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Abstract. We consider a recently introduced formulation for fluid-structure

interaction problems which makes use of a distributed Lagrange multiplier
in the spirit of the fictitious domain method. In this paper we focus on time

integration methods of second order based on backward differentiation formulae

and on the Crank–Nicolson method. We show the stability properties of the
resulting method; numerical tests confirm the theoretical results.

1. Introduction. We discuss a scheme involving a fictitious domain approach with
a distributed Lagrange multiplier for the modeling of fluid-structure interaction
problems [3, 5], which has originated as a natural evolution of the Finite Element
Immersed Boundary Method introduced and studied in [6, 8, 2, 4]. This inves-
tigation started from the framework of Peskin’s research [23] who introduced the
(finite difference) Immersed Boundary Method for the modeling of fluid-structure
interaction problems.

The project described in this paper has been carried on during the Master thesis
of the third author who spent a semester in Pavia within an exchange program
between TUM and Pavia. The aim of the project was to investigate and analyze
higher order time schemes for our fluid-structure interaction numerical approach
which, so far, had been presented only in combination with low order Euler schemes.
On the other hand, in the case of thick (codimension zero) solids, the regularity of
the solution allows for a convergence in space higher than first order, so that it may
pay off to make use of higher order schemes.

The main result of this paper consists in the implementation and in the stability
analysis for the second order Backward Differentiation Formula BDF2 and for the
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Figure 1. Geometrical configuration of the FSI problem

Crank–Nicolson scheme. We present two possible variants of the Crank–Nicolson
scheme, which differ in the treatment of the nonlinear terms.

The structure of our paper is as follows: after introducing the model and its finite
element discretization in Section 2, we describe different time stepping schemes in
Section 3: Backward Euler BDF1, BDF2, Crank–Nicolson (version based on mid-
point rule CNm or based on trapezoidal rule CNt). Finally, in Section 4, we present
several numerical experiments confirming the convergence and the stability proved
in the previous section.

2. Setting of the FSI problem. We consider a fluid-structure interaction prob-
lem consisting of a visco-elastic solid immersed in a fluid. The solid is initially
distorted from its equilibrium configuration, so that it tends to return to its equi-
librium position. In doing so, the region occupied by the fluid changes its shape,
thus inducing a flow which in turn produces a force on the solid, which deforms
accordingly. We assume that both the fluid and the solid are incompressible. An
extension to our model to compressible solids has been studied in [7] but is not
going to be considered in this paper.

Let Ω ⊂ Rd, with d = 2, 3, be a connected, open, and bounded domain with Lip-
schitz continuous boundary ∂Ω. For simplicity, we assume that Ω is a polyhedron.

The domain Ω is split into two non intersecting open domains Ωft and Ωst which
represent the regions occupied at time t by fluid and solid, respectively. Hence we

have Ω = Ωft ∪ Ωst . We denote by Γt the interface between Ωft and Ωst and assume
that it has empty intersection with the exterior boundary ∂Ω. Let B be the refer-
ence domain of Ωst , and let X : B → Ωst represent the corresponding deformation
mapping. Hence a point x ∈ Ωst is the image at time t of a point s ∈ B, that is
x = X(s, t). For simplicity, we assume that B = Ωs0 is the initial position of the
solid. We denote by F = ∇s X the deformation gradient and by J = det(F) its
Jacobian.

We are going to use the following notation: uf , pf , σf , and ρf denote, re-
spectively, velocity, pressure, stress tensor and density in the fluid. We consider a
Newtonian fluid characterized by the usual Navier–Stokes stress tensor

σf = −pf I + νf ∇sym uf , (1)
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where νf is the fluid viscosity and ∇sym u = (1/2)
(
∇uf + (∇uf )>

)
. In the fluid,

we use an Eulerian description so that the material derivative is given by

u̇f =
∂uf
∂t

+ uf ·∇uf .

In the solid, us, ps, and ρs stand, respectively, for velocity, pressure, and density.
In the solid the Lagrangian framework is preferred, and the spatial description of
the material velocity reads

us(x, t) =
∂X(s, t)

∂t

∣∣∣
x=X(s,t)

(2)

so that u̇s = ∂2X/∂t2. Moreover, we assume that the solid material is viscous-
hyperelastic, so that the Cauchy stress tensor is given by the sum of a viscous part

σvs = −psI + νs∇sym us, (3)

where νs is the viscosity, and an elastic part σes , which can be expressed in terms
of the Piola–Kirchhoff stress tensor P:

P(F(s, t)) = |F(s, t)|σes(x, t)F−>(s, t) for x = X(s, t). (4)

The Piola–Kirchhoff stress tensor is related to the positive energy density W (F),
which characterizes hyperelastic materials, as follows:

(P(F(s, t))αi =
∂W

∂Fαi
(F(s, t)) =

(
∂W

∂F
(F(s, t))

)
αi

, (5)

where i = 1, . . . ,m and α = 1, . . . , d. The elastic potential energy of the body is
given by:

E (X(t)) =

∫
B
W (F(s, t))ds. (6)

Assuming that both the fluid and the solid material are incompressible, we have
the following mathematical model for the fluid-structure system:

ρf u̇f = divσf in Ωft

div uf = 0 in Ωft

ρs
∂2X

∂t2
= divs(|F|σvsF−> + P(F)) in B

divus = 0 in Ωst

uf =
∂X

∂t
on Γt

σfnf = −(σvs + |F|−1PF>)ns on Γt.

(7)

The last two equations in (7) represent the transmission condition at the interface
Γt. The model is completed with initial and boundary conditions:

uf (0) = uf0 in Ωf0

us(0) = us0 in Ωs0

X(0) = X0 in B
uf (t) = 0 on ∂Ω.

(8)
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Following [5], we apply a fictitious domain approach by extending the first equation
in (7) to the whole domain Ω and by using the following new unknowns:

u =

{
uf in Ωft
us in Ωst

p =

{
pf in Ωft
ps in Ωst .

(9)

The extended velocity and pressure satisfy the following equation all over the do-
main:

ρf u̇ = div(ν∇sym u)−∇p− χ̃ in Ω

div u = 0 in Ω,
(10)

where χ̃ = 0 in Ωft and we set

ν =

{
νf in Ωft
νs in Ωst .

(11)

The first equation in (10) enforces that ρf u̇s = divσvs − χ̃ in Ωst . By taking into
account (2) and changing variable, this is equivalent to

ρf
∂2X

∂t2
= divs(|F|σvsF−>)− χ in B

where χ : B → Rd is given by χ(s, t) = χ̃(X(s, t), t). Subtracting the last equation
from the third equation in (7) gives

(ρs − ρf )
∂2X

∂t2
= divsP(F) + χ in B

and the model problem can be rewritten as follows: find u, p, X such that

ρf u̇ = div(ν∇sym u)−∇p− χ̃ in Ω

div u = 0 in Ω

(ρs − ρf )
∂2X

∂t2
= divsP(F) + χ in B

u(X(s, t), t) =
∂X(s, t)

∂t
on B

σfnf = −(σvs + |F|−1PF>)ns on Γt

u(0) = u0 in Ω

X(0) = X0 in B
u(t) = 0 on ∂Ω.

