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Abstract—The advent of low cost scanning devices and the improvement of multi-view stereo techniques have made the acquisition of
3D geometry ubiquitous. Data gathered from different devices, however, result in large variations in detail, scale, and coverage.
Registration of such data is essential before visualizing, comparing and archiving them.
However, state-of-the-art methods for geometry registration cannot be directly applied due to intrinsic differences between the models,
e.g. sampling, scale, noise. In this paper we present a method for the automatic registration of multi-modal geometric data, i.e.
acquired by devices with different properties (e.g. resolution, noise, data scaling). The method uses a descriptor based on Growing
Least Squares, and is robust to noise, variation in sampling density, details, and enables scale-invariant matching. It allows not only the
measurement of the similarity between the geometry surrounding two points, but also the estimation of their relative scale. As it is
computed locally, it can be used to analyze large point clouds composed of millions of points.
We implemented our approach in two registration procedures (assisted and automatic) and applied them successfully on a number of
synthetic and real cases. We show that using our method, multi-modal models can be automatically registered, regardless of their
differences in noise, detail, scale, and unknown relative coverage.

Index Terms—Multi-modal data, 3D Registration, Multi-scale descriptors
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1 INTRODUCTION

In this paper, we focus on the registration of 3D multi-
modal data describing surfaces, i.e. on point clouds or
meshes generated by different acquisition devices (e.g. laser
scans, depth cams, multi-view stereo reconstruction) or
modeling tools. Indeed, acquisition devices are today ubiq-
uitous and affordable, making the surface acquisition more
and more popular. This is a consequence of the evolution
of manual and assisted image modeling tools, of the devel-
opment of automatic and robust methods for multi-view
stereo reconstruction, and of the availability of low cost
depth cameras like Kinect. As a consequence, multi-modal
registration is today a common issue when working with
3D objects: a typical scenario is the registration of a low-
resolution point-cloud to a high resolution mesh generated
from 3D scanning.

The main difficulty when working with multi-modal
data is to be robust to a large heterogeneity of geometric
properties, e.g. noise, sampling, and scaling. Many ap-
proaches have been already proposed to register 3D sur-
faces, however they are mainly devoted to range maps
alignment or non rigid registration, and usually assume
almost-uniform geometric properties within the data. In
practice they do not prove to be effective for multi-modal
data, due to differences in terms of:

• Density and detail amount: surface details may not be
present on some types of data, and sampling density
can vary a lot.

• Scale: data coming from manual or assisted mod-
eling, or structure from motion are in an arbitrary

scale. Hence, a scale factor has to be estimated in
addition to roto-translation.

• Noise and deformation: non-uniform noise and defor-
mations are common in data which do not come from
3D scanning.

• Connectivity: multi-view stereo methods may not be
able to provide a surface, but only a point cloud,
hence the connectivity information may not be avail-
able.

• Overlap: the surface covered by the data is usually
not known in advance, so no information about the
amount of overlap is available.

A similar problem is faced by the Medical Imaging
community, which have to analyze, register and process
data acquired by different devices [2], [3], [4]. The main mo-
tivation is here to acquire different properties of the matter
composing a subject for a given application purpose, and
combine them in a meaningful manner. To do so, methods
are designed to process low resolution 3D images, where
the information is stored by voxel: algorithms take benefits
of the regular structure (3D grid) as a support for compu-
tations. In our case, the lack of a regular spatial structure
prevents to apply such methods on detailed meshes, and
even less on unstructured data like point-clouds.

In this paper, we present a method for the registration
of multi-modal geometric data, based on the Growing Least
Squares descriptor (GLS) [5] and illustrated in Figure 1. This
approach defines a meaningful scale-space representation
for point-clouds, and provides both local and global descrip-
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Fig. 1: We present a method for the automatic registration of 3D multi-modal discrete surfaces, ie. generated by different
acquisition devices. a) Starting from a reference model (acquired by LIDAR) defining the scale of the scene, our approach
automatically estimates a local relative scale se of a dense mesh (from multi-view stereo) by matching and comparing
a descriptor based on Growing Least Square. b) Point-wise relative scales are used to register the two models using a
RANSAC variant. c) Alignment and scale are refined using [1].
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Fig. 2: A point q on the model SPOUSESCAN, which belongs
to structures defined at three different scales (s1, s2, s3,
shown as red circles): a local bump, the shoulder and the
entire torso. Using a multi-scale signature to represent this
point and its neighborhood is necessary to get a meaningful
description of both local and global shape properties.

tions of the geometry. The need to work with a meaningful
multi-scale description is illustrated in Figure 2: a point p
is within shapes of three different sizes: a local bump, the
woman shoulder and the complete torso. The associated
scales, respectively s1, s2, and s3, can be detected using GLS
and used for further processing, e.g. registration. The scale
is here defined as the size of an Euclidean neighborhood
around p.

Based on this analysis framework, we present a new
approach to estimate the relative scale factor between two
multi-modal models. In opposite to previous work, our
approach is robust to intra and inter-model variations of
sampling and noise, and doesn’t require an intermediate
surface reconstruction step. As a consequence, our approach
can be applied directly on large and raw point clouds,
just after registration and without any pre-process. Our
contributions can be summarized as follow:

• We present a new robust point-wise scale estimation
and multi-scale comparison operator, which is invariant
to relative scale factors, fast to evaluate and robust to
typical acquisition artifacts.

• We demonstrate the efficiency and robustness of this
operator through two practical registration frame-
works (assisted or automatic), easy to implement and
successfully applied on multi-modal models com-
posed of millions of points at arbitrary scales (see
example in Figure 1).

2 RELATED WORK

Three-dimensional geometry registration transforms multi-
ple 3D datasets in a common reference system. The align-
ment can be obtained using a rigid or non-rigid transforma-
tion. Please refer to [6], [7], [8] for surveys covering the main
issues and methods related to this task.
In this paper, we focus on the registration of data describing
rigid objects. The alignment of geometry data from rigid
objects is usually split in two steps: a rough alignment,
that estimates an initial registration, and a fine alignment,
which refines the registration starting from the result of the
previous step. The fine alignment step can be performed
in a fully automatic way, and the proposed solutions, eg.
instantaneous kinematic [9] and Iterative Closest Point (ICP)
with its variants [1], [10], [11], [12], proved to be robust
and reliable. In the opposite, automatic rough alignment is a
more challenging task, especially if no assumptions on the
input data are done. From a practical point of view, current
software for 3D scanning achieves the alignment of range
maps using markers or user intervention.
The goal of our approach is to automatically find a rough
alignment for multi-modal data, with the possibility to refine
it in a further step. For this reason, this section will focus
on a broad overview of the existing alignement approaches,
and stressing their applicability to multi-modal data.

