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Abstract:

Carbon dioxide (CO2) capture by aqueous alkanolamines is among the most mature 

and efficient technologies to curb the continuous emission of the green-house gas CO2 

into the atmosphere. However, the widespread use of this technology is limited, mostly 

due to the energy penalty during the CO2 desorption and the amine regeneration. A key 

point to develop more efficient sorbents is the knowledge of the species formed in 

solution after the reaction CO2 with the amine. Qualitative and quantitative analysis of 

ions in solutions can help to understand chemical reaction processes and probe chemical 

reaction mechanisms to discern important information including the rates of CO2 

absorption and desorption rates, the CO2 capture efficiency, the cyclic capacity, and the 

energy demand for regeneration, which are essential for the commercialization of this 

technology. Although many researchers have reported the speciation of primary, 

secondary and tertiary amines when reacting with CO2 as determined by nuclear 

magnetic resonance (NMR) and other methods, a few discussed the state-of-the-art 

research in this area. This paper aims to review and compare NMR spectroscopy, pH + 

NMR analysis and model prediction techniques for determining the speciation of CO2 

loaded amine solution, to get information for better understanding the fundamental 

principles and up-to-date progresses applied in various amine-CO2 systems. 

This review illustrates the applications of these three techniques to observe the 

morphology of CO2 loaded amine solutions including single amines, blended aqueous 

amines and non-aqueous amine solutions. Furthermore, the operating principles are 
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described in detail, and the strengths and weaknesses are discussed carefully. Of the 

three approaches, NMR spectrometry is proven to be more efficient in determining the 

proportion of ions in simple amine-CO2-H2O systems; however, for more complex 

systems the process efficiency varies depending on the situation encountered. In sum, 

these three analytical techniques can help to design efficient amine materials with high 

CO2 separation performance and low energy cost.

Keywords: carbon capture, speciation, NMR, pH + NMR, model prediction, 

quantitative analysis

CONTENTS

 Introduction ........................................................................................................5

 Chemical equilibria in amine-CO2-H2O systems ................................................9

 Single amine-CO2-H2O systems ......................................................................10

Primary and secondary amine solvents ..............................................................10

Tertiary amine solvents .......................................................................................14

Polyamine solvents .............................................................................................17

 Blended amine-CO2-H2O systems ...................................................................25

Dual-amine systems............................................................................................25

Trio-amine systems.............................................................................................28

 Nonaqueous systems ......................................................................................32

Page 3 of 68

ACS Paragon Plus Environment

ACS Sustainable Chemistry & Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



4

Single nonaqueous organic amines....................................................................32

Binary non-aqueous organic amines...................................................................34

 Applicability of reported methods for speciation ..............................................37

NMR spectrometry ..............................................................................................37

pH + NMR combination.......................................................................................45

Model predictions ................................................................................................48

 Summary and outlooks ....................................................................................49

 Conflicts of interest ..........................................................................................52

 Acknowledgement............................................................................................52

 Acronyms .........................................................................................................52

 References:......................................................................................................54

Page 4 of 68

ACS Paragon Plus Environment

ACS Sustainable Chemistry & Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



5

 Introduction

The combustion of fossil fuels (coal, oil, and natural gas) accounts for about 65% 

of the total greenhouse gas emissions, which contribute to global warming with 

potentially devastating effects.1-4 In past decades, the emissions of CO2 into the 

atmosphere are dramatically increased owing to the rise of the energy consumption 

mainly resourced from fossil fuels,5 simultaneously increasing the earth’s surface 

temperature.6, 7 As such, the reduction of anthropogenic CO2 emission is considered 

one of the most urgent challenges, which demands greater reliance on renewable 

energies and/or the development of efficient technologies for CO2 capture and 

sequestration.8-11 In order to lower CO2 emission and mitigate global warming, many 

efforts have been made by different research groups to develop new and efficient 

technologies for CO2 capture and storage (CCS).12-16

CO2 can be captured from large emission sources with three main processes, 

namely pre-combustion, post-combustion, and oxyfuel combustion, but only the post-

combustion carbon capture (PCC), the most mature technology, can be easily retrofitted 

to plants in operation and worked at commercial scale.17-21 Chemical capture by 

aqueous alkanolamines is currently considered the most efficient and relatively less 

expensive technology for industrial-scale application and for this reason many research 