(12)

We observe that the second equation in (12) enforces the divergence free con-
straint both for fluid and solid. In order to arrive to our weak formulation we
multiply the first equation by a test function v ∈ H1

0 (Ω)d and integrate by parts
the right hand side taking into account (9) and the fact that the normal derivatives
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of u might jump across Γt, hence we have∫
Ω

ρf u̇vdx = −
∫

Ω

ν∇sym u : ∇sym vdx +

∫
Ω

p div vdx−
∫

Ωs
t

χ̃vdx

+

∫
Γt

νf ∇sym u nfvdγ −
∫

Γt

pv · nfdγ

+

∫
Γt

νs∇sym u nsvdγ −
∫

Γt

pv · nsdγ

= −
∫

Ω

ν∇sym u : ∇sym vdx +

∫
Ω

p div vdx

−
∫

Ωs
t

χ̃vdx−
∫

Γt

|F|−1P(F)F> nsvdγ

(13)

On the other hand, multiplying by a test function z ∈ H1(B)d the third equation
in (12) and integrating by parts, we obtain

(ρs − ρf )

∫
B

∂2X

∂t2
zds = −

∫
B
P(F) : ∇s zds +

∫
B
χzds +

∫
∂B

P(F) Nzdγ,

where N is the outward normal unit vector to ∂B. By change of variables, the last
two integrals are equal to minus the last two integrals on the right hand side of (13)
if we choose v(X(s, t)) = z(s) for s ∈ ∂B.

Let Λ be a functional space to be defined later on and c : Λ × H1(B)d → R a
continuous bilinear form such that

c(µ, z) = 0 ∀µ ∈ Λ implies z = 0. (14)

Possible definitions for Λ and c are:

• c is the duality pairing between H1(B)d and its dual, that is Λ = (H1(B)d)′

and c(µ, z) = 〈µ, z〉B for µ ∈ Λ, z ∈ H1(B)d;
• c is the scalar product in H1(B)d, that is Λ = H1(B)d and c(µ, z) = (µ, z)B+

(∇s µ,∇s z)B for µ, z ∈ H1(B)d.

Then we introduce λ ∈ Λ satisfying the following relation:

c(λ, z) =

∫
B
χzds +

∫
∂B

P(F) Nzdγ ∀z ∈ H1(B)d. (15)

Using the bilinear form c we can formulate the kinematic constraint in the fourth
equation in (12) as

c

(
µ,u(X(s, t), t)− ∂(X(s, t))

∂t

)
= 0

and our problem can be rewritten in the following weak form (see, also, [3, 5]).
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Problem 1. For given u0 ∈ H1
0 (Ω)d and X0 ∈ W 1,∞(B), find u(t) ∈ H1

0 (Ω)d,
p(t) ∈ L2

0(Ω), X(t) ∈ H1(B)d, and λ(t) ∈ Λ such that for almost all t ∈ (0, T ):

ρf

(
∂

∂t
u(t),v

)
Ω

+ b (u(t),u(t),v) + a (u(t),v)

− (div v, p(t))Ω + c (λ(t),v(X(·, t))) = 0 ∀v ∈ H1
0 (Ω)d

(div u(t), q)Ω = 0 ∀q ∈ L2
0(Ω)

δρ

(
∂2X

∂t2
(t), z

)
B

+ (P(F(t)),∇sz)B − c (λ(t), z) = 0 ∀z ∈ H1(B)d

c

(
µ,u(X(·, t), t)− ∂X

∂t
(t)

)
= 0 ∀µ ∈ Λ

u(x, 0) = u0(x) in Ω

X(s, 0) = X0(s) in B.

(16)

In the above problem we have used the following notation: δρ = ρs − ρf , the
scalar product in L2(D) is denoted by (·, ·)D, and

a(u,v) = (ν∇sym u,∇sym v)Ω

b(u,v,w) =
ρf
2

((u ·∇v,w)− (u ·∇w,v)) .
(17)

Remark 1. We remark that the unknown λ in Problem 1 plays the role of a
Lagrange multiplier associated with the condition which enforces the kinematic
constraint, that is the equality of the velocity u with the solid velocity in the region
occupied by the structures, see also (2).

Remark 2. We can introduce an alternative to the third equation in (16) by
splitting it into a system of two equations of first order in time, and by introducing

a new unknown Ẋ(t) = ∂X(t)
∂t :

(Ẋ(t),w)B =

(
∂X(t)

∂t
,w

)
B

∀w ∈ L2(B)(
∂Ẋ(t)

∂t
, z

)
B

+ (P(F(t)),∇s z)B − c(λ(t), z) = 0 ∀z ∈ H1(B)d.

(18)

This formulation is more suited when a second order time marching scheme is used,
since we do not need to introduce a second order approximation of the second time
derivative.

By choosing properly the test functions in (16), one can obtain the following
energy estimate [5] :

Proposition 2.1. Let us assume that δρ ≥ 0, that the potential energy density W
is a C1 convex function over the set of second order tensors, and that for almost
every t ∈ [0, T ] the solution of Problem 1 is such that X(t) ∈ (W 1,∞(B))d with
∂X
∂t (t) ∈ L2(B)d, then the following equality holds true

ρf
2

d

dt
||u(t)||2Ω + ν||∇sym u(t)||2Ω +

δρ

2

d

dt

∥∥∥∥∂X(t)

∂t

∥∥∥∥2

B
+
d

dt
E(X(t)) = 0. (19)

In the above proposition ‖ · ‖D stands for the norm in L2(D). We observe that
the above proposition still holds true when the alternative formulation in (18) is
used.



HIGHER-ORDER TIME-STEPPING FOR FSI PROBLEMS 3813

Remark 3. Problems (12) and (13) are highly non-linear and the analysis of the
existence and uniqueness is a challenging task. In [5] it is proved the stability of
a steady system associated to (16) which implies existence and uniqueness of the
solution of the problem obtained after time discretization.

When suitable regularity conditions (on the data and on the domain) are as-
sumed, then small-time existence for problems analogous to the one considered in
this paper is proved, for instance, in [12, 13, 24, 9, 10].

2.1. Finite element discretization. Let Th and T Bh be regular meshes in Ω and
B, respectively, which are independent one from each other. The corresponding
mesh sizes will be denoted by hf and hs, respectively. We consider two finite
element spaces Vh ⊂ H1

0 (Ω)d and Qh ⊂ L2
0(Ω) such that the pair (Vh, Qh) satisfies

the usual inf-sup condition for the Stokes equations. We assume that T Bh contains
only simplices and introduce the space of continuous piecewise affine functions on
T Bh

Sh = {z ∈ H1(B)d : z|T ∈ P1(T ) ∀T ∈ T Bh }. (20)

In order to discretize Λ, we set Λh = Sh. With this definition we have that when
Λ = (H1(B)d)′ and c is the duality pairing, we can compute easily c using the
scalar product in L2(B).

Then the discrete counterpart of Problem 1 reads as follows.

Problem 2. For given u0h ∈ Vh and X0h ∈ Sh, find uh(t) ∈ Vh, ph(t) ∈ Qh,
Xh(t) ∈ Sh, λh(t) ∈ Λh such that for almost all t ∈ (0, T ):

ρf

(
∂

∂t
uh(t),vh

)
Ω

+ b (uh(t),uh(t),vh) + a (uh(t),vh)

− (div vh, ph(t))Ω + c (λh(t),vh(Xh(·, t))) = 0 ∀vh ∈ Vh

(div uh(t), qh)Ω = 0 ∀qh ∈ Qh

δρ

(
∂2Xh

∂t2
(t), zh

)
B

+ (P(Fh(t)),∇s zh)B − c (λh(t), zh) = 0 ∀zh ∈ Sh

c

(
µh,uh(Xh(·, t), t)− ∂Xh

∂t
(t)

)
= 0 ∀µh ∈ Λh

uh(x, 0) = u0h(x) in Ω

Xh(s, 0) = X0h(s) in B.