2.1 Point clouds registration

The problem of registering acquired point clouds has been
thoroughly studied in the last few years. Local shape de-
scriptors (see Heider et al. [13] for a survey) can be used to
match points with similar signatures, and obtain an initial
registration, which can be refined using ICP. Some exam-
ples of local descriptors include Spin Images [14], feature
lines [15], feature histograms [16], and methods based on
SIFT and their variants [17], [18]. All of these methods are
limited by their locality, so that data with different density
or level of detail cannot be treated properly. An interesting
alternative would be to use Integral Invariants as multiscale
signatures and use them for matching [19]. However such
approaches require to build a volumetric representation of
the data, which would be challenging because of the noise
and holes potentially present in our data.
Other approaches are based on the correlation of Extended
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Gaussian Images (EGI) in the Fourier domain [20], or per-
form the optimization directly on the affine space [21]. Kr-
ishnan et al. [22] and Bonarrigo and Signoroni [23] proposed
a framework to perform the optimization on the manifold
of rotations through an iterative scheme based on Gauss-
Newton optimization method. None of the above methods
is very robust against noise or outliers.
A very interesting alternative is the 4-Point Congruent
Set (4PCS) [24] which explores the transformation space
between two clouds by matching almost-planar 4-point
quadrilaterals. The proposed scheme can run without shape
descriptor, is robust to noise and outliers, and runs with a
lower complexity than RANSAC, respectively performing
in quadratic versus cubic time according to the number
of points. 4PCS can theoretically be extended to estimate
a relative scale factor, but in that case the size of the
explored congruent set makes the procedure impracticable.
The recent Super4PCS variant [25], tailored for rigid trans-
formation estimation, uses efficient indexing techniques to
run in linear time in number of point.

2.2 Multi-modal geometry registration

The registration of multi-modal geometric data is usually
performed in a semi-automatic fashion. A user provides
an initial alignment by manually solving the problem of
the initial roto-translation and scaling of the data, or by
specifying point-wise correspondences between objects. The
analysis of data coming from different devices is applied in
methods which aim at automatically align groups of images
in a geometry. For instance in the work by Pintus et al. [29],
a point cloud generated by structure from motion is used to
align a set of images to a different point cloud. Nevertheless,
even in this case the initial alignment is estimated using
user input. Alternatively, if images were used for geometry
generation, they can be analysed to find common features
and calculate the 3D registration [30].
The factors described in Section 1 (e.g. scale difference,
data density and noise in primis) prevent from using
most of the aforementioned approaches. An evaluation
by Kim and Hilton [31] shows that statistical local descrip-
tors perform poorly in the registration of multi-modal data.
An increasing amount of techniques have been proposed
recently to address this issue. Lee et al. [32] proposed
a method to align 3D scans by analyzing and matching
surfaces in the 2D parametric domain. While able to cope
with scale differences, the solution is not tested on multi-
modal data, and requires parametrized surfaces. Quan and
Tang [33] proposed a scale invariant local descriptor applied
for 3D part-in-whole matching for mechanical pieces. Unfor-
tunately, the method may be applied only on meshes, and
the robustness to noise and to lack of features (i.e. the strong
edges of mechanical pieces) is unclear. Rodola’ et al. [26]
use a game-theoretic framework with scale-independent de-
scriptors in the context of object recognition. While indepen-
dent of scaling, the method relies on similar geometries, and
it can be applied only on continuous surfaces or extremely
dense point clouds. A similar approach, that combines local
descriptors at different scale to extract and compare the so-
called keyscale of a model has been recently proposed by
Lin et al. [28]. The goal of this method is to estimate the

relative scale only, so that ICP can be applied to find the
alignment. The proposed descriptor proved to be robust to
noise. Nevertheless, it seems to be effective only if a major
overlap between the models is present.
In the context of an automatic image registration system,
Corsini et al. [27] proposed an automatic method for the
alignment of a point-cloud acquired by Structure-from-
Motion on another 3D model. The method is based on an
extension of 4PCS, and it makes use of the Variational Shape
Approximation algorithm [34] to reduce the complexity of
the 4PCS when scale has to be estimated and no previous
information about overlapping is known. Moreover, this
approach requires to reconstruct or at least approximate
the input object surface, which can be tedious in some
cases. In the context of feature independent methods, a
parameters-free framework to fit models to contaminated
data was applied also on an example of scale-independent
3D similarity transformation [35].

2.3 Multi-scale geometry analysis
The analysis of 3D objects at multiple scales has been widely
studied recently. It has been mainly focused on shape re-
trieval in 3D databases [36] and matching of deformable ob-
jects [37]. Most of the techniques recently presented focus on
the intrinsic geometry properties such as the eigenfunctions
of the Laplace-Beltrami operator [38], [39], and the Heat
Kernel Signatures [40], [41]. Originally limited to meshes,
recent approaches have been proposed to extend diffusion
and geodesic distances to point clouds [42], [43]. These
approaches do not fit our requirement since they cannot
automatically detect the scale associated to detected fea-
tures [44] and thus do not help to estimate the scale between
two models. Moreover, they require to solve the diffusion
equation globally on the entire object, which makes their use
impractical with acquired 3D objects defined by millions of
points. An alternative is to evaluate the diffusion on a sub-
sampled geometry to speed up computation. However, in
this case the details removed from the original model cannot
be caught by the multi-scale signatures.

