-
ponent diagram representation, the components of the SMF.
In Figure 1, the component named Environment (Sensors
and gateways of Figure 1 represents the external group of
sensors and gateway data that the SMF can use during its
execution. Details about the SMF components are provided
in the following:

FIGURE 1. The SMF Architecture and the Environment of Sensors.

Communication Layer: That manages all the communica-
tions between the components and lets data be exchanged
through events.
Ontology Manager: That manages the knowledge by rep-

resenting monitoring data and functional or non-functional
properties by ontologies [30], [31].
Predictive Simulation: That predicts the behavior of target

monitored components or environment using one of the
solutions described in Section II-B.
Runtime Monitoring: This component collects data (typ-

ically events) from the target monitored system or environ-
ment and evaluates functional and non-functional properties.
It raises alarms or directly enacts countermeasures in case
of violation or misbehavior. Runtime Monitoring interacts
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with the Ontology Manager, receiving rules related to the
functional and non-functional properties to be analyzed trans-
lated according to the Runtime Monitoring language [32].
At the same time, it also receives the predictions of expected
behavior to check against the real execution of the system
from the Predictive Simulation. All that information flows
across the Communication Layer.
SMF GUI: it manages the user interaction by providing

features such as Stop, Resume, and Save activities and data.

B. MOTEF TESTBED
In Figure 2, the testbed architecture of MOTEF is depicted.
Some components have been replaced with emulated ones to
avoid bias unrelated to the tested component: the Runtime
Monitoring. In the following, more details about emulated
components instantiated are provided:

FIGURE 2. Testbed architecture of the MOTEF proposal.

1) TESTBED ORCHESTRATOR
This component manages the runtime execution of the overall
testing process and lets the execution of the following
testing scenarios: i) testing using only Simple Rules, i.e.,
rules defined using basic logic operators; ii) testing using
Complex Rules, i.e., rules derived by the composition of
Simple Rules; iii) testing using sets of actual rules and
associated events taken from a real environment execution;
iv) testing using smart predictions. The Testbed Orchestrator
is also responsible for setting up the other MOnitoring
TEsting Framework (MOTEF) components according to
the selected scenario and providing them the required
input.

2) RULES MANAGER
This component emulates the Ontology Manager behavior.
In particular, according to the indications and input received
by the Testbed Orchestrator, the Rules Manager selects
and sends to the Runtime Monitoring the set of rules
to be monitored. This set can be composed of Simple
Rules, Complex Rules, or Predictive Rules. In this last case,
these rules enable the Runtime Monitoring to generate the
skeleton of rules used for smart predictions during the testing
execution.

3) EVENT GENERATOR
This component emulates the Node Environment, see
Figure: 2 on which sensors and data gateway are in execution
generating events to be analyzed. According to the indications
and input received by the Testbed Orchestrator, the Event
Generator fires one by one the events to the Runtime
Monitoring component for triggering rules according to
specific behavioral policies. In particular, Event Generator
manages two kinds of events: Normal Events for enacting a
Simple Rule or Complex Rule and Predictive Events. In the
latter case, the events are used to simulate the behavior of the
Predictive Simulation component (see Figure 1) and let
the Runtime Monitoring enact the prediction mechanism.

C. MOTEF INTERACTION PATTERN
This section describes, through the UML sequence diagram
in Figure 3, a simplified interaction pattern of the MOTEF
Testbed execution. The interaction among MOTEF compo-
nents is related to the case in which a set of predictive rules
is loaded, and the self-generation procedure is triggered.

The TestBed Orchestrator is the core component of the
testing process. It is responsible for starting and stopping
the activities, providing input to the different MOTEF
components according to the test scenario to be executed,
and managing the testing session. The TestBed Orchestrator
interacts with other components through messages sent via
a Communication Layer. To improve diagram clarity, the
Communication Layer has been omitted in Figure 3.