(21)

This semi discrete problem inherits the same energy estimate as the continuous
one, which can be proved with the same technique.

The system (18) can be discretized as follows: find Ẋh(t) ∈ Sh and Xh(t) ∈ Sh
such that

(Ẋh(t),wh)B =

(
∂Xh(t)

∂t
,wh

)
B

∀wh ∈ Sh(
∂Ẋh(t)

∂t
, zh

)
B

+ (P(Fh(t)),∇s zh)B − c(λh(t), zh) = 0 ∀zh ∈ Sh.

(22)

We observe that the first equation can be solved exactly. In the following we shall
use these two equations instead of the third equation in (21) when we apply higher
order time marching schemes.
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3. Higher-order time-stepping method. The system (21) is a system of ODEs
with some algebraic constraints in Rn, where n = dim(Vh) + dim(Qh) + dim(Sh) +
dim(Λh). The numerical solution of Problem 2 can be computed by using some
ODE/DAE solver. In order to avoid to use excessively small time steps, in [3, 5] the
Backward Euler formula was applied for the time-integration, and the unconditional
stability of the scheme has been proved. The aim of this paper is to introduce meth-
ods which achieve second order convergence in time and are unconditionally stable.
In particular, we shall consider two one-step methods - based on the midpoint and
trapezoidal rules - and the BDF2 method and analyze their stability. We observe
that the resulting fully discrete scheme is nonlinear, and we shall discuss how the
solution can be obtained.

3.1. Backward Euler. Before entering into the details of higher order methods, we
recall the Backward Euler method analyzed in [3]. We subdivide the time interval
[0, T ] into N equal parts with size ∆t = T/N and subdivision points tn = n∆t.
Moreover, for a certain function y(t), we set yn = y(tn) and use the following finite
difference in order to approximate the time derivatives:

∂y(tn+1)

∂t
≈ yn+1 − yn

∆t
∂2y(tn+1)

∂t2
≈ yn+1 − 2yn + yn−1

∆t2
.

(23)

Notice that both approximations are of first order.
The fully discrete version of Problem 1 using the Backward Euler scheme is the

following one.

Problem 3. Given u0h ∈ Vh and X0h ∈ Sh, for all n = 1, . . . , N find unh ∈ Vh,
pnh ∈ Qh, Xn

h ∈ Sh, and λnh ∈ Λh fulfilling:

ρf

(
un+1
h − unh

∆t
,vh

)
Ω

+ b
(
un+1
h ,un+1

h ,vh
)

+ a
(
un+1
h ,vh

)
−
(
div vh, p

n+1
h

)
Ω

+ c
(
λn+1
h ,vh(Xn+1

h )
)

= 0 ∀vh ∈ Vh(
div un+1

h , qh
)

Ω
= 0 ∀qh ∈ Qh

δρ

(
Xn+1
h − 2Xn

h + Xn−1
h

∆t2
, zh

)
B

+
(
P(Fn+1

h ),∇szh
)
B − c

(
λn+1
h , zh

)
= 0 ∀zh ∈ Sh

c

(
µh,u

n+1
h (Xn+1

h )− Xn+1
h −Xn

h

∆t

)
= 0 ∀µh ∈ Λh

u0
h = u0h, X0

h = X0h.

(24)

We recall the stability estimate proven in [3].

Proposition 3.1. Let the material behavior be governed by an energy density W
which is C1 and convex. Let unh ∈ Vh and Xn

h ∈ Sh, n = 1, . . . N be solutions
of (24). Then the following estimate holds true:

ρf
2∆t

(
‖un+1

h ‖2Ω − ‖unh‖2Ω
)

+ ν‖∇symun+1
h ‖2Ω +

E(Xn+1
h )− E(Xn

h)

∆t

+
δρ

2∆t

[∥∥∥∥Xn+1
h −Xn

h

∆t

∥∥∥∥2

B
−
∥∥∥∥Xn

h −Xn−1
h

∆t

∥∥∥∥2

B

]
≤ 0.
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This system is highly nonlinear and hence not immediate to solve. It can be
solved by a fixed-point method or by replacing some quantities at time tn+1 with
their known value at time tn. For example, in [3] the latter approach has been pre-
ferred; the value of v(Xn+1

h ) in the first equation has been replaced by v(Xn
h) and,

similarly, un+1
h (Xn+1

h ) by un+1
h (Xn

h). Moreover, as it is usual in the discretization
of the Navier–Stokes equations, the first argument in the trilinear form b has been
evaluated at time tn. Notice that the same stability estimate as for the fully im-
plicit scheme has been proved. We observe also that this modification introduces an
approximation of first order, which should not affect the accuracy of the Backward
Euler scheme, since it is of first order, too.

At the first step n = 0, the approximation of the second time derivative requires
the knowledge of X−1

h . Following [5], we can compute this value using the kinematic
constraint and the initial data

c

(
µh,u

0
h(X0

h)− X0
h −X−1

h

∆t

)
= 0 ∀µh ∈ Λh.

3.2. BDF2 method. Backwards differentiation formulae (BDF) are popular mul-
tistep methods to solve stiff ODE problems. They can be derived by approximating
the time derivative at time tn+1 with finite differences with order greater than or
equal to 1. In particular, using a first order finite difference we have the Backward
Euler method. In this paper we focus on the second order formula BDF2, hence,
for a certain function y(t), we approximate the time derivative with

∂y(tn+1)

∂t
≈ 3yn+1 − 4yn + yn−1

∆t
. (25)

When applied to ODEs, it is well-known that BDF2 is convergent of order 2 and
A-stable, (see for more detail [14, Chapter 7]). BDF methods have been successfully
applied to the Navier–Stokes equations [20], to nonlinear structural mechanics [15],
to electro-magnetic problems [22], and to Stokes–Darcy flow [11].

The application of the BDF2 method to Problem 2 gives the following formula-
tion.
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Problem 4. Given u0h ∈ Vh, X0h ∈ Sh, for all n = 1, . . . , N find unh ∈ Vh,

pnh ∈ Qh, Xn
h ∈ Sh, Ẋn

h ∈ Sh and λnh ∈ Λh fulfilling:

ρf

(
3un+1

h − 4unh + un−1
h

2∆t
,vh

)
Ω

+ b
(
un+1
h ,un+1

h ,vh
)

+ a
(
un+1
h ,vh

)
−
(
div vh, p

n+1
h

)
Ω

+ c
(
λn+1
h ,vh(Xn+1

h )
)

= 0 ∀vh ∈ Vh (26a)(
div un+1

h , qh
)

Ω
= 0 ∀qh ∈ Qh (26b)

(Ẋn+1
h ,wh)B =

(
3Xn+1

h − 4Xn
h + Xn−1

h

2∆t
,wh

)
B

∀wh ∈ Sh (26c)

δρ

(
3Ẋn+1

h − 4Ẋn
h + Ẋn−1

h

2∆t
, zh

)
B

+
(
P(Fn+1

h ),∇szh
)
B − c

(
λn+1
h , zh

)
= 0 ∀zh ∈ Sh (26d)

c

(
µh,u

n+1
h (Xn+1

h )− 3Xn+1
h − 4Xn

h + Xn−1
h

2∆t

)
= 0 ∀µh ∈ Λh (26e)

u0
h = u0h, X0

h = X0h. (26f)

To start the computations, we additionally need the quantities u1
h and X1

h which
are usually obtained by a one-step method. To achieve second order consistency
theoretically, we need to apply a method of second order to the first step. This can
be done, for instance, by using the Crank–Nicolson scheme, which is analyzed in
this paper as well. In our numerical experiments we also tried a start-up with the
backward Euler method, which also produced second order convergence.