activities aim to improve this type of sorbent.19, 22-24 However, the widespread 

utilization of this technique is still limited by high operating cost, mainly from the high 

energy required for CO2 desorption and amine regeneration.25, 26 

In order to optimize the efficiency of post-combustion carbon capture by using 
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6

amine sorbents, an accurate understanding of the chemistry (i.e. reaction mechanism, 

equilibrium, and speciation) involved in the process of CO2 capture and release is 

needed.27 The types and numbers of ions produced during the different absorption and 

desorption stages are correlated to amine performances. This correlation is necessary in 

obtaining accurate parameters of CO2 absorption and desorption rates, CO2 absorption 

efficiencies, cyclic capacities, and regeneration energy requirements.28, 29 In this regard, 

to develop a reliable vapor-liquid equilibrium (VLE) model is very useful to explore 

the reaction mechanism. Specifically, in order to identify which amine achieves the 

highest CO2 absorption efficiency and the greatest regeneration capacity, the study for 

the speciation equilibrium in solution can supply us the information about the absorbent 

behavior, leading to the optimization of several parameters such as the structural 

features of the amines, the amine/CO2 ratio, the liquid flow rate, the CO2 partial 

pressure, and absorption temperature.28, 30 

Various analytical techniques have been used by different scientists to determine 

the species present in CO2 - amine reactions: among these, it is worth mentioning the 

X-ray diffraction (XRD), the Fourier transform infrared spectroscopy (FT-IR) , near-

infrared (NIR), and Raman spectroscopy.31, 32 In the present review, three of the most 

popular techniques for the study of diluted amine-CO2 systems, namely nuclear 

magnetic resonance (NMR) spectroscopy, pH + NMR analysis and model prediction, 

will be discussed in detail.

NMR spectroscopy is considered a powerful and noninvasive technique.27, 33, 34 

Since its discovery over 70 years ago, the size of the necessary instrumentation for 
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NMR spectroscopy has been gradually reduced, following the advances in the 

development of electronics.35 

The 13C NMR spectroscopy applied to diluted amine-CO2 systems allows to obtain 

useful information about the reaction mechanism and to qualitatively and quantitatively 

determine the species present in solution.36 

NMR spectroscopy presents several advantages over other techniques, mainly 

because the peak areas in NMR spectra directly represent the number of nuclei 

contributing to the signals which makes the quantitative analyses of species possible 

without calibration requirements.27, 34

Previously, 13C NMR spectra of carbon dioxide in water were reported by Abbott 

et al.37 and in aqueous NH3 solutions were discussed by Mani et al.38 In spite of its 

practical importance and high potentiality, the application of 13C NMR spectroscopy in 

the quantification of the species involved in CO2 loaded aqueous amine- systems28 has 

rarely reported due to the convenience of pH + NMR combined analysis. 

While the concentrations of CO2-species can be evaluated by NMR method, the 

amount of free and protonated amines can be calculated from the Ka and the pH,39 where 

the definition of pH is in Eq. 1. Many improvements have been performed on this 

technique to make it widely applied by researchers. Stadie et al.40 calculated the total 

amount of CO2 as carbamate and bicarbonate in whole blood by using the pH value and 

the equilibrium constant. Fan et al.41 calculated the concentration of hydrogen ion from 

the pH value. However, one of the drawbacks of this method is that it is only suitable 

for aqueous solutions, and for a restricted range of operating temperatures (293∼308 
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K).42 

  (1)pH = ― log ([𝐻 + ])

The popular thermodynamic models, including Kent-Eisenberg (K-E),43 

Deshmukh-Mather (D-M),44 and E-NRTL models,45 can help scientists to predict 

important parameters for CO2 capture processes.46 The K-E model43 can be employed 

to calculate the equilibrium constants which is a function of temperature T (Eq. 2),47 

where the vapor-liquid equilibrium（VLE）model is applied to simulate ammonium 

speciation.48

 (2)ln 𝐾𝑝 =
―5851.11

𝑇 ― 3.3636

In the present review we have decided to discuss and compare critically the 

utilization of these three popular techniques, namely NMR spectroscopy, pH + NMR 

combination and model predictions, for the speciation analysis during CO2 capture 

processes with amine-based sorbents. This review offers a broad overview of all types 

of applications of these techniques, evaluating both strengths and weaknesses for 

various amine systems.