In Figure 3 message 1. Start sent by the TestBed
Orchestrator to the Runtime Monitoring enact the testing
session. This message pushes the Runtime Monitoring to
initialize itself (message 2. Setup of Figure 3) and to
create the channel for receiving rules and events. When setup
is complete, the Runtime Monitoring notifies the TestBed
Orchestrator (3. Running of Figure 3), letting the testing
set-up finalization.

According to the testing scenario to be executed, the
TestBed Orchestrator indicates the target set of testing rules
to the Rules Manager (message 4. Load predictive
meta-rules of Figure 3), forcing the preparation of
the information to be sent to the Runtime Monitor-
ing (messages 5. Meta-rules packaging() and 6.
Sending rules of Figure 3, respectively).

Once received, the Runtime Monitoring loads the received
meta-rules set into its knowledge base (message 7.
Loading meta-rules) and sends a notification mes-
sage (8. Monitoring ready message) to the TestBed
Orchestrator.

The TestBed Orchestrator loads now the events related
to the predictive meta-rules set already loaded into the
Event Generator (message 9. Loading events for
predictive meta-rules).

This message will complete the Predictive execution setup,
and the simulation will start through the message 10.
Start simulation.
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For demonstrating the scenario, the Event Generator
sends now events containing forecast (message 11. Event
(forecast)) that trigger, on the Runtime Monitoring
side, the rule generation procedure using the meta-rules
already loaded (message 12. Rules generation
procedure and self-injection).

The successive phase is represented in a loop onwhich a set
of activities are executed simultaneously, while there are no
more events to be processed: EventStream not empty
condition.

More in detail, in the loop fragment, three activities are
executed:

• the sending of events by the Event Generator to the
Runtime Monitoring (message 13. Event);

• the assessment executed by the Runtime Moni-
toring (message 14. Rules and meta-rules
assessment) to check if the event received at
message 13 is triggering a rule. As specified in the
tooltip, in this case, the event will trigger the rule
generated at message 12;

• the notification message related to triggering
a rule (message 15. Rules triggering
notification).

The results of the execution: timing, rule matching values,
and rules generated are stored in the TestBed Orchestrator for
further offline analysis.

IV. MOTEF INSTANTIATION
This section describes the instantiation of the MOTEF
architecture. In this versionRulesManager and thePredictive
Simulation are emulated by dedicated components developed
to reduce the possible bias of the collected results and focus
on the Runtime Monitoring component.
Considering the Rules Manager, this artifact emulates the

Ontology Manager behavior and its execution includes two
types of rules:

1) F&NF Rules: representing functional and non-
functional properties. A F&NF Rule can be a Simple
Rule or a Complex Rule and is associated with a
predefined set of events to be launched during the test
execution by the Event Generator.

2) Predictive Rules: representing property predictions.
As shown in Listing 7, these are realized through
meta-rules that trigger the self-generation and self-
injection procedure of the Runtime Monitoring compo-
nent. Thus, each Predictive Rule lets Runtime Monitor-
ing autonomously derive the specific F&NF Rule and
self-inject it. Each Predictive Rule is associated with a
set of specific events, fired by the Event Generator, each
one containing or a forecast event, that will enact the
rules’ self-generation mechanism or an event related to
a prediction already sent.

The behavior of the Predictive Simulation is emulated
by the Event Generator component included in the MOTEF
architecture. Through the Communication Layer, the Testbed

Orchestrator provides the sets of events that the Event
Generator sends to the Runtime Monitoring during the test
execution. Multiple instances of the Event Generator can be
executed to simulate parallel sending.

In the following subsections, the procedures used for
the realization of the stubs mentioned above are provided.
In particular, Section IV-A and Section IV-B describe
the generation of the F&NF and Predictive rules sets,
respectively.

A. GENERATION PROCEDURE OF F&NF RULES SET
The generation procedure of theF&NF rules and their relative
events relies on the following rule structures:

1) Simple Rule: represents the basic rule and follows
the schema provided in Listing 3. It is grounded on the
basic logic operators (like ≺, =, ≻, ¬,&, and ∥) and as
shown in the Listing 3 includes three main fields:
• header, containing the parameters definition and
initialization (Attributes field in Listing: 3);

• logic, that specifies the condition to be checked
(Conditions field in Listing 3);

• tail that contains the action/countermeasure to be
executed (Actions field in Listing 3);

In Listing 4, an example of the Simple Rule named
check value threshold is reported. In the rule, three
attributes are considered (no-loop, salience
20, and dialect), and the logic checks if the
value stored in the data field of an event with the
EventName parameter equals to EVENTNAME_A is
greater than an established threshold. The message
Failure detected is returned as output in this
case.