In the following proposition, we prove an energy estimate for the scheme de-
scribed by Equations (26a)-(26f).

Proposition 3.2. Assume that δρ ≥ 0 and that the solids behavior is linear:
P(F) = κF. Let unh, Xn

h, n = 1, . . . N , be solutions of Problem 4, then the following
estimate holds true:

ρf
4∆t

[∥∥un+1
h

∥∥2

Ω
+
∥∥2un+1

h − unh
∥∥2

Ω
− ‖unh‖2Ω −

∥∥2unh − un−1
h

∥∥2

Ω

+
∥∥un+1

h − 2unh + un−1
h

∥∥2

Ω

]
+ ν

∥∥∇sym un+1
h

∥∥2

Ω

+
δρ

4∆t2

(
‖Ẋn+1

h ‖2B + ‖2Ẋn+1
h − Ẋn

h‖2B

−‖Ẋn
h‖2B − ‖2Ẋn

h − Ẋn−1
h ‖2B + ‖Ẋn+1

h − 2Ẋn
h + Ẋn−1

h ‖2B
)

+
κ

4∆t

(
‖Fn+1

h ‖2B + ‖2Fn+1
h − Fnh‖2B

−‖Fnh‖2B − ‖2Fnh − Fn−1
h ‖2B + ‖Fn+1

h − 2Fnh + Fn−1
h ‖2B

)
≤ 0.

(27)

Proof. We mimic the proof of [3, Prop. 3] and use some useful tricks presented
in [20]. We test (26a) with un+1

h :

ρf

(
3un+1

h − 4unh + un−1
h

2∆t
,un+1

h

)
Ω

+ b
(
un+1
h ,un+1

h ,un+1
h

)
+ a

(
un+1
h ,un+1

h

)
−
(
div un+1

h , pn+1
h

)
Ω

+ c
(
λn+1
h ,un+1

h (Xn+1
h )

)
= 0.
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We remind that the trilinear form b vanishes when the last two arguments co-

incide. The third term reduces to a
(
un+1
h ,un+1

h

)
= ν

∥∥∇sym un+1
h

∥∥2

Ω
. Then by

testing (26b) with pn+1
h , we see that the divergence term vanishes. Applying the

following formula to the first term

1

2
(3a− 4b+ c)a =

1

4

(
a2 + (2a− b)2 − b2 − (2b− c)2 + (a− 2b+ c)2

)
(28)

with a = un+1
h , b = unh, c = un−1

h , we obtain(
3un+1

h − 4unh + un−1
h

2∆t
,un+1

h

)
Ω

=
1

4∆t

(∥∥un+1
h

∥∥2

Ω
+
∥∥2un+1

h − unh
∥∥2

Ω

−‖unh‖2Ω −
∥∥2unh − un−1

h

∥∥2

Ω
+
∥∥un+1

h − 2unh + un−1
h

∥∥2

Ω

)
.

We are now left with the treatment of the term involving c. We take µh = λn+1
h

in (26e) and zh =
3Xn+1

h −4Xn
h+Xn−1

h

2∆t in (26d), and use (26c) to obtain:

c
(
λn+1
h ,un+1

h (Xn+1
h )

)
= c

(
λn+1
h ,

3Xn+1
h − 4Xn

h + Xn−1
h

2∆t

)
= δρ

(
3Ẋn+1

h − 4Ẋn
h + Ẋn−1

h

∆t2
, Ẋn+1

h

)
B

+

(
P(Fn+1

h ),∇s
3Xn+1

h − 4Xn
h + Xn−1

h

2∆t

)
B
.

Using the formula (28) we have(
3Ẋn+1

h − 4Ẋn
h + Ẋn−1

h

∆t2
, Ẋn+1

h

)
B

=
1

4∆t2

(
‖Ẋn+1

h ‖2B + ‖2Ẋn+1
h − Ẋn

h‖2B

−‖Ẋn
h‖2B − ‖2Ẋn

h − Ẋn−1
h ‖2B + ‖Ẋn+1

h − 2Ẋn
h + Ẋn−1

h ‖2B
)
.

Similarly we bound the term involving the Piola–Kirchhoff stress-tensor P using
again (28):(

κFn+1
h ,

3Fn+1
h − 4Fnh + Fn−1

h

2∆t

)
B

=
1

4∆t

(
‖Fn+1

h ‖2B + ‖2Fn+1
h − Fnh‖2B

−‖Fnh‖2B − ‖2Fnh − Fn−1
h ‖2B + ‖Fn+1

h − 2Fnh + Fn−1
h ‖2B

)
.

Putting all these relations together yields the result and concludes our proof.

Summing up n = 2, . . . ,m − 1 ≤ N in (27) and dropping out positive terms,
yields the following unconditional stability bound:

ρf
(
‖umh ‖2Ω + ‖2umh − um−1

h ‖2Ω
)

+ 4ν∆t

m∑
n=1

‖∇sym unh‖2Ω

+
δρ

∆t

(
‖Ẋm

h ‖2B + ‖2Ẋm
h − Ẋm−1

h ‖2B
)

+ κ
(
‖Fmh ‖2B + ‖2Fmh − Fm−1

h ‖2B
)

≤ ρf
(
‖u1

h‖2Ω + ‖2u1
h − u0

h‖2Ω
)

+
δρ

∆t

(
‖Ẋ1

h‖2Ω + ‖2Ẋ1
h − Ẋ0

h‖2Ω
)

+ κ(‖F1
h‖2Ω + ‖2F1

h − F0
h‖2Ω).

We note that the scheme presented in (26a)-(26f) is a fully implicit system which
involves the solution of a nonlinear equation, stemming from the convection part
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in the Navier-Stokes equation as well as from the kinematic coupling term. The
problem can be presented in the following matrix form:

A(un+1
h ) −B> 0 0 Lf (Xn+1

h )>

−B 0 0 0 0
0 0 Ms − 3

2∆tMs 0

0 0 3δρ
2∆tMs As −L>s

Lf (Xn+1
h ) 0 0 − 3

2∆tLs 0




un+1
h

pn+1
h

Ẋn+1
h

Xn+1
h

λn+1
h

 =


g1

0
g2

g3

g4

 , (29)

with

A(un+1
h ) =

3ρf
2∆t

Mf +Kf (un+1
h )

(Mf )ij = (φj , φi)Ω , (Kf (un+1
h ))ij = a (φj , φi) + b

(
un+1
h , φj , φi

)
Bki = (div φi, ψk)Ω

As =
δρ

∆t2
Ms +Ks, (Ms)ij = (χj , χi)B , (Ks)ij = κ (∇sχj ,∇sχi)B

(Lf (Xn+1
h ))lj = c

(
ζl, φj(X

n+1
h )

)
, (Ls)lj = c (ζl, χj)

g1 =
2ρf
∆t

Mfu
n
h −

ρf
2∆t

Mfu
n−1
h , g2 =

1

∆t
Ms(4Ẋn

h − Ẋn−1
h )

g3 =
δρ

∆t2
Ms(2Xn

h −Xn−1
h ), g4 = − 2

∆t
LsX

n
h +

1

2∆t
LsX

n−1
h .