 Chemical equilibria in amine-CO2-H2O systems

Based on the types of ions generated during the reaction of amines with CO2, the 

following chemical reactions may occur (where Am denotes a general amine).

Dissociation of water:

 (3)2𝐻2𝑂⇄𝐻3𝑂 + +O𝐻 ―  

Dissociation of dissolved CO2 through carbonic acid:
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  (4)2𝐻2𝑂 + 𝐶𝑂2⇄𝐻2𝐶𝑂3 + 𝐻2𝑂⇄𝐻3𝑂 + +𝐻𝐶𝑂 ―
3

Bicarbonate formation:

  (5)𝐶𝑂2 + O𝐻 ― ⇄ 𝐻𝐶𝑂 ―
3

Carbonate formation:

  (6)𝐻𝐶𝑂 ―
3 + 𝐻2𝑂⇄𝐶𝑂2 ―

3 + 𝐻3𝑂 +

Protonated amine formation:

  (7)Am + 𝐻3𝑂 + ⇄𝐴𝑚𝐻 + + 𝐻2𝑂

  (8)Am + 𝐶𝑂2 + 𝐻2𝑂⇄𝐴𝑚𝐻 + + 𝐻𝐶𝑂 ―
3

+   (for diamines) (9) 𝐴𝑚𝐻 + + 𝐻3𝑂 + ⇄𝐴𝑚𝐻2 +
2 𝐻2𝑂

Zwitterion formation:

(10)Am +𝐶𝑂2⇄𝐴𝑚 + 𝐶𝑂𝑂 ―

Carbamate formation：

 (H from the amine, tertiary amine 𝐴𝑚 + 𝐶𝑂𝑂 ― +𝐴𝑚⇄𝐴𝑚𝐶𝑂𝑂 ― +𝐴𝑚𝐻 +

cannot form carbamate) (11)

  (for diamines) (12)𝐴𝑚𝐶𝑂𝑂 ― +𝐻𝐶𝑂 ―
3 ⇄ 𝐴𝑚(𝐶𝑂𝑂)2 ―

2 + 𝐻2𝑂

Hydrolysis of carbamate:

 (for diamines) (13)𝐴𝑚(𝐶𝑂𝑂)2 ―
2 +2𝐻2𝑂 ⇄2 𝐻𝐶𝑂 ―

3 +𝐴𝑚

 (for diamines) (14)𝐴𝑚(𝐶𝑂𝑂)2 ―
2 + 𝐻2𝑂 ⇄ 𝐻𝐶𝑂 ―

3 +𝐴𝑚𝐶𝑂𝑂 ―

  (except for tertiary amine) (15) 𝐴𝑚𝐶𝑂𝑂 ― + 𝐻2𝑂 ⇄𝐴𝑚 +  𝐻𝐶𝑂 ―
3

In amine blends systems, two (or more) amines could have a synergistic interaction 

during the CO2 uptake: indeed, after the zwitterion formation (reaction 10) by one of 

the two amines (here indicated with Am1), the other amine, generally the most alkaline 
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10

(here indicated with Am2) can work as a acceptor of the proton (H+) generated and 

released by Am1, thus promoting the formation of Am1 carbamate:

 (16)𝐴𝑚1 + 𝐶𝑂𝑂 ― +𝐴𝑚2⇄𝐴𝑚1𝐶𝑂𝑂 ― +𝐴𝑚2𝐻 +

Typically, Am1 is a primary or secondary amine, whilst Am2 is a sterically 

hindered or tertiary amine.

 Single amine-CO2-H2O systems

Primary and secondary amine solvents

The reactions of non-hindered primary and secondary amines with CO2 are quite 

similar: the amine carbamate represents the main product, while bicarbonate is formed 

in smaller amounts. Generally, the carbamates formed from primary amines are more 

stable than those from secondary amines because the nitrogen sites are less hindered 

from the nucleophilic attack.33, 49 On the contrary, the reactions of CO2 with sterically 

hindered primary and secondary amines such as 2-amino-2-methyl-1-propanol (AMP),  

produce unstable carbamates, followed by the formation of bicarbonate, as reported in 

reaction (15). Sterically hindered primary/secondary amines behave similarly to tertiary 

amines.