2) Complex Rule: a rule structured as a composition
of more Simple Rules. The Complex Rule results from
a join of the logic part of a set of Simple Rule
using the & operator. As shown in Listing 5 the
composition is derived as a sequence of logic fields.
In this case, the logic part of the rule named check
values checks if the data field of an event with the
EventName parameter equals to EVENTNAME_A is
greater than an established threshold and if the data
field of an event with the EventName parameter
equals to EVENTNAME_B is equal to a specific value.
If both conditions are satisfied, the message Failure
detected is returned as output.

The F&NF Rules sets have been defined by i) Using two
generation procedures able to randomly generate sets Simple
Rules or a Complex Rules; ii) selecting and anonymizing
Simple Rules, Complex Rules (and relative events) from real
data collected during a monitoring activity inside a Smart
Environment. Two sets of 300 and 900 rules and associated
events have been collected in this last case. These sets
aim to let the Runtime Monitoring evaluation with massive
execution of rules and events, simulating the case of a
high-density Smart Environment [11].
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FIGURE 3. Sequence diagram for MOTEF instance execution.

Below are the random procedures for generating the rule
sets for the Rules Manager component and the relative events
for the Event Generator.
Generation of sets of Simple Rules: 30 sets of Simple Rules

have been generated considering the following procedure:

1) Manually generate a set of 50 Simple Rule, and the set
of events needed to let the rule be fired.

2) Randomly extract a number from 1 to 20 (let a be the
number extracted);

3) Randomly extracts a rules from the set of 50 Simple rule
and their relative events.

The pseudo-code for generating the Simple Rules set is
described below:
Generation of the sets of Complex Rules: 30 sets of Com-

plex Rules have been generated considering the following
procedure:

1) Manually generate a set of 50 Simple Rule, and the set
of events needed to let the rule be fired. For manually
generate Simple Rules a basic rule template described

LISTING 1. Simple rule sets generation.

in Drools Documentation1 has been taken as reference.
Each Single Rule contains the check of 3 parameters of
a generic event: a check on a boolean value, a string

1https://docs.drools.org/7.74.1.Final/drools-
docs/htmlsingle/index.htmld roolslanguagereferencechapter
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comparison, and a data value comparison using < or >
operator.

2) Generate a set of 100Complex Rule, each one containing
a composition from 1 to 5 of the Simple Rule, according
to the following steps:
• Randomly extract a number from 1 to 5 (let a be the
number extracted);

• Randomly extracts a rules from the set of 50 Simple
rule and their relative events.

• Compose a Complex Rule using the & logic, package
the events into a sequence, and connect the sequence
to the generated Complex Rule.

3) Generate 30 sets of rules and their relative events, each
one having a variable number of Complex Rules
(from 1 to 20) according to the following steps:
• randomly extract a number from 1 to 20 (let s be the
number extracted);

• randomly extract s rules from the set of 100Complex
Rules and their event and include them in the set.

The pseudo-code for generating Complex Rules sets is
described below:

LISTING 2. Complex rule sets generation

These sets of Simple Rules and Complex Rules and their
relative events will be used by the TestBed Orchestrator for
setting up and enacting the experiment during the execution
of MOnitoring TEsting Framework (MOTEF).

LISTING 3. Simple rule template

LISTING 4. Simple rule example

LISTING 5. Complex Rule example

B. GENERATION PROCEDURE OF PREDICTIVE RULE SET
Predictive rules are rules generated at execution time by the
infrastructure in charge to monitor the system after receiving
an event that contains a forecast.