Here φi, ψk, χi, and ζl denote the basis functions in Vh, Qh, Sh, and Λh, respec-
tively.

Thanks to the theory developed in [5], we know that the linearization of the
system above is associated to a steady saddle point problem which admits a unique
solution. Moreover, the finite element discretization is stable, thus giving optimal
convergence rates depending on the regularity of the solution.

We can either solve this system by a solver for nonlinear systems of equations
like a fixed point iteration or Newton like methods, or make this semi-implicit
by replacing the implicit terms with explicit ones. In the numerical experiments
reported in the last section, we used a fixed point iteration or the well known
extrapolation formula xn+1 = 2xn − xn−1 + O(∆t2), in order to replace A(un+1

h )

by A(2unh − un−1
h ) and Lf (Xn+1

h ) by Lf (2Xn
h −Xn−1

h ).

3.3. Crank–Nicolson scheme. The Crank–Nicolson scheme is another second
order method widely used for the discretization of evolutionary equations thanks to
the fact that it is A-stable and one-step. In the literature, we can find two different
schemes referred to as Crank–Nicolson scheme, which can be obtained by applying
either the midpoint (CNm) or the trapezoidal (CNt) rule to integrate the ODE from
tn to tn+1. Notice that the two methods coincide when the problem is linear. As far
as the Navier–Stokes equations are concerned, in [19] the CNm approach is used and
the stability properties are analyzed, while the CNt formula has been introduced,
for example, in [21, Chapter 7]. We are going to apply both formulations in order
to compare their numerical performances.

Let us start with the CNm version of the method.
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Problem 5. Given u0h ∈ Vh and X0h ∈ Sh, for all n = 1, . . . , N find unh ∈ Vh,

pnh ∈ Qh, Xn
h ∈ Sh, Ẋn

h ∈ Sh, and λnh ∈ Λh such that

ρf

(
un+1
h − unh

∆t
,vh

)
Ω

+ b

(
un+1
h + unh

2
,
un+1
h + unh

2
,vh

)
+ a

(
un+1
h + unh

2
,vh

)
−
(
div vh, p

n+1
)

Ω

+ c

(
λn+1,vh

(
Xn+1
h + Xn

h

2

))
= 0 ∀vh ∈ Vh (30a)(

div un+1
h , qh

)
Ω

= 0 ∀qh ∈ Qh (30b)(
Ẋn+1
h + Ẋn

h

2
,wh

)
B

=

(
Xn+1
h −Xn

h

∆t
,wh

)
B

∀wh ∈ Sh (30c)

δρ

(
Ẋn+1
h − Ẋn

h

∆t
, zh

)
B

+
(
P(Fn+1

h ),∇szh
)
B − c

(
λn+1
h , zh

)
= 0 ∀zh ∈ Sh (30d)

c

(
µh,

un+1
h + unh

2

(
Xn+1
h + Xn

h

2

)
− Xn+1

h −Xn
h

∆t

)
= 0 ∀µh ∈ Λh (30e)

u0
h = u0 X0

h = X0. (30f)

Equation (30e) is obtained by applying the midpoint rule to the kinematic con-
straint. Hence we approximate the value u

(
X
(
t+ ∆t

2

)
, t+ ∆t

2

)
and we average

both u and X providing an approximation which is second order accurate. The
following proposition states a stability estimate similar to the one for the BDF2
method.

Proposition 3.3. Assume δρ ≥ 0 and that the material behavior is governed by
an energy density W which is C1 and convex. Let unh ∈ Vh and Xn

h ∈ Sh, for
n = 1, . . . N , be the solutions of Problem 5. Then the following estimate holds true:

ρf
2∆t

(
‖un+1

h ‖2Ω − ‖unh‖2Ω
)

+
ν

4
‖∇sym un+1

h + ∇sym unh‖2Ω

+
δρ

∆t2

(
‖Ẋn+1

h ‖2B − ‖Ẋn
h‖2B

)
+
E(Xn+1

h )− E(Xn
h)

∆t
≤ 0.

Proof. We mimic again the proof of [3, Prop. 3]. We take vh =
(
un+1
h + unh

)
/2

in (30a) to get:

ρf

(
un+1
h − unh

∆t
,
un+1
h + unh

2

)
Ω

+ b

(
un+1
h + unh

2
,
un+1
h + unh

2
,
un+1
h + unh

2

)
+ a

(
un+1
h + unh

2
,
un+1
h + unh

2

)
−
(

div
un+1
h + unh

2
, pn+1
h

)
Ω

+ c

(
λn+1
h ,

un+1
h + unh

2

(
Xn+1
h + Xn

h

2

))
= 0.

The trilinear form b vanishes since the second two arguments coincide. Equa-
tion (30b) implies that the terms including the divergence vanish. If the initial
condition u0

h is discretely divergence free, the theorem even hold for n = 0. Hence
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the above equality reduces to

ρf
2∆t

(
‖un+1

h ‖2Ω − ‖unh‖2Ω
)

+
ν

4
‖∇symun+1

h +∇symunh‖2Ω

+ c

(
λn+1
h ,

un+1
h + unh

2

(
Xn+1
h + Xn

h

2

))
= 0.

We set µh = λn+1 in (30e), then, using the equations in the solid (30c) with zh =

(Xn+1
h −Xn

h)/2 and (30d) with wh = (Ẋn+1
h − Ẋn

h)/2, we arrive at

c

(
λn+1
h ,

un+1
h + unh

2

(
Xn+1
h + Xn

h

2

))
= c

(
λn+1
h ,

Xn+1
h −Xn

h

∆t

)

= δρ

(
Ẋn+1
h − Ẋn

h

∆t
,
Xn+1
h −Xn

h

∆t

)
B

+

(
P(Fn+1

h ),∇s
Xn+1
h −Xn

h

∆t

)
B

= δρ

(
Ẋn+1
h + Ẋn

h

∆t
,
Ẋn+1
h − Ẋn

h

∆t

)
B

+

(
P(Fn+1

h ),
Fn+1
h − Fnh

∆t

)
B

=
δρ

∆t2

(
‖Ẋn+1

h ‖2B − ‖Ẋn
h‖2B

)
+

(
P(Fn+1

h ),
Fn+1
h − Fnh

∆t

)
B
.

Now we want to see how the last term relates to the energy (6). Let us define the
function W : [0, 1]→ R by

W(t) = W (Fnh + t(Fn+1
h − Fnh)).

The convexity ofW is inherited from W , so we seeW ′(1) ≥ W(1)−W(0). Using the
chain rule, we obtain W ′(1) = P(Fn+1

h ) : (Fn+1
h −Fnh). This is exactly the integrand

in the term we want estimate. We obtain(
P(Fn+1

h ),
Fn+1
h − Fnh

∆t

)
B

=
1

∆t

∫
B
W ′(1)ds ≥

1

∆t

∫
B
W(1)−W(0)ds =

E(Xn+1
h )− E(Xn

h)

∆t
.

Putting all equations together yields the result.

Again we can sum the equations with respect to n from 0 to m− 1 ≤ N and get
the unconditional stability bound:

ρf
2∆t
‖umh ‖2Ω +

ν

4

m∑
n=1

‖∇sym(unh + un−1
h )‖2Ω +

δρ

∆t2
‖Ẋm

h ‖2B +
E(XN

h )

∆t

≤ ρf
2∆t
‖u0

h‖2Ω +
δρ

∆t2
‖Ẋ0

h‖2B +
E(X0

h)

∆t
.