Fan et al.41 performed qualitative and quantitative analyses of the species in the 

CO2-MEA-H2O system using 1H and 13C NMR spectroscopy: where MEA denotes 

mono-ethanolamine, the most popular and one of the cheapest amine solvents used for 

CO2 capture process.50, 51 According to their study, the MEA/MEAH+ peaks shift down 

field while the carbamate peaks shift up field upon CO2 absorption in the 1H NMR 
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spectrum due to the acidity increasing. However, the peaks of MEA/MEAH+ in the 13C 

NMR spectrum shift to higher field, while the carbamate peaks remain almost 

unchanged. 

Lv et al.52 carried out a detailed investigation on CO2 absorption and desorption 

mechanisms within the CO2-MEA-H2O system by analyzing the reaction intermediates 

under different CO2 loadings using 13C NMR spectroscopy. The authors found the 

absorption process starting from the formation of MEA-carbamate based on the 

zwitterionic mechanism and followed by the formation of carbonate and bicarbonate 

via the hydration of CO2 and the hydrolysis of the carbamate. The NMR study allowed 

the authors to analyze the CO2-MEA-H2O system over high CO2 loading values: the 

lower stability of carbamate was found with the higher CO2 loading as the carbamate 

was easily hydrolyzed to carbonate and bicarbonate by H+ at higher CO2 loading 

amount. Similar results have also been found by other authors.10,19 

A complete species analysis based on 13C NMR in the different amine systems has 

been performed by Barzagli et al..28, 53 The amine solutions were tested including MEA, 

AMP, diethanolamine (DEA), and 2-(methylamino)ethanol (MMEA) with different 

concentrations. Moreover, the data collected from the spectra has been correlated with 

the CO2 capture performances of the different sorbents. García‐Abuín et al.,54 carried 

out an accurate 1H and 13C NMR spectroscopic study to evaluate the products formed 

upon CO2 uptake in aqueous pyrrolidine solution: as a finding, at the beginning of the 

CO2 absorption, the amount of carbonate and carbamate formed indicated a 

stoichiometric ratio 2:1 (amine:CO2). The carbamate stability decreased with increasing 
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the CO2 loading as pyrrolidine is a sterically hindered amine, and more bicarbonate was 

produced. Consequently, an increase in free amine concentration was observed. Finally, 

at the end of the process, the stoichiometric ratio was 1:1, and the carbon dioxide 

capture capacity was enhanced.

Wang et al.55 used MEA/sulfolane aqueous solvent with a phase interchanging 

function to capture CO2: in this kind of sorbents, two immiscible liquid phases (upper 

and lower phase) are formed after CO2 absorption. 13C NMR analysis revealed that the 

most of CO2 species exists in the upper phase rather than the lower phase.

In order to investigate a new primary amine based solvent, aqueous 4-

aminomethyltetrahydropyran (4-AMTHP), Li et al.56 used potentiometric titrations in 

the absence of CO2 to determine the protonation constants (larger protonation constants 

means better reactivity toward CO2) for the reaction: 

   (17)4 ― AMTHP + 𝐻 + ⇄4 ― AMTHP𝐻 +

The full reaction scheme of the system is described in Figure 1, where RNH2 represents 

4-AMTHP. 

Matin et al.57, taking MEA as an example, employed total alkalinity titration 

measurement with strong base to measure the concentration of (bi)carbonate, 

protonated amine, carbamate, total inorganic carbon content and free amine. The 

presence of bicarbonate in the solution influences the free amine concentration, which 

is a positive correlation function of CO2 loading. The investigators also predicted 

activity coefficient with Aspen Plus ENRTL-RK model, and the results showed that the 

pH values measured in experiments matched those predicted with the Aspen Plus.58 
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Moreover, total carbon and HCO3
− calculated by Matin et al.57 were compatible with 

the data presented by Jakobsen et al.59 and with the Aspen Plus predictions58.

The equilibrium constants K(T) could be obtained with Kent and Eisenberg 

model43 to determine the ratio of free and protonated MEA.41 Luo et al.60 carried out a 

comparison between three different models (KE, e-NRTL and UNIQUAC), for the CO2 

loaded aqueous MEA system. The parameters obtained from these models showed good 

predictions in comparison with experimental data in various conditions. A further test 

was carried out to evaluate the full and simplified VLE models. The experimental data 

matched model predictions quantitatively in absolute concentrations instead of relative 

mole fractions. The results obtained with both models showed a good agreement 

between experiment and simulation.61

Figure 1. The reaction scheme of the primary amine and CO2. Reprinted with 

permission from ref.56 Copyright 2017 American Chemical Society.