A prediction must contain information related to the event
in the system and the possible value that the event may
take. Once a prediction is made and sent to the monitoring
infrastructure or a dedicated component in charge to receive
and generate forecasting, it should be able to interpret the
forecast and provide a rule that will be triggered if the
forecasted event in specific conditions is notified to it.
The forecast may contain a single event, a composition,
or a sequence. Information related to the threshold to be
respected or other properties must be provided within the
forecast. This will allow the component in charge to generate
the rule and select the correct meta-rule template. Once
the correct template is selected and instantiated with the
requested parameters, the output artifact (a new rule) will be
self-injected into the monitoring infrastructure.

The generation procedure adopted for the Predictive Rules
is executed by the Test Orchestrator.
It loads 50 randomly generated Simple Rule and generates

15 sets, each containing 10 Predictive Rules. The Predictive
Rules are generated by selecting randomly a Simple Rules
previously loaded. The generated 15 sets are provided to the
Predictive Simulation to be sent randomly to the Runtime
Monitoring during the execution.

The pseudo-code for generating the Predictive Rules sets
is described in Listing: 6.

V. EXPERIMENTAL EVALUATION
An existing Runtime Monitoring has been tested to showcase
the use of MOnitoring TEsting Framework (MOTEF) pro-
posal. In particular, from the available Runtime Monitoring
engine, the Complex Event ProcessingMonitor Infrastructure

VOLUME 12, 2024 38011



A. Calabrò, E. Marchetti: MOTEF: A Testing Framework for Runtime Monitoring Infrastructures

LISTING 6. Predictive rules sets generation.

CONCERN2 was selected because it is an open-source,
customizable, and generic monitoring proposal. Additionally,
its effectiveness and efficiency in monitoring functional
and non-functional properties have already been evaluated
as appropriate in several specific contexts and application
domains (such as [11], [13], [33], [34]). This evidence
guarantees that CONCERN could be a good candidate for
the MOTEF experimentation. Additionally, to allow loosely
coupled communication and to manage vast amounts of data,
theCommunication Layer implementation was based on JMS
Messages3 on top of ActiveMQ Message Broker.4

For experimental purposes, the Testbed Orchestrator has
been set up to collect results helpful in answering the
research questions presented in the introduction. In partic-
ular, considering the first question, i.e., RQ1: What are
the performances of runtime monitoring in terms of
responsiveness?, the focus has been devoted to evaluating
the time required to load different types of rules (simple and
complex). In particular, the evaluation includes the following
capabilities:
1) the capacity to manage a large number of rules;
2) the impact of loading simple vs. complex monitoring

rules;
3) the capability firing the rule;
4) the capability of notification of a rule violation.
Thus, specific metrics for RQ1 have been defined as the

following:
1) Rules Loading Time: The metric is calculated accord-

ing to the schema reported in Figure 4. In particular,
the interval time (1tloading) between receiving rules time

2https://github.com/ISTI-LABSEDC/Concern
3https://javaee.github.io/jms-spec/
4https://activemq.apache.org/

(t0) and rules loaded time (t1) is calculated as

1tloading = t1 − t0 (1)

2) Rules Firing Time: The metric is calculated as the
difference between the time of receiving an event from
the monitored systems (in our case, from the Rule
Manager) and the time of notification of a possible
violation, as illustrated below.

1tfiring = t3 − t2 (2)

FIGURE 4. Metrics for RQ1: (a) Rules Loading Metric and (b) Rules Firing
Metric.

For RQ2, the metric considered is:

1) Effective Prediction: The average time requested by
the Runtime Monitoring, after receiving a forecast from
the Predictive Simulation component to generate a rule
capable of capturing the forecasted event and self-inject
it into its own complex event processor knowledge base.

The calculation of this capability is done by fractioning the
time interval in three phases:

• (1tA) time requested for launching and executing the
rule generation process when the event that triggers the
generation is received;

• (1tB) time requested for self-inject the generated rule in
the knowledge base;

• (1tC ) time requested for notifying a violation of the
generated and self-injected rule.

The sum of 1tA + 1tB + 1tC is equal to the time boundary
that is required to elapse between the sending of a forecasted
event and the real occurrence of it.