The goal of scale-space techniques is to analyze a signal
at different scales to discover its geometric structure [45]. A
well known use of this theory is the feature detection stage
of the Scale-Invariant Feature Transform (SIFT) [46]. These
approaches rely on the existence of a parametrization, which
is used to compute the spatial derivatives of a signal and
extract its relevant structures at multiple scales. Methods
have been proposed to adapt SIFT-point detection to 3D by
extending image-based techniques either to voxel grids [47],
[48], or locally on surfaces using mesh connectivity [49], [50],
[51]. In our case we need to work with point-clouds, which
makes such techniques unusable without prior remeshing.
We refer the reader to the recent work of [44] for a practical
and up-to-date comparison of mesh-based scale-space tech-
niques. Recently, Mellado et al. have proposed a technique
called Growing Least Squares (GLS) [5], which aims at ex-
tending the scale-space formalism to point-set surfaces using
implicit kernels evaluated at growing scales. This approach
is computed locally at any location on the object, does
not require any parametrization, supports arbitrary scale
sampling and can be used to represent and match features
using a robust multi-scale geometry descriptor.
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Differences in ... BBox fitting
Game-Theoretic
framework [26]

SIFT [17], [18] Corsini et al [27] Keyscale [28] Our method

Density and
detail amount

V V? - V V V

Noise and
deformation

V - V? V V V

Scalability V V V V - V
Point-clouds V - - - V V
Low overlap - V V V V? V

TABLE 1: Comparison of existing registration techniques regarding their robustness to multi-modal data specificities. In
addition to the variations of properties that may occur between the models (e.g. in term of sampling or noise), registration
techniques need to handle potentially large point-clouds with unknown overlap.

2.4 Discussion

The registration of multi-modal data shares most of the
main steps with the usual registration of 3D data. During
the rough registration step, a – potentially large – geometric
transformation is computed in order to transform one model
and match the other. In case the scale is unknown, as when
considering multi-modal data, one need to estimate both the
rigid transformation and the scale factor to match the mod-
els. For very specific case, eg. partial shape matching with
very important overlap, one can estimate the transformation
by fitting the two models bounding boxes. In other cases,
it becomes necessary to explore the transformation space,
preferably by finding correspondences between the models.
In real world scenarios, finding these correspondences is
a critical step, unlocking at the same time the estimation
of the relative scale factor and the rigid transformation.
For these reasons we designed our method as a point-wise
comparison operator, allowing to estimate a relative scale
factor between two points. We argue that when a method is
able to find the scale between two models, and can also be
used to compute the rigid transformation to align them.

State-of-the-art registration methods may require ad-hoc
modifications to estimate a relative scale factor and handling
multi-modal data specificities, as described in Section 1. We
compare in Table 1 the robustness of techniques estimating
both scaling and alignment regarding these properties. We
added a row on methods scalability, in order to empha-
sis that modern acquisition methods can generate massive
amounts of data, which should be taken into account during
registration. The ”V?” symbol indicates that the method
may have the possibility to deal with an issue, but hasn’t
been tested. From our experiments and original papers
conclusions, none of the state-of-the-art method is able to
cope with all the issues related to multi-modal data. Our
method on the other hand, is able register models from real-
world multi-modal datasets, as shown in Section 5.

3 OVERVIEW

In this paper we propose a new practical registration tech-
nique for 3D multi-modal models, robust to the characteris-
tics described in Section 1. It is designed as follows:

• We use the GLS descriptor to characterize point-
based data, and use logarithmic scale-space to get
scale-invariant signature. This description is robust
to noise, a realistic amount of outliers, and provides

a multi-scale point-wise comparison operator robust
to variation of density and detail amount.

• We propose a new approach to compare point-wise
multi-scale profiles and estimate the relative scale
factor between points (see Figure 1-a). The resulting
operator is easy to implement and fast to evaluate.
The amount of relative scaling that can be handled
by our approach depends only on the scale-space
sampling domain.

• We demonstrate the robustness of our scale estima-
tion to match and estimate scales between points
of two input models, and guide global matching
techniques (eg. manually assisted and fully auto-
matic RANSAC) to estimate a rigid transformation
between them (see RANSAC results in Figure 1-b).

The paper is structured as follow: we first focus on the
point-wise similarity and scale estimation in Section 4, and
then present how we use it to register multimodal data in
Section 5. Both sections present related contributions and
associated results and evaluations.

¡

4 POINT-WISE RELATIVE SCALE ESTIMATION

This section is organized as follow: we first recall basics con-
cepts related to the Growing Least Squares descriptor, then
we present how we extend the GLS comparison operator to
estimate a relative scale factor between two points. Then,
we evaluate the robustness of our point-wise similarity and
scale estimation under variable amount of noise, details,
outliers and variations of scales and density.

4.1 Background

The key idea of the GLS approach is to perform a scale-
space analysis of point-set surfaces by means of continuous
algebraic fits. More specifically, a scale-space is built through
least-square fits of an algebraic sphere onto neighborhoods
of continuously increasing sizes. The use of an algebraic sur-
face ensures robust fits even at large scales [52] and yields a
rich geometric descriptor with only a few parameters, called
the GLS descriptor [5]. The continuity of the fitting process
through scales provides for a stable and elegant analysis of
geometric variations, called the GLS analysis.

The GLS descriptor is composed of three geometric
parameters (illustrated in Figure 4) describing the geometry
surrounding an arbitrary location p: the algebraic distance
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Fig. 3: Overview of our scale estimation. (a) Models GARGSCALED (blue) and GARGOYLE (gold). Their relative scale of 2 leads
to a translation of the scale-invariant GLS profiles (τ , κ, ϕ) in logarithmic scale-space (log base= 1.05), here shown for
p1 and p2 (b) (colors are consistent). We convolve the two profiles, measure their similarity ∆ (see Eq. 2), and extract the
relative offset h giving the best score (c), here −15, giving an estimated scale 1

1.05−15 = 2.08 (see Eq. 3).

τs between p and the fitted primitive, the unit normal vector
η, and the mean curvature κs, where s is the evaluation scale
defining the size of the neighborhood used to compute these
values. We combine these three parameters with the scale
invariant fitness value ϕ ∈ [0 ; 1], computed as the fitting
residuals [52]. Parameters τs and κs depend on the size
of the object and are not reliable to compare multi-modal
data. According to [5], one may use their scale-invariant
counterparts τ = τs

s , and κ = κs∗s. Examples of normalized
profiles are shown in Figure 3-b). In the following we note
GLS(p, s) =

[
τ ηT κ ϕ

]T
to refer to the scale invariant

Growing Least Squares descriptor of point p at scale s. We
refer to the original paper for a more in depth presentation
and evaluation of the GLS framework.