If we use the CNt method, we are led to consider the problem:
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Problem 6. Given u0h ∈ Vh and X0 ∈ Sh, for all n = 1, . . . , N find unh ∈ Vh,

pnh ∈ Qh, Xn
h ∈ Sh, Ẋn

h ∈ Sh and λnh ∈ Λh, such that:

ρf

(
un+1
h − unh

∆t
,vh

)
Ω

+
1

2
b
(
un+1
h ,un+1

h ,vh
)

+
1

2
b (unh,u

n
h,v)

+
1

2
a
(
un+1
h + unh,vh

)
− 1

2

(
div vh, p

n+1 + pnh
)

Ω

+
1

2
c
(
λn+1
h ,vh

(
Xn+1
h

))
+

1

2
c (λnh,vh (Xn

h)) = 0 ∀vh ∈ Vh(
div un+1

h , qh
)

Ω
= 0 ∀q ∈ Qh(

Ẋn+1
h + Ẋn

h

2
,wh

)
B

=

(
Xn+1
h −Xn

h

∆t
,wh

)
B

∀wh ∈ Sh

δρ

(
Ẋn+1
h − Ẋn

h

∆t
, zh

)
+

(
P(Fn+1

h ) + P(Fnh)

2
,∇s zh

)
B

− c

(
λn+1
h + λnh

∆t
, zh

)
= 0 ∀zh ∈ Sh

c

(
µh,

1

2
un+1
h

(
Xn+1
h

)
+

1

2
unh (Xn

h)− Xn+1
h −Xn

h

∆t

)
= 0 ∀µh ∈ Λh

u0
h = u0h X0

h = X0h.

(31)

We omit the stability analysis of this problem which is not straightforward not
even for the Navier–Stokes equations. Nevertheless this scheme has been used in
our numerical tests and instabilities seem not to occur.

Both Problems (5) and (6) can be presented in matrix form with the a structure
similar to that of BDF2, with some terms properly modified. The solution of the
resulting nonlinear system can be obtained with a Newton like solver, fixed point
iterations, or by linearization. In our numerical experiments we adopted the latter
two approaches.

4. Numerical Experiments. In this section we present some numerical results,
with the aim of verifying the accuracy of the higher-order schemes presented in the
previous sections.

Although our theoretical results hold for more general situations, we perform
our numerical tests in the simpler case when fluid and solid have the same density
ρf = ρs = ρ and the same viscosity νf = νs = ν. This is compatible with the
biological applications we have in mind.

In our numerical experiments we adopt either fixed point iterations or the semi-
implicit schemes obtained by linearization of the nonlinear terms with second order
extrapolations. More precisely, we substitute the value of a certain quantity y(tn+1)
with 2y(tn)− y(tn−1).

The first test case is the deformed annulus considered in [3] where convergence
tests illustrate the first order rate for the implicit Euler method. The second test
case is the floating disk for which we want to analyze the volume conservation
properties of our methods.

In all our experiments, we use triangular meshes both in Ω and B, enhanced
Bercovier–Pironneau elements (i.e. P1isoP2/(P1+P0)) for the (u, p) discretization
(see [1]) and P1 elements for the discretization of the body’s deformation X, body’s
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Figure 2. Sparsity pattern for a matrix arising from Equation (24)

velocity Ẋ and the distributed Lagrange multipliers λ. We evaluate the bilinear form
c by means of the L2 scalar product.

At each time step or at each fixed point iteration we have to assemble the matrix
in (29) and to solve the resulting algebraic system. First of all, we observe that
the matrix is neither symmetric nor positive definite. The sparsity pattern of the
matrix is shown in Fig. 2. Another aspect that influences the computational time
is the assembly of the coupling terms. In order to construct the contribution of
the matrix Lf (Xn

h), we have to integrate on an element Ts in the Lagrangian mesh
T Bh quantities living on the Eulerian mesh such as v(X(·, t), t). Numerically, this is
done using some quadrature formula on Ts. Consequently, we have to find all inter-
secting elements Tf ∈ Th of the fluid mesh such that X(Ts, t) ∩ Tf 6= ∅. Essentially
this results in checking every deformed solid element against each fluid element.
Bounding boxes are a good tool to detect when two cells surely do not intersect.
This reduces the computational cost for each cell to cell comparison. Anyway, the
computational cost for finding the intersecting cells grows linearly with the number
of cells:

#comparisons = #fluid cells ·#solid cells ≈ 1

hdf

1

hds
.

Although, the theoretical analysis allows to choose meshes for the fluid and the
solid independently one from each other, it has been observed, for example in [18],
that the mesh parameter hs of the solid should be approximately half the size of
the mesh parameter hf of the fluid. This can be explained as a trade-off between
accuracy and computational effort.

4.1. The deformed annulus. In this test, an annulus is placed at the center of
a square filled with some fluid. Initially the annulus is deformed from its initial
configuration and the fluid is at rest. The internal forces steer the annulus back
into its undeformed configuration and set the surrounding fluid into motion. The
material of the annulus is hyperelastic and described by the identity P(F) = κF.
Thanks to the symmetry of the geometry, we run the simulation in the upper right
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Figure 3. Meshes for the fluid and the structure

DOFs uh DOFs ph DOFs Xh DOFs λh
coarse mesh (M = 8) 578 209 306 306
fine mesh (M = 16) 2, 178 801 1, 122 1, 122

Table 1. Mesh parameters

quarter of the domain. The fluid’s domain is the unit square Ω = (0, 1)2. On the
upper and right boundary we impose no-slip boundary conditions u(x, t) = 0 for
the fluid velocity. The reference domain for the immersed structure is a section of
the annulus: B = {x ∈ R2 : x1, x2 ≥ 0, 0.3 ≤ |x| ≤ 0.5}. On the remaining part
of the boundary, the fluid and the solid are allowed to move along the tangential
direction, while the normal component is set to 0. The initial conditions are

u(x, 0) = 0, X(s, 0) =

(
1

1.4s1

1.4s2

)
.

The meshes for the fluid and the structure are schematically reported in Fig. 3.
We use two meshes whose number of degrees of freedom can be found in Table 1.
In Fig. 4 we report the position of the annulus and the streamlines of the velocity
corresponding to the following choice of parameters κ = 10, ν = 0.1, ρ = 1, T = 1.
The BDF2 method is used with ∆t = 0.05. The snapshots are taken at t = 0,
t = 0.1, t = 0.5, and t = 1.

In what follows, we report some tests to investigate the higher-order conver-
gence of the BDF2 method and the two version of the Crank–Nicolson scheme
CNm and CNt and compare them with the backward Euler method BDF1. The
convergence tests are done using the two meshes plotted in Fig. 3 and parame-
ters ρ = 1, ν = 1, κ = 10, and T = 0.2. Solutions have been calculated for
∆t = T/4, T/8, T/16, T/32. Since in this case no analytic solution is available, for
each mesh we computed a reference solution using the BDF2 method with time-step
∆t = 0.001 and we report the relative errors with respect to it. When we use fixed
point iterations to obtain the solution of fully implicit schemes, we calculate the
residual in the L2-norm and stop the iteration when it is less than the tolerance
ε = 10−6.