1tpredictionBoundary = 1tgenerate + 1tinject + 1tfiring (3)

Considering that the generated predictive rule is behaving
as a generic simple or complex rule, we avoid recalculating
for the RQ2 the value of (1tfiring) because it is equal to the
value calculated on RQ1.
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For this reason, in Figure 5, the graphical timing represen-
tation of the RQ2 is reported.

FIGURE 5. Metrics for RQ2: Rule generation and injection from a
prediction.

Where 1tgenerate is calculated as follows:

1tgenerate = tb − ta (4)

whereas 1tinject is computed as in the following equation:

1tinject = tc − tb (5)

In this way, if the forecasted events will occur after
a time interval major than the time requested to receive
a prediction, generate a new rule, and self-inject it, the
monitoring infrastructure used will be useful for prediction.

VI. EXPERIMENTAL RESULTS
This section describes the experimental results collected
using the MOnitoring TEsting Framework (MOTEF) for
testing the CONCERN responsiveness and effectiveness.

All the testing activities were executed on a machine
running Kali Linux OS 2023.03, equipped with an Intel i7-
10610U CPU @ 1.80GHz with SSD and 16GB RAM. The
MOTEF components have been developed in Java using
Eclipse, and the Runtime Monitoring test has been executed
on top of the Java 19 version.

In particular, the following subsections reply to the
research questions RQ1 and RQ2 presented in Section I.

A. RQ1: STANDALONE PERFORMANCE
In answering RQ1 (i.e., What are the performances of
runtime monitoring regarding responsiveness?), MOTEF has
been used for evaluating the CONCERN’s capability of
managing sets of Simple Rule and Complex Rule, firing a
rule, and triggering a violation considering the following
Experiments:

1) Experiment 1 - Loading Simple Rules: In this set up,
through theOrchestrator, the RuleManager receives the
sets of Simple Rules derived according to the procedure
described in Section IV-A and the Event Generator
receives the relative events.

2) Experiment 2 - LoadingComplexRules: In this set up,
Through the Orchestrator, the Rule Manager receives
the sets of Complex Rules derived according to the
procedure described in Section IV-A and the Event
Generator receives the relative event.

3) Experiment 3 - Loading real set of 300 rules: In
this set up, through the Orchestrator, the Rule Manager
receives the set of 300 Simple Rule and Complex Rule
selected by real data as described in in Section IV-A and
the Event Generator receives the relative events.

4) Experiment 4 - Loading real set of 900 Rules: In
this setup, through the Orchestrator, the Rule Manager
receives the set of 900 Simple Rule and Complex Rule
according to the procedure described in Section IV-A
and the Event Generator receives the relative event.

In the four Experiments, the MOnitoring TEsting Frame-
work (MOTEF) execution evaluates the time required for
the rule loading (1tloading) in two different CONCERN
setups. A) Cold when CONCERN has no rule uploaded in its
knowledge base at start-up, B)Hotwhen CONCERN already
includes a set of rules loaded.

Experiments 1 and 2 were repeated 20 times, and average
values were computed as reported in Table 1.

According to the data collected, in all the 1-4 Experiments,
there are important differences between the Cold and Hot
CONCERN setup. In particular, the time required to set up
the knowledge base (the component on which all rules are
loaded and stored) could have an important impact in the case
of a small set of Simple Rule. Indeed, in the first Experiment,
the Cold case takes 507% more time than Hot; in the second,
it takes around 187%; in the third, it takes 131% more; and in
the fourth, it takes 50% more time. These data established
the boundary ranges in which monitoring activity can be
considered trustable after the monitor’s start-up. These can
also be used to evaluate if it would be convenient to start and
stop the monitoring activity frequently or keep the monitor
active, avoiding loading time delay.