According to the original paper, two descriptors com-
puted at different locations p,p′ and scales s, s′ can be
compared using the dissimilarity function δ, defined as

δ(p, s,p′, s′) =wτ (τ(s)− τ ′(s′))
2
+ wκ (κ(s)− κ′(s′))

2
+

wϕ (ϕ(s)− ϕ′(s′))
2

(1)
where δ = 0 means a perfect match. GLS descriptors are
by definition translation and scale invariants. The rotation
invariance is achieved by ignoring the unit normals η and
η′. In this paper we used wτ = wκ = wϕ = 1.

η

p

pi

ni

s

(x;Su(x)=0)

Su

p
1
κs

τs

Fig. 4: Geometric meaning of the three geometric compo-
nents of the GLS descriptor, illustrated in the 2D case: τs is
the algebraic distance between p and the fitted primitive,
η is the unit normal vector, and κs the mean curvature,
computed at scale s. Figure courtesy Mellado et al. [5].

This measure can be integrated over a scale domain [a, b]
to compare multi-scale profiles, leading to the dissimilarity
function

∆(p,p′) =
1

b− a

∫ b

a

δ(p, s,p′, s) ds. (2)

Note that the integral is normalized in order to be invariant
to the domain size.

4.2 Point-wise relative scale estimation and similarity

In the original GLS paper, authors propose to compare dis-
crete multi-scale signatures by summing their dissimilarity
∆ over a discrete scale intervals. This approach is valid
only when the scale sampling is consistent between the two
descriptors, and thus cannot be used directly in our case.
As defined in Section 1, multi-modal data can be obtained
at arbitrary scales, making point-wise multi-scale signature
comparisons challenging. Anyway, we propose in this paper
to use the GLS to estimate a relative scale factor between two
models.

Scale estimation
According to Bronstein and Kokkinos [41], a scale-space can
be constructed to allow scale-invariant multi-scale signature
comparison, eg. Scale-Invariant Heat Kernel Signatures (SI-
HKS). The key idea is to build a “logarithmically sampled scale-
space in which shape scaling corresponds, up to a multiplicative
constant, to a translation”. The goal of SI-HKS is to provide a
scale-invariant signature comparison, hence the translation
between the two profiles is undone using Fourier analysis
and the corrected profiles compared.
One option could be to use the translation between SI-
HKS profiles to estimate a relative scale factor between two
points. However, in this approach the notion of scale is
defined as a diffusion time, and as far as we know, there
is no way to convert a difference of diffusion time to an
actual distance in Euclidean space.

We propose to solve this issue by computing GLS de-
scriptors in logarithmic scale-space instead of SI-HKS sig-
natures, and use profile translations to estimate a relative
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scale factor between two points. Thanks to its scale-invariant
formulation and as shown in Figure 3, GLS profiles exhibit
the same behavior than SI-HKS signatures when computed
on similar objects with different scales: profiles are shifted
along the scale dimension. Assuming that the two profiles
are computed using a logarithmic scale sampling with basis
m, the relative scale se between the two models can be
retrieved as

se =
1

mh
, (3)

where h the translation between two profiles in logarithmic
space. An example of shifted descriptors is shown in Fig-
ure 3-b).

Scale-invariant similarity
The problem we now need to solve is how to match shifted
profiles and compute the associated offset in logarithmic
space. When profiles are shifted, one solution is to use
the Fourier transform to undo the translation in scale-space
and then compute profile similarity, like it is done with SI-
HKS. However in our case, the GLS descriptor is a multi-
dimensional vector, and our goal is to take into account
each of its component to estimate the offset and compute
the similarity.
Our approach is illustrated in Figure 3, and allows us to esti-
mate the scale offset between two descriptors and compute
their dissimilarity at the same time. To do so, we propose to
convolve the two sets of profiles. For each convolution step,
we compute a similarity measure σ (see Eq. 4), and select the
best score configuration. The associated logarithmic shift h
can then be used in Equation 3 to estimate the relative scale
between the two points. We define the similarity measure σ
returning 0 for incompatible descriptors and 1 for a perfect
matches as

σ(p, s,p′, s′) = 1− tanh (α ∗ δ(p, s,p′, s′)) , (4)

where tanh is the hyperbolic tangent. The hyperbolic tan-
gent is used to map the values computed by δ from [0,+∞]
to [0, 1], in order to avoid large dissimilarity values and
facilitate further processing [5]. The input range of the
hyperbolic tangent function is adjusted using α, we used
α = 4 in all our experiments (σ ≈ 0 when δ > 0.5)

Given this normalized measure, we can now define
our discrete scale-invariant similarity and shift estimation
operator, as

∆σ(p,p′, h) =
1

2I

I∑
i=−I

σ(p, h− i,p′, h), (5)

where 2I is the length of the overlapping interval between
two descriptor for a logarithmic offset h between the two
descriptors. Note that we normalize the sum result by the
length of the associated interval. This normalization has
two purposes: firstly it ensures to produce exactly the same
results as the original dissimilarity ∆ (see Eq. 2) when h = 0.
Secondly, it avoids to have a dependency to the interval 2I ,
which would naturally favoring solutions with large over-
lap, i.e. when h→ 0. The relative scale between descriptors
is then estimated using Equation 3, with h computed as

arg max
h

∆σ(p,p′, h). (6)

We illustrate in Figure 3 how we compute the best offset by
convolving the two descriptors in logarithmic scale-space.

It is important to remark that convolving two GLS
descriptors and picking the higher similarity value does
not guarantee to estimate the real scale factor between two
points, as illustrated in Figure 5-a). However, we observed
in practice that this kind of situation can usually be avoided,
as shown in next section. In addition, it is usually safer to
ignore values of ∆σ generated from a very small overlap in-
tervals to avoid instabilities and non-representative results.
More in general, four parameters are related to the GLS
profiles: the logarithmic base, the number of scale samples
to estimate, the minimum and the maximum scale to es-
timate. Setting three of them automatically sets the fourth.
Setting the parameters may influence the performance of the
descriptor (i.e. the minimum scale can be too big to account
for small details), but their relation with the shape of the
object is straightforward. A systematic evaluation of the
robustness to parameters changes is presented in the next
section. Moreover, we observed during our experiments that
a set of parameters is enough to cope with very different
cases (see Section 5.2) , and can also be adjusted manually
in an intuitive way (see Section 5.1).