Tertiary amine solvents

Tertiary amines do not have protons on the nitrogen of the amino functionality: 
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for this reason they cannot form carbamates and the only product of the reaction with 

CO2 is (bi)carbonate. Due to their different reaction mechanism, tertiary amines 

generally present slower CO2 reaction rates and lower energy requirement for the 

regeneration compared to primary/secondary amines.62 It has been proposed by 

Donaldson et al.63 that tertiary amines do not react with CO2 directly but catalyze the 

hydration reaction of CO2.64

Zhang et al.65 investigated the HCO3
- and CO3

2- formation at various CO2 loadings 

by mean of 13C NMR method. The concentrations of HCO3
- and CO3

2- as a function of  

CO2 loadings for 1 M aqueous solutions of 1-dimethylamino-2-propanol (1DMA2P) 

and methyl diethanolamine (MDEA) were plotted. As a result, it was showed that the 

concentrations of HCO3
- continuously increased, while that of CO3

2- increased to a 

maximum value, and then stepped down as the CO2 loading increased. 

Three-dimensional (3D) plots of species formed for the 1DMA2P-CO2-H2O 

system at different temperatures and concentrations were described carefully by Liang 

et al.64 by using pH method combined with mass balance, charge balance, and 

equilibrium constant calculations. As an example of their results, in Figure 2 we report 

the 3D profile obtained for HCO3
- concentration. 

The  Liang et al.64 used K-E model to predict the CO2 loadings in tertiary amine 

systems, while Liu et al.42 applied K-E model to get equilibrium constant K. The K-E 

model was also chosen by Luo et al.60 to predict VLE for the DEEA-CO2-H2O system 

(DEEA = diethyl ethanolamine). The reported models (K-E, Austgen, Li-Sheng, Hu-

Chakma, and Liu et al.) well described the equilibrium solubility of CO2 in 1DMA2P 
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solution, with absolute average deviations (AADs) comprised between 6.3 and 15 %.66 

Among them, the models developed by Hu-Chakma and Liu in separate studies 

predicted the solubility of CO2 in 1DMA2P better than others since more parameters 

were considered. The K-E model applied to calculate CO2 solubility at equilibrium is 

plotted in Figure 3.

 

Figure 2. The 3D profile of HCO3
− concentration in CO2 loaded 1DMA2P 

solution. Reprinted with permission from ref.42 Copyright 2015 American Chemical 

Society.
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Figure 3. Comparison of the solubility of CO2 determined by K-E model and 

experiments. Reprinted with permission from ref.66 Copyright 2017 ELSEVIER.

Polyamine solvents 

The name polyamine identifies a class of compounds containing two or more 

amino groups. In this review, we mainly discuss diamines. 

N-Methylethylenediamine (MEDA) is one of the most common diamines, which 

contains a primary and a secondary amino groups: the speciation of its aqueous solution 

after CO2 uptake was studied by Zhang et al.67 by using 13C NMR spectroscopy (Figure 

4). As a finding, they reported the formation of three different species, in addition to 

bicarbonate: the primary carbamate which is formed on the primary amino group, the 

secondary carbamate formed on the secondary amino group, and the dicarbamate. 

Moreover, the authors observed that both secondary carbamate and dicarbamate convert 

into primary carbamate (the primary carbamates of some diamines tend to hydrolyze 

into HCO3
-) when increasing the CO2 loading, and the order of the concentration of 

carbamates follows the order primary-carbamate >> secondary-carbamate > 

dicarbamate.
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Figure 4. The 13C NMR spectrum of CO2 loaded MEDA aqueous solution 

(α=0.93 mol-CO2/mol-amine). Reprinted with permission from ref.67 Copyright 2018 

ELSEVIER.