Another evaluation of the responsiveness of the CON-
CERN can be done considering the type of rules to be
evaluated. In the case of the Complex Rule set on average,
the experiment evidenced that CONCERN took more time to
load, probably due to the increased number of resources and
libraries required for the management. Indeed, comparing
data of Experiments 1 and 2 on average, managing 20 Simple
Rules or 20 Complex Rules takes 1.6 times more in the Cold
case and 3.5 in the Hot case. All these aspects can help
decide whether it is convenient to deploy multiple instances
of runtime monitoring or improve the management of its
elasticity.

Finally, Experiments 3 and 4 confirm the intuition that
loading time could increase depending on the number of
managed rules, either in Cold or Hot cases, even if without
a linear growth. Indeed, comparing Experiments 3 and 4,
managing 300 rules or 900 takes 2.5 times more inCold cases
and 3.8 in Hot cases. This should be considered in all cases
wheremonitor activity should fulfill a strict real-time reaction
threshold or manage a huge amount of data and events, such
as the case of industrial networks equipped with 5G devices
where the monitoring systems need to react according to their
high-critical infrastructure time constraints. In this case, the
evaluation of raising another monitoring instance instead of
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TABLE 1. Experimental execution results.

working on the existing one with a higher load of rules could
be necessary.

Regarding the average time required for firing a rule after
receiving an event that triggers it ((1tfiring)), the results show
few differences between groups of Experiments 1 and 2
(1 ms on average) and 3 and 4 (2ms on average). Instead,
the difference is between the heavy load of Experiments 3
and 4, which require 103 and 105, respectively, and
Experiments 1 and 2, which require 103 and 105, respectively.
These evaluations are important for establishing the runtime
monitor’s responsiveness in a time-critical environment.
Indeed, analysts and developers could use the collected data
to establish a trade-off between the maximum time allowable
for receiving a notification of violation (considering the
amount and type of rules loaded) and the time required for
deploying another instance of Runtime Monitoring.

In conclusion, MOnitoring TEsting Framework (MOTEF)
can provide useful data for answering RQ1 and establishing
the runtime monitoring responsiveness time boundary in
different situations.

B. RQ2: EFFECTIVE PREDICTION
To answer the second research question presented in the
introduction (i.e., Can runtime monitoring ensure effective
Smart Prediction?), an additional Experiment has been
executed to evaluate the CONCERN’s ability to collaborate
with components to make predictions.

1) EXPERIMENT 5 - PREDICTIVE DATA
With CONCERN in theCold andHot case situations, through
the Orchestrator, the Predictive Simulation receives a set
of Predictive Rules, randomly selected from one of the
15 available sets (as described in Section IV-B) and the Event
Generator receives the relative events.

The Experiment focused on the evaluation of the time
required to launch and execute the rule generation process
(1tgenerate), self-inject the generated rule in the knowledge
base (1tinject ), and notify a violation (1tfiring).

According to the CONCERN operational behavior, it gen-
erates predictive rules once a prediction is received. In par-
ticular, CONCERN loads within its knowledge Base the
meta-rule capable of capturing the forecasted event and
enacting the rule generation related to the received prediction.

An example of the meta-rule for the self-generation
procedure is shown in the Listing 7. In detail, once

LISTING 7. Rule for enacting rules self-generation through DT forecast.

the forecast event is received (row 11), the CON-
CERN monitoring uses its parameters (that could include
the trustedIntervalInSeconds, forecasted
Property, thresholdValue) to select the rule tem-
plate matching the forecast sent by the Predictive Simulation.
An example of a CONCERN forecast event called the
ConcernDTForecast is shown in figure Figure: 6.
Once the correct template is selected and instantiated with

the parameters requested, CONCERN self-injects the new
rule for monitoring the occurrence of the event forecasted.

a: EXPERIMENTS [5] RESULTS ANALYSIS
As Experiment [1-4], Experiment 5 has been repeated
20 times considering both theHot andCold setup and average
values computed. These include:

• Time required for loading the the predictive meta-rule:
1tloading;

• Time required for generation: 1tgenerate
• Time required for injection: 1tinject ;
• Time required for firing notification: 1tfiring.