4.3 Evaluation

In this section we evaluate the robustness of the point-wise
relative scale estimation technique described in the previous
section, against different geometric configurations and arti-
facts that can be found in multi-modal data. We evaluate our
approach by varying the scale-space sampling and measur-
ing its impact on the estimation. We also highlight geometric
configurations that could break the scale estimation, and
show how they can be detected and thus avoided. We used
generic models in this section to make further comparison
easier, and we refer the reader to Section 5 for more results
on acquired objects.
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Fig. 5: Point-wise relative scale estimation between scaled
versions of the same cloud, for the point p. Top row is
without scaling, bottom row with a 0.5 scaling factor. Three
different scale samplings are studied, starting from the same
minimum scale, but with different log bases, leading to three
different scale ranges [1, s1], [1, s2], and [1, s3]. The expected
positions of the ∆σ maximum is shown as vertical dashed
lines.
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Fig. 6: GLS convolution between models GARGSCALED (a),
GARGOYLE (b), GARGB500K (c), GARGB120K (d), GARGP66K (e) and
GARGP10K (f). The selected point is shown as white dot,
and selected manually in the eye of the gargoyle. For the
sake of clarity, we show the 3 last point-clouds on top
of a reference mesh, but only the visible points are used
for computation. Expected maxima position are shown as
vertical dashed lines, see Table 1 in additional materials
for numerical values, maximum error reported: 2 units. See
zoom of ∆σ(a, b) in Figure 3-c).

Evaluation point and scale range
The efficiency of the scale estimation is directly related
to the properties of the compared GLS descriptors. The
fact that a descriptor could be properly used in Eq. 6 is
strongly influenced by the quantity of significant geometric
configurations surrounding the evaluation point within the
studied scale range.

Figure 5 illustrates these conditions. The point p
stands in a part of the object which is locally planar.
Hence, computing Eq. 6 fails essentially when the scale
range used for computation is too small. When the scale
range increases, additional geometric details are added,
improving the scale estimation. This is because local,
regional and global configurations are combined during
the estimation. This also shows that the position of the
evaluation points is important. When a manual choice is
needed, points exhibiting geometric details at different
scales could be preferable. If a candidate point has to be
chosen automatically, a proper analysis of its GLS profiles
could provide feedback about its quality. Additional
comments on this can be found in Section 5.

Noise and spatial sampling
We evaluated the stability of our scale estimation by com-
paring models with almost the same geometry but with dif-
ferent samplings: GARGOYLE and GARGSCALED (see Figure 3),
GARGB500K and GARGB120K (from Berger et al. [53]1), GARGP66K and
GARGP10K (subsampled versions of GARGOYLE from Berger et
al. [54]). The last four models are smoother than first two,

1. Respectively the reference model and the sample 9

while GARGB120K contains noise due to simulated acquisition.
The evaluation points are also roughly selected by hand
on the geometrically meaningful position illustrated in Fig-
ure 3-a): the center of the eye. The models do not share
the same samples, so the evaluation position may change
a bit, as well as the composition of the neighborhood for
descriptor computation. Scale-space sampling and range are
the same as in Figure 3, with log basis = 1.05 and scale
range [1, s3].

Output convolution profiles are shown in Figure 6,
and numerical values are available in additional materials.
Among all the configurations, error of the estimation are in
a range of [−2, 2] in logarithmic scale-space, while the range
of possibilities was [−80, 80]. The expected positions of the
maximum are shown as vertical dashed line in the graphs.
Note that GARGSCALED is two times smaller than all the other
objects, and this factor is well detected by the estimations.
Finally, the strength of the maxima visible in all the profiles
is a proof of the robustness of our approach, which is not
altered by the variation of sampling and lack of information,
even for GARGP10K which does not contain any feature at fine
and medium scales. Regarding the robustness to noise, the
procedure used to fit this descriptor from Guennebaud and
Gross [52] has been already proven to be robust to noise,
and used with success to reconstruct surfaces from noisy
point clouds in Berger et al. [53].

Robustness to limited overlapping and outliers
Point-clouds and meshes acquired with different devices are
perturbed by different types of noise (eg. frequency, ampli-
tude, pattern), and possibly by outliers. The robustness of
our approach is directly related to the robustness of the GLS
descriptor. However, this approach is theoretically designed
to handle a limited amount of outliers, which can strongly
influence the least-square minimization and lead to non-
representative GLS descriptors. In practice, we observed
that a realistic amount of outliers can be present in the data
without perturbing the descriptor computation (see results
in Figure 9). Another issue is related to the overlap between
two models: if one of the two describes only a portion of
the surface, the profiles associated to two corresponding
points could present partially different profiles. In this case,
only the compatible parts of the descriptor will influence the
convolution output.
Given the amount of overlap, the size of the profiles to be
compared should be carefully chosen. For example, in an
automatic scenario, the profile parameters could be refined
after an initial relative scale estimation step.

Spatial smoothness
An important aspect of our approach is that it allows
to retrieve the right scale between two points which are
not exactly in the same position on the geometry, i.e. the
scale estimations vary smoothly on the surface. This spatial
smoothness is illustrated in Figure 7, where we show the
estimated scales between a point p, and all the points on
three scaled version of the BUNNY.

There are two interesting behaviors we would like to
emphasis in this example. First, the right scale is estimated
on a subpart of the ear of the BUNNY, which mean that
we do not need to pick exactly the same positions on the
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RAW INPUT POINT-CLOUDS USER INPUTS: SMALL (LEFT) AND LARGE SCALES (RIGHT) RESULT

Fig. 8: Overview of our interactive registration tool, which uses a single pair of points specified by the user to estimate both
the relative scale and the local frame between two acquired models, here BIANCONESCAN (blue, 2M points) and BIANCONEPMVS

(gold, 1M points). Neighbourhood collection, descriptor computation, and alignment takes less than 20 seconds (CPU using
one single core) without pre-processing.