We first investigate the convergence of the fully implicit scheme. The relative
errors in the L2 norm are displayed in Tables 2 and 3.
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Figure 4. The deformed annulus 1

Fluid velocity

BDF1 BDF2 CNm CNt
∆t L2 error rate L2 error rate L2 error rate L2 error rate

0.05 7.63 · 10−2 2.97 · 10−2 2.37 · 10−1 2.42 · 10−1

0.025 4.11 · 10−2 0.89 4.90 · 10−3 2.60 6.24 · 10−2 1.92 6.02 · 10−2 2.00
0.0125 2.13 · 10−2 0.95 1.13 · 10−3 2.11 1.21 · 10−2 2.36 1.10 · 10−2 2.45
0.00625 1.08 · 10−2 0.97 2.86 · 10−4 1.98 2.03 · 10−3 2.58 9.95 · 10−4 3.47

Structure deformation

BDF1 BDF2 CNm CNt
∆t L2 error rate L2 error rate L2 error rate L2 error rate

0.05 1.60 · 10−3 4.39 · 10−4 1.43 · 10−3 2.95 · 10−4

0.025 8.40 · 10−4 0.93 9.75 · 10−5 2.17 7.90 · 10−4 0.86 6.89 · 10−5 2.10
0.0125 4.29 · 10−4 0.97 2.53 · 10−5 1.95 4.06 · 10−4 0.96 7.53 · 10−6 3.19
0.00625 2.17 · 10−4 0.98 6.41 · 10−6 1.98 2.04 · 10−4 0.99 2.05 · 10−6 1.88

Table 2. Convergence results for the fully implicit scheme on the
coarse mesh

The backward Euler method shows a clean first order rate of convergence, while
the BDF2 method gives a clean second order rate of convergence only on the coarse
mesh and in the fine mesh for the fluid velocity. The results for the structure dis-
placement are not very clear on the fine mesh. The second order rate of convergence
is achieved only for larger value of the time step and deteriorates as the time step de-
creases. On the other hand, we see that in this case the error is about 10−5, which
is likely close to the accuracy that our fine mesh can provide. The CNt method
achieves second order convergence for fluid and structure on both meshes, while
the CNm scheme provides a second order convergence only for the fluid velocity. In
general, the CNt scheme seems to perform better from the point of view of the rate
of convergence and of the size of the error.
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Fluid velocity

BDF1 BDF2 CNm CNt
∆t L2 error rate L2 error rate L2 error rate L2 error rate

0.05 9.05 · 10−2 3.62 · 10−2 2.28 · 10−1 2.26 · 10−1

0.025 4.87 · 10−2 0.89 5.05 · 10−3 2.84 6.23 · 10−2 1.87 6.04 · 10−2 1.91
0.0125 2.54 · 10−2 0.94 1.20 · 10−3 2.07 2.28 · 10−2 1.45 2.07 · 10−2 1.54
0.00625 1.29 · 10−2 0.98 3.53 · 10−4 1.77 5.27 · 10−3 2.11 4.03 · 10−3 2.36

Structure deformation

BDF1 BDF2 CNm CNt
∆t L2 error rate L2 error rate L2 error rate L2 error rate

0.05 1.98 · 10−3 5.19 · 10−4 1.65 · 10−3 4.04 · 10−4

0.025 1.05 · 10−3 0.92 9.79 · 10−5 2.41 9.27 · 10−4 0.84 8.48 · 10−5 2.25
0.0125 5.31 · 10−4 0.99 3.13 · 10−5 1.64 4.90 · 10−4 0.92 2.47 · 10−5 1.78
0.00625 2.70 · 10−4 0.98 1.35 · 10−5 1.22 2.50 · 10−4 0.97 3.47 · 10−6 2.83

Table 3. Convergence results for the fully implicit scheme on the
fine mesh

∆t BDF1 BDF2 CNm CNt
0.05 5 5 4 7
0.025 4 4 3 4
0.0125 3 3 3 3
0.00625 3 3 2 3

Table 4. Maximum iterates of the nonlinear solver on the coarse mesh

∆t BDF1 BDF2 CNm CNt
0.05 10 5 6 6
0.025 6 5 5 4
0.0125 6 4 4 4
0.00625 4 4 3 3

Table 5. Maximum iterates of the nonlinear solver on the fine mesh

In order to investigate the behavior of the nonlinear solver, we track the maximum
number of fixed point iterations needed to reach the given tolerance. The results
can be found in Tables 4 and 5. We observe that smaller time steps give smaller
number of iterates. This can be motivated by the fact that we use the solution at
the previous time step as the initial value for the iteration, therefore for smaller
time step it is closer to the value at the current time.

In the case of fluid structure interaction, not only the nonlinear convection term
has to be assembled at each iteration, but also the one coupling fluid and structure.
Therefore, the semi-implicit scheme is attractive as it requires the solution of only
one big system at each time steps. Results for the convergence study of the semi-
implicit versions of the methods can be found in Tables 6 and 7. We see a similar
behavior as the one given by fixed point iterations. The backward Euler method
gives a good first order convergence. The BDF2 method shows a higher convergence
order, which slows down for smaller time-steps in the fluid domain, in particular
it is almost first order for the structure deformation. The behavior of the CNm
is not very clear, in fact only the error in the fluid velocity on the coarse mesh
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Fluid velocity

BDF1 BDF2 CNm CNt
∆t L2 error rate L2 error rate L2 error rate L2 error rate

0.05 7.78 · 10−2 3.05 · 10−2 2.49 · 10−1 2.58 · 10−1

0.025 4.17 · 10−2 0.90 7.89 · 10−3 1.95 6.24 · 10−2 2.00 6.74 · 10−2 1.94
0.0125 2.17 · 10−2 0.95 3.14 · 10−3 1.33 1.24 · 10−2 2.33 2.64 · 10−2 1.35
0.00625 1.10 · 10−2 0.97 1.29 · 10−3 1.29 2.25 · 10−3 2.47 3.18 · 10−3 3.06

Structure deformation

BDF1 BDF2 CNm CNt
∆t L2 error rate L2 error rate L2 error rate L2 error rate

0.05 1.67 · 10−3 6.79 · 10−4 1.44 · 10−3 3.52 · 10−4

0.025 8.65 · 10−4 0.95 2.70 · 10−4 1.33 7.91 · 10−4 0.86 2.60 · 10−4 0.44
0.0125 4.36 · 10−4 0.99 1.24 · 10−4 1.12 4.05 · 10−4 0.97 1.53 · 10−5 4.08
0.00625 2.17 · 10−4 1.01 5.71 · 10−5 1.12 2.05 · 10−4 0.98 9.43 · 10−6 0.70

Table 6. Convergence results for the semi-implicit scheme on the
coarse mesh

Fluid velocity

BDF1 BDF2 CNm CNt
∆t L2 error rate L2 error rate L2 error rate L2 error rate

0.05 9.18 · 10−2 3.89 · 10−2 2.36 · 10−1 2.39 · 10−1

0.025 5.05 · 10−2 0.86 8.59 · 10−3 2.18 7.54 · 10−2 1.64 7.06 · 10−2 1.76
0.0125 2.63 · 10−2 0.94 3.32 · 10−3 1.37 4.24 · 10−2 0.83 2.22 · 10−2 1.67
0.00625 1.33 · 10−2 0.98 1.40 · 10−3 1.24 2.19 · 10−2 0.96 4.19 · 10−3 2.40