Experiment 5 results are reported in the last two columns
of Table 1. Considering the loading time (1tloading), the
performance of CONCERN in both cases is slightly higher
than the results collected in Experiment 1. This is mainly
due to the structure of a predictive meta-rule, which contains
additional external library checks than a Simple Rule.

In conclusion, the loading of prediction rules may be
slower than the other kinds of rules and, in any case, affected
by the limitations already discussed in Experiments 1 and 2 of
the previous section.

Considering the other time interval of Experiment 5, the
following average results have been collected:
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FIGURE 6. ConcernDTForecast class view.

1) Generation of monitoring rule from Predictive Data:
10 ms;

2) Injecting monitoring rule: 44ms;
3) Evaluation and generation of monitoring rule viola-

tion: 96 ms.
The use of MOTEF provides clear measures of the

effectiveness of CONCERN in dealing with smart predictions
and lets us reply to the RQ2 computing its hard real-
time boundaries. Indeed, excluding the communication delay
among components, the CONCERN time constraints are:

• 54ms: the minimal time necessary to generate and load
a predictive rule for the analyzed Runtime Monitoring.

• 61 ms: the minimal time necessary to the Runtime
Monitoring from generating a rule to the notification of
its violation.

Experiment 5 shows that CONCERN can be adopted in
every situation in which the reaction time is not less than the
above limits.

VII. THREATS TO VALIDITY
This section discusses threats to the internal and external
validity threats of the study presented in this paper. Con-
cerning the internal validity, i.e., the amount of confidence
in the reported evaluation results, different aspects can be
considered:
Fairness of the emulated SMF artifacts
MOTEF emulated components (Rules Manager and Event

Generator) rely on a random selection algorithm based on a
predefined set of data that mitigates the risk of biasing the
selection of input in favor or against the Runtime Monitoring
quality evaluation results.
Simple and Complex Rules generation
To avoid bias in the rules generation, considering the

Simple Rules manual generation, the first 50 rules have been
generated considering the same logical constructs as it has
been already described in IV-A. From these rules, all the
outcomes generated by the script proposed in 1 and 2 have
been manually checked by authors that have consolidated

experience in Drools rules generation and management. For
the same reason and in the same way, the Complex Rules 5,
generated by automatic composition of Simple Rules, has
been manually checked from the syntactic and semantic point
of view.

Considering the external validity, the bias could derive
from: Usage of specific runtime monitoring.
To avoid this bias, the selection of the Runtime Monitoring
(CONCERN) has been done considering that it has already
been tested in more than 3 EU projects, is subject to more
than 20 research papers, and has been evaluated and validated
in several industrial use-cases. This can guarantee that results
are independent of the intrinsic quality aspect of the Runtime
Monitoring.

Another aspect considered from the external validity is
related to the Reliability of measures.
This threat has been mitigated by executing the experiment
20 times and calculating the average values obtained, noticing
slight variance and deviation.

VIII. CONCLUSION FUTURE WORKS
This paper presented the MOnitoring TEsting Framework
(MOTEF), a testing framework for evaluating the perfor-
mance of a runtime monitoring system in isolation and
when it needs to provide smart predictions. The purpose
is to establish working time boundaries to avoid runtime
monitoring becoming a bottleneck for communication and
computational processes and to better design and manage the
overall system architecture. The result of using MOTEF in
evaluating the performance of an existing monitoring system
is provided and discussed, considering two research questions
related to the responsiveness and effectiveness of predictions.
The preliminary validation shows the usefulness of MOTEF
in precisely analyzing runtime monitoring working time.
Additionally, the positive results are promoting MOTEF as a
reference testing framework for evaluating the performance
of different runtime monitoring systems inside ongoing
research projects SERICS5 and RESTART.6 We are working
on including an intelligent result analysis system to showcase
the collected results better.

As future works, considering the exciting results gathered,
we are working on structuring the framework with the
possibility of selecting and evaluating further properties
not only related to responsiveness, i.e., security, stress test,
scalability, and costs. Additional attention will be devoted to
simulating possible behavioral models representing specific
sensors and component interactions. These further activities
require enriching the proposed MOTEF framework with
emulated or dedicated components.
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