10 2

0.50 1

0.250 0.5

pTARGET:ESTIMATED
SCALE

:

Fig. 7: Color-coded visualization of the estimated scale be-
tween all points in 3 different scaled versions of BUNNY,
and p. The target scale is always shown in green, under-
estimations in blue, and over-estimations in red. Scale-space
is sampled with a basis of 1.05, starting from 1 unit, with
100 samples (max. scale ≈ 1

2 bounding box size of the target
model).

geometry to get a correct estimation. On the other hand, this
stable area is not too big, and wrong scales are estimated
on the head or the ear extremity. Second, this behavior
is stable over relative scale variations without any change
of the scale-space range or sampling. Our semi-automatic
matching approach (see Section 5.1) takes advantage of this
to allow the user not to be too accurate in selecting corre-
spondences between models, and this is used also by the
automatic approach to select starting seeds (see Section 5.2).
Note that we get similar scale estimations for both ears of
the BUNNY, because of the strong symmetry of the model.
Ears can however been disambiguated if the scale interval
is big enough, using details at large scales. Indeed, the
magnitude of the maximum extracted in Eq. 6 encodes the
similarity between points, and a bigger value means a better
match.

5 MULTI-MODAL REGISTRATION

Registering 3D objects is a common step in the acquisition
and digital modeling of physical objects. When dealing with
complex real scene or objects, user intervention is most of
the time necessary to guide processes. A typical scenario
is to let the user setting some correspondences between

two models and then align them. Automatic procedures can
also be envisaged, especially when the data exhibit com-
parable size, amount of noise and sampling, and sufficient
overlapping. As demonstrated in previous sections, multi-
modal data usually break these conditions, and for that
reason cannot be registered by such techniques. Another
important issue is the increasing number of acquired data
today accessible, which requires more and more efficient
registration techniques, designed either as simple and fast
supervised systems or automatic procedures.
We have implemented our point-wise scale estimation and
comparison estimator in two concrete and efficient registra-
tion systems, designed to handle point-clouds composed by
millions of points and corrupted by acquisition artefacts.
To prove the versatility and robustness of our approach,
we have used them to register both synthetic and acquired
objects, and compared our results to existing techniques on
our data. Our systems are designed as follow:
- A semi-automatic approach to interactively register
models with a simple interaction, and without any pre-
processing or subsampling.
- An automatic approach based on a standard RANSAC
scheme and using our scale estimation to filter invalid
configurations.
Both approaches are designed to be available independently,
but one could use them processing pipeline where most of
the data are processed automatically, and problematic cases
fixed by user intervention.

5.1 Semi-automatic registration
In this approach we propose to use minimal user inter-
vention to retrieve the relative scale between two acquired
models, at interactive rate, without pre-computation or sub-
sampling. The overall pipeline of our approach is illustrated
in Figure 8, and requires two inputs from the user: a scale
range, and a pair of roughly corresponding points between
the objects. The key idea is to let the user set the parameters
that have a strong influence on the process, but are easy
to set for a human being. Then, the relative transformation
between the two models (scale, rotation and translation) is
estimated automatically in interactive time. We would like
to emphasize that this approach has been designed as a
proof of concept, and requires small implementation efforts.
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It uses simple heuristics and neither complex optimization
nor advanced hardware. Despite this simple design, it has
been proven more efficient than existing tools, and applied
successfully on real datasets.

Interactive scale estimation and matching
According to Section 4.3, the scale range and sampling
parameters could have a strong influence on the accuracy
of the scale estimation. We let the user specify them, simply
by picking points on the models and adjusting the profiles
range by changing the global minimum scale, the logarith-
mic base and the number of scale samples (the maximum
scale is automatically computed from these values). The
changes of the parameters is visually shown by indicating
the volume (or better to say, the sphere of influence) that will
be taken into account for the profile calculation. The user can
also take into account the amount of overlap between the
two models and adjust the profile to better fit the common
information between them.
Then, the user can select a pair of corresponding points
and the system interactively finds the relative scale, and
align the two models. The selected points can be edited and
the result updated. Note that the user does not need to be
very accurate in the point selection, thanks to the spatial
smoothness of the scale estimation.

According to Section 4.2, we estimate the relative scale
between the two selected points as a maximum of ∆σ ,
while the translation between both models is found by
simply aligning the two corresponding points. The ro-
tation between the two models is retrieved by estimat-
ing a local frames for each selected point, and aligning
them. The local frames are computed at a given scale as(
η, dk1 , η × dk1

)
where × is the cross product between

two vectors, and dk1 the principal curvature direction com-
puted by spatially differentiating the GLS descriptor [55].

A key aspect here is to choose the right scale to estimate
the local basis: small scales are potentially noisy, and at
very large scale (eg. when considering the entire object) the
principal curvature direction can be poorly descriptive. In
practice, we first estimate the scale between two points,
and then use the scale sb in the middle of the overlap-
ping interval to compute the local basis (see inset below).

sbThis heuristic worked for our tests,
and can be easily tuned or interac-
tively changed by the user.

Comparisons
We used Patate [55] to compute, match and differentiate
the GLS descriptors. Neighborhoods are collected using a
KdTree built on the full-resolution cloud, and computations
were made using a single core of a Xeon CPU (3.00GHz).
We compared our approach with the manual scale estima-
tion and registration tool available in Meshlab [56] (see
attached video). In this system, users have to set multiple
pairs of corresponding points between two models, and a
PCA is applied to retrieve the similarity matrix between
them. Especially when scaling is taken into account, at least
4-5 correspondences pair must be chosen, and they should
be well distributed in the context of the overlap between
models. This operation can be quite time-consuming, espe-
cially when models are noisy or incomplete.

Input Data Semi-automatic (our) Manual
Input Reference Target Nb Time Est. Time Est.

Scale Scales (sec) scale (sec) scale
GARGSCALED GARGB500K 2.0 20 1.07 2.08 90 2.1
(1.5M vert.) (500k vert.) 0.04

SPOUSEPMVS SPOUSESCAN 4.25 70 7.8 4.32 285 4.22
(1.4M vert.) (4M vert.) 15.5

BIANCONEPMVS BIANCONESCAN 8.20 100 6.87 7.83 240 8.13
(970k vert.) (2M vert.) 6.08

TABLE 2: Timings of our semi-automatic scale estimation
and a manual approach implemented in Meshlab. Our
approach requires to compute the GLS descriptor around
points on the reference and the input model (respectively
first and second line in the Time column). The time to
set the points was between 15 and 20 seconds in our ex-
periments (the GLS of the first picked point is computed
while choosing the second one), by using a simple trackball
and a picking system. The manual approach requires to
inspect and set accurately 4-5 pairs of points between the
two models. In both cases the time required to estimated
the scale is negligible (a few milliseconds).