Structure deformation

BDF1 BDF2 CNm CNt
∆t L2 error rate L2 error rate L2 error rate L2 error rate

0.05 2.03 · 10−3 7.86 · 10−4 1.81 · 10−3 6.51 · 10−4

0.025 1.06 · 10−3 0.93 3.28 · 10−4 1.26 9.75 · 10−4 0.89 1.31 · 10−4 2.31
0.0125 5.34 · 10−4 1.00 1.44 · 10−4 1.18 5.10 · 10−4 0.93 4.82 · 10−5 1.44
0.00625 2.69 · 10−4 0.99 6.31 · 10−5 1.19 2.55 · 10−4 1.00 1.29 · 10−5 1.90

Table 7. Convergence results for the semi-implicit scheme on the
fine mesh

∆t BDF1 BDF2 CNm CNt
0.05 3.83 · 10−3 3.83 · 10−3 9.87 · 10−3 9.64 · 10−2

0.025 2.09 · 10−3 2.30 · 10−3 1.24 · 10−3 2.17 · 10−2

0.0125 7.41 · 10−4 8.26 · 10−4 3.62 · 10−4 7.90 · 10−3

0.00625 2.23 · 10−4 2.45 · 10−4 1.08 · 10−4 9.55 · 10−4

Table 8. Maximum residual in the semi-implicit scheme on the
coarse mesh

achieves second order convergence. The CNt method provides better results which
seem to respect the second order of convergence both for fluid velocity and structure
deformation independently of the mesh.

Tables 8 and 9 report the residual obtained with the semi-implicit scheme which
is higher of two orders of magnitude than the tolerance prescribed in the fixed point
iterations. However, this fact does not influence too much the size of the errors.
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∆t BDF1 BDF2 CNm CNt
0.05 3.59 · 10−2 3.59 · 10−2 3.43 · 10−2 3.81 · 10−2

0.025 1.03 · 10−2 1.07 · 10−2 8.19 · 10−3 1.02 · 10−2

0.0125 5.28 · 10−3 5.87 · 10−3 1.54 · 10−3 2.27 · 10−3

0.00625 1.46 · 10−3 1.44 · 10−3 4.33 · 10−4 5.08 · 10−4

Table 9. Maximum residual in the semi-implicit scheme on the
fine mesh

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
time (s)

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

vo
l)
m
e 
ch

an
ge

 (%
)

Vol)me %reserva(ion for (he dis  exam%le (DLM)

BE
BDF2
CN
TR

Figure 5. Volume preservation over time

4.2. The floating disk. In [16] it is pointed out that the Immersed Boundary
Method may show poor volume conservation properties. Roy, Heltai, and Costanzo
in [25] have compared the volume preservation properties of their numerical method
and propose it as a benchmark problem for fluid-structure interaction codes. In
the following we investigate the volume preserving properties of the higher-order
time-stepping schemes applied to a circular disk placed in a lid-driven cavity. The
movement of the fluid induces a motion to the disk, which is being deformed and
transported.

The computational domain is a square with unit length: Ω = (0, 1)2. The disk
has a diameter of 0.2 and its center is initially placed at (0.6, 0.5). We describe
Dirichlet boundary conditions on the fluid velocity: on the left, right, and bottom
part of the boundary no-slip boundary conditions are enforced; on the upper part
the fluid is set to u = (1, 0)>. The fluid and the solid have the same density
ρf = ρs = 1. The viscosity is ν = 0.01 and the material behaves as P(F) = κF with
κ = 0.1. The final time of the simulation is T = 4. For the space discretization
the same code as in the previous test is used on finer meshes with 18, 818 DOFs
for the fluid velocity and 7, 009 DOFs for the pressure. The dimension of the space
Sh is equal to 4, 402. The maximal diameter is hf = 0.029 for fluid elements, and
hs = 0.012 for structure cells.

The simulation has been run for all the four time marching schemes with a
time-step of ∆t = 0.01. At each time-step the volume of the immersed solid Bt is
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Figure 6. Volume preservation over time for coarser parameters

calculated and compared to the volume of the non-deformed solid. The percentage
of volume change is plotted over time in Fig. 5. Throughout the literature on
Immersed Boundary Method this problem has been addressed. Griffith and Luo [17]
use a combination of finite differences for the fluid part and finite elements for the
structure part. They report a volume conservation, which is more or less equal
to results reported here. Wang and Zhan [26] use finite element discretizations for
fluid and solid, while the coupling is enforced via some interpolation function, which
mimics the Dirac δ in the continuous problem. They report a much larger volume
change than what we have found. Even their volume preserving scheme performs
worse. In our numerical experiments, we note that the one step methods give better
volume preservation, whereas BDF2 method tends to reduce more the volume of the
immersed solid.

The BDF1, the CNm, and the CNt schemes produce the same volume preservation
pattern. In the beginning the volume decreases, from t = 1.5 to t = 3.0 the volume
almost stays constant. In the last part of the time interval, the volume decreases
again faster. At the end the volume is decreased by 0.5%. The BDF2 method
produces the same pattern, but the volume change is larger, at the final time the
volume is decreased by 0.7%. It is interesting to note that the BDF2 method, which
is more accurate than the Backward Euler, produces a bigger volume change.

To investigate further the influence of the discretization parameters ∆t, hf , and
hs on the volume preservation, the equations have been solved again, once on the
same fine mesh with the doubled time-step ∆t = 0.02 and once on a coarser mesh
with the same time-step ∆t = 0.01. The coarse mesh consists of 8, 450 velocity
DOFs, 3, 137 pressure DOFs and 1, 986 DOFs for the structure deformation and
the Lagrangian multiplier. The volume preservation is plotted over time in Fig. 6
for the coarse mesh (left) and the coarser time-step (right). One can observe that
the qualitative behavior is similar to that reported in Fig. 5 for the fine mesh and
double time step ∆t = 0.02. The behavior on the coarser mesh, reported in Fig. 6
(left), presents a larger kink at the end of the interval with respect to that in Fig. 5
and the absolute volume change is approximately doubled, at the end the volume
is decreased by −1.0%.

We conclude that in absolute numbers the volume change is the same for both
simulations with less accuracy. The spatial discretization has a bigger influence
on the qualitative behavior than the time discretization. This results is perfectly
compatible with the fact that the area loss is strictly related to the approximation of
the divergence free condition which, in turn, depends on the spatial discretization.
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Figure 7. Volume preservation over time for IFEM method

With a maximal area change of −0.7% on the fine mesh with the fine time-step
our method performs very well in comparison to other methods. A direct com-
parison is done with the method developed by Heltai and Costanzo in [18]. Their
approach is quite similar to ours. They use a finite element approximation in space
based on rectangular meshes and Backward Euler method for the time discretiza-
tion. Their solver has been run with 33, 282 velocity DOFs, 12, 288 pressure DOFs
and 10, 370 DOFs for the displacement field. This resulted in a maximal volume
change of −2.6%. A plot over time is shown in Figure 7. It is interesting to note
that the volume change is monotone for this method, while our method shows some
oscillations. This could be due to the different type of meshes and the fact that
intersection of a mapped structural element with the elements in the fluid mesh are
simpler to detect.

5. Conclusion. In this paper we discussed a finite element discretization of fluid-
structure interaction problems based in the use of a distributed Lagrange multi-
plier. We introduced three higher-order time-stepping methods: BDF2, CNm, and
CNt. We have proved unconditional stability estimates and we have performed a
series of numerical tests. In the numerical experiments the BDF2 and CNt methods
showed-higher order convergence in the fully implicit version. Using a semi-implicit
approach, the CNt method showed second order convergence.
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