Table 2 shows a comparison of the performances on three
datasets from Corsini et al. [27]. Both manual and semi-
automatic approaches are able to provide accurate registra-
tion. However, our approach permits to complete the opera-
tion in a shorter time (including correspondence setting) and
requires less accuracy and effort by the user. Note that in the
three examples the larger scale used to compute the GLS
descriptor includes the whole input clouds. Hence, most of
the computation time is in practice spend on neighborhood
queries, which could be improved using multi-resolution
schemes.

5.2 Automatic registration
Depending on the application context, it might be necessary
to automatically register two point clouds, and avoid user
intervention. In that case, automatic registration systems
need to explore the transformation space (scaling and rigid
transformation). In order to reduce the search space, one
may use hints from the models geometry. A standard ap-
proach is to detect representative points within the clouds,
called seeds in the following, and find correspondences
between them. In our semi-automatic approach, this critical
step is done by the user using context-specific knowledge.
A wide range of automatic registration techniques have
been proposed in the past to explore the transformation
space using points correspondences, e.g. RANSAC [57]
and evolutionary game theoretic matching [58]. We choose
to design our automatic registration method as a simple
RANSAC scheme, and demonstrate its efficiency on real-
world dataset. More involved approaches can be derived
from this for specific application context.

In order to reduce the amount of points and reduce
the computational load, we start by sub-sampling the two
clouds with a variant of the Constrained Poisson Disk
approach [54]. This approach outputs a homogeneous dis-
tribution of samples while preserving the details (we used
200k samples in our experiments). We then pre-compute the
GLS descriptors on these clouds. The automatic registration
procedure is divided in two steps: first the seeds extraction
and matching, then the transformation space exploration
using RANSAC.
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Seeds selection and matching
In Section 4.3, we showed that our scale estimation is robust
to variations of sampling density, noise, and more impor-
tantly that it evolves smoothly on objects. This property
is really important since it allows us to compute a good
relative scaling without requiring accurate corresponding
points. Even if the corresponding points are not taken
in in the exact relative position on the two models, the
scale estimation can be accurately performed. Nevertheless,
according to [24], using points which are too close one
to another during the registration increases the chance to
estimate a noisy transformation. Special care must then be
taken to avoid having all the seeds located at the same place
on the model and ensure that they cover as much as possible
the important features of the object. We ensure a minimal
distance md between seeds by sampling a second time the
models using [54], with a sampling density is defined w.r.t
md (we used between 2k and 3k points for our experiments).
The value of md can be calculated by taking into account the
size of the bounding box of the object.

The resulting set defines the seeds used later to define
correspondences. Instead of using a totally random ap-
proach, we decided to prioritize the seeds in order to increase
the speed and accuracy of the registration procedure. We
prioritize the seeds using the geometric variation ν proposed
in [5], and defined as

ν(p, s) = wτ

(
δτs
δs

)2

+ wη

(
s
δη

δs

)2

+ wκ

(
s2
δκs
δs

)2

.

As in Equation 1 we used wτ = wη = wκ = 1. The priority
of a seed is computed as

priority(p) =
1∑smax
smin

1

smax∑
s=smin

1− tanh(α ∗ ν(p, s)) (7)

with α defined as in Equation 4. The intuition behind this
measure is to prefer points exhibiting variations in their GLS
descriptor, producing a more distinctive signature for the
scale estimation process.

Then, each seed ik ∈ I in the input model is matched to
its three most similar points in the reference model using
Eq. 5 with h computed using Equation 6. Both the estimated
scale and the points priorities are attached to the generated
pair. A set of three pairs is created for each seed. We note P
the priority queue storing the pairs of points of the reference
and input models, with the priority of a pair defined as the
product of its points priority.

Finding relative scale and registration
In a second stage, we use the priority queue of pairs gener-
ated by the previous step to find a the correct relative scale
and an initial registration to be refined in a subsequent stage.
We use the RANSAC scheme described in Algorithm 1. If
no solution is found after a chosen number of iterations,
another set of seeds I is computed on the input model,
and the procedure starts again. For the sake of clarity, we
described sub-procedures in Appendix.

Parameters
All the results in the next section were obtained with a
logarithmic base of 1.2. The minimum and maximum scale

Data: PriorityQueue<Pairs >P ,Q;
Result: TransformationMatrix M

while IterationCount <ItMax do
tripletref = ExtractTriplet(P );

scale ok = scaleDiff(tripletref ) <1 +− es ;
if scale ok then

M = ComputeRigidTr(tripletref );
if (RegistrationErr(tripletref , M ) <ep
AND NormalErr(tripletref , M ) <en) then

Q=P ;
while !Q.isempty() do

qref = ExtractFourthPair(Q.pop());
if IsValid(tripletref ,qref ) then

return
ComputeRigidTr(tripletref ,qref );

end
end

end
end

end
return IdentityMatrix

Algorithm 1: RANSAC scheme used to explore the trans-
formation space using pairs of seeds from the two clouds.

values used to compute the GLS profile were computed
respectively as the average distance between the samples
and as the diagonal of the bounding box, for each cloud
independently. The other parameters were set as md = 1%
of the diagonal of the bounding box, ep = 4.0 units (the
reference models were all in millimeters), en = 20 degrees,
and es = 0.2. All the results were obtained using this single
parameter set.

5.3 Comparisons
According to Section 2, while several recent works are facing
the issue of scale estimation, only a few of them can actually
be applied on real multi-modal data. This is mainly due re-
strictions on the data representation (triangulated surfaces,
3D scans) [26], [32], [33] or the strong sensitivity to noise.
Other techniques couldn’t be reproduced [35], since the code
was not made available to the community.

First, we compared our approach with the work of
Lin and colleagues [28], which is as far as we know the
only approach robust enough to handle multimodal data.
According to the authors, the approach is quite sensitive to
the amount of overlap between the clouds. Nevertheless,
we compared our approach to previous work on datasets
proposed in [28], to test the accuracy in relative scale es-
timation among some state-of-the-art techniques. Results of
our approach are shown in Figure 9, and quantitative values
in Table 3. Our method outperforms the other also before the
use of ICP to refine alignment.

Since our method aims at dealing with challenging real
datasets, we also tested our approach on models exhibiting
strong differences in density, noise, and coverage (results
shown in Figure 10 and in the attached video). According to
these results our approach is able to handle complex scenes.
Processing time (see Figure 10) is mainly influenced by the
complexity of the scene and the amount of overlap.
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Dataset Ground Standard Mesh Resolution Keyscale Standard ICP Scale Ratio ICP GLS GLS + ICP
Truth Deviation [59] [60] [61] [28] [1]

BUNNY 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000
Small Blocks 2.364 4.855 1.162 1.400 3.029 2.502 2.430 2.382
(no change) (105.37%) (50.85%) (40.78%) (28.13%) (5.84%) (2.81%) (1.01%)
Small Blocks 2.424 3.833 1.684 2.250 2.561 2.543 2.525 2.505
(with change) (58.13%) (30.53%) (7.18%) (5.65%) (4.91%) (4.16%) (3.34%)

Real blocks 1.696 1.593 1.607 1.500 1.767 1.607 1.662 1.674
(6.07%) (5.25%) (11.56%) (4.19%) (5.25%) (3.01%) (2.30%)

TABLE 3: Comparison of relative scale estimation for several methods, with estimated scale and percentage error. The
last two columns show the result of our method with or without ICP. The models and the table (except for the last two
columns) are from [28]. Our results are shown in Figure 9.

We observed that our approach tended to fail for data
with very low overlap, or when the geometry was scarcely
representative (i.e. vast majority of flat surfaces). We would
like to emphasize that any other descriptor-based approach
may have similar limitations.

6 CONCLUSION AND FUTURE IMPROVEMENTS

We presented a method for the registration and relative
scale estimation of multi-modal geometric data. Our method
uses a descriptor based on Growing Least Squares (GLS),
which is able to characterize both local geometric details
and global shape properties on 3D objects. We introduced a
new operator to compare two GLS descriptors at arbitrary
scales, compute their similarity in scale-space and estimate a
relative scale factor between them. Thanks to its robustness,
this operator is a good candidate to compare data with
variable amount of details, noise, and sampling. In addition,
our approach is easy to implement, and fast to evaluate
even on point-clouds composed of millions of points. We
evaluated it on data corrupted by acquisition artifacts, and
shown its stability and relevance for the study of multi-
model 3D data.
We built, upon this point-wise scale estimation, two prac-
tical frameworks to register multi-modal data either using
a user-assisted or an automatic approach. In both cases,
we used them to successfully register models with varying
outliers, noise, sampling density, and holes. These challeng-
ing meshes and point clouds had been generated either by
CG artists, or acquired using laser scanners, LIDAR, multi-
view stereo and spherical photogrammetry. In all cases our
approaches outperformed existing techniques, and in some
case they were the only one able to find a solution.
It is important to emphasize that our approach is easy to
implement, and can be easily diffused (using open-source
library and softwares), reproduced or implemented in ex-
isting pipelines. A typical application example is to use it
in systems gathering heterogeneous 3D contributions about
real objects, and automatically register them in a common
reference system and populate a virtual environment.
Thanks to this approach, the registration of 3D multi-
modal data can now be easily obtained. However, there
are still interesting and challenging questions we would
like to study in future work. First, the detections of perti-
nent structures on acquired point-clouds is still a complex
task requiring further study. It is a critical step used in
many processing scenarios, like the seed selection in our
context. In [5], authors present a continuous measure to
detect pertinent structures in scale-space. In practice, it is
not straightforward to use this measure to drive adaptive

sampling techniques and extract pertinent points. A inter-
esting research direction could be to improve such pertinent
point extraction, which could significantly improve the per-
formance and the robustness of the registration.
Moreover, this can be crucial also to handle the issue of par-
tial overlapping between models. Regarding this problem,
more advanced strategies to refine the profile parameters
could lead to a higher robustness of the method.
Finally, another interesting direction is the improvement of
both assisted and automatic approaches, either by designing
dedicated user-interfaces, or by optimizing the matching
algorithms and implement them on GPU.
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APPENDIX

The relative scale estimation and geometric registration
procedure shown in Section 5.2 is described step-by-step in
this Appendix. The PriorityQueue elements are Pairs. Each
Pair is described by: a point on the reference model iref , a
point on the input model iinp, an associated scale factor s,
and a priority value p. The function ExtractTriplet extracts
three pairs from the PriorityQueue. The probability to be
extracted is correlated to the priority value associated to
each pair. The first check on the triplet of pairs is the
similarity of estimated scale factor (Algorithm 2). If the
errors are above the defined threshold (respectively ep and
en), the triplet is discarded. Then, the Priority Queue P is
copied on another Priority Queue Q, and every point qref of
Q is checked to validate the triplet (Algorithm 5). The fourth
pair selected must have a distance bigger then md with
all the pairs of the reference triplet, and the triplet+fourth
pair Registration fulfils the thresholds ep and en. If the
returned scale difference is above the es threshold, the triplet
is discarded. Otherwise, standard PCA algorithm is applied
to calculate the Registration Matrix M that best aligns the
pairs of the Triplet. Then the Registration Error (Algorithm
3) and the Normals Error (Algorithm 4) are calculated in the
standard way. If a fourth pair that validates the Triplet is
found, the Registration Matrix obtained from the four pairs
is returned as the final result.
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Fig. 9: Dataset used for scale-estimation comparison, from [28].

Data: Triplet triplet
Result: Value scaleDifference

avgScale=(triplet.s1+triplet.s2+triplet.s3)/3;
scaleDifference=(abs((triplet.s1-avgScale)) +
abs((triplet.s2-avgScale)) + abs((triplet.s3-avgScale)))/3;
return scaleDifference

Algorithm 2: The scaleDiff function

Data: Pairs pairs, Registration Matrix M
Result: Value regError

regError=(abs(pairs1.iref - M X pairs1.iinp) + abs(pairs2.iref -
M X pairs2.iinp) +...+ abs(pairsk1.iref - M X pairsk.iinp))/k ;
return regError

Algorithm 3: The RegistrationErr function
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Fig. 10: Results of the method on real datasets. Left Column: LIDAR vs. Modelled, processing time for first registration 170
secs. Middle Column: LIDAR vs. Spherical photogrammetry, 615 secs. Right Column: 3D Scanning vs. Multi-View Stereo,
412 secs.
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