 The amine-CO2-H2O systems for N-Methylethylenediamine (MEDA), N'-

Methylpropane-1,3-diamine (MAPA), 2-Dimethylaminoethylamine (DMAEA), and 3-

Dimethylaminopropylamine (DMAPA) were also investigated by Zhang et al.68 using 

13C and 1H NMR . Their work indicates that higher CO2 partial pressures, longer 

carbon-chain length and more substituent on N-atom favor the formation of bicarbonate 

in all diamines. 

13C NMR analysis was used by Zhang et al.65 to evaluate the effects of inter- and 

intra-molecular tertiary amino groups on a primary amino group during the CO2 capture: 

in this study aqueous 3-diethylaminopropylamine (DEAPA) and blended MEA-MDEA 

systems were considered. Their work illustrates that the tertiary amino group of 

DEAPA (intramolecular) has the effect of improve the absorption rate and the 
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absorption capacity more than the tertiary amino group of MDEA in the aqueous blend 

of MEA-MDEA (intermolecular) system; moreover, for the latter case, has been 

observed a greater production of bicarbonate (and a consequent lower production of 

carbamate) with respect to DEAPA system. 

Piperazine (PZ), as one of cyclic amine for CO2 absorption, is widely applied as a 

absorption rate promoter in blended amines.69 Safdara et al.70 conducted a series of 

experiments to study the CO2 solubility in aqueous PZ solution as a function of 

temperature and pressure. The results revealed that the solubility decreased with the 

increase in temperature while increased with the increase in pressure. The CO2 loading 

capacity for PZ solution improves at high pressure and low temperature. By using NMR 

spectroscopy, Zhang et al.71 quantitatively analyzed the species formed (mono-

carbamate, dicarbamate, bicarbonate and carbonate) at 298 K in 2M PZ and 2M 2MPZ 

(2-methylpiperazine) aqueous solutions with different CO2 loadings ( Figure 5). 

Figure 5. Formation of (a) carbamate, and (b) HCO3
−/CO3

2− in PZ and 2MPZ solution 

with different CO2 loadings. Reprinted with permission from ref.71 Copyright 2018 

American Chemical Society
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Figure 5a demonstrates that PZ produces more carbamates ( mono-carbamate and 

dicarbamate summed together) with respected to 2MPZ: in fact, the dicarbamate of 

2MPZ is unstable, because of the steric hindrance due to the methyl substituent in the 

α position. The bicarbonate in solution was mainly generated from the conversion of 

carbonate and the decomposition of carbamate. As reported in Figure 5b, more 

bicarbonate was produced from the decomposition of dicarbamate in the 2MPZ system 

due to its lower stability than PZ dicarbamate. Moreover, the conversion of carbonate 

is almost negligible, as confirmed by the almost equaled concentrations of carbonates 

in PZ and 2MPZ solutions, as shown in Figure 5b. 

Liu et al.72 applied 13C NMR spectroscopy to track the spepciation in in aqueous 

triethylenetetramine (TETA) during the whole CO2 capture process, including 

absorption and desorption. As a finding, during the absorption process the NMR peaks 

of carbamates were between 163.5 and 164.5 ppm, while CO3
2−/HCO3

− were at 160.3 

ppm. The shifts mentioned here were not contributed by single peaks but by peak 

clusters because TETA has four amine groups. During the desorption, it was observed 

that the peak intensity of CO3
2−/HCO3

− decreased until it disappears, while the peak 

intensities of the carbamates decreased but were still present when the desorption 

process ended.

According to the pH measurements carried out by Bencini et al.,73 the pKa1 of 4-

amino-1-methylpiperidine (4-A1MPD) was 10.02, while the pKa1 of 4-amino-1-

propylpiperidine (4-A1PPD) was 10.22. Instead, the pKa2 was the same for both the 

amines, 7.46 at 298 K. Although the substituents on both tertiary amines are different, 
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the pKa1 values only showed a very small difference, and by the consequence the 

difference in the amount of formed HCO3
- was negligible. As for linear diamines,18 the 

pKa1 of N, N-dimethyl-1,2-ethanediamine (N,N-DM12EDA) and N,N-dimethyl-1,3-

propanediamine (N,NDM13PDA) are 9.69 and 10.34 while the pKa2 are 6.46 and 8.17, 

respectively. The lower pKa2 value for N,N-DM12EDA is due to the shorter distance 

between amino groups: the first protonated amino group acts as a suppressor for  the 

protonation of the second amino group it is why there is a much lower pKa2. In 

comparison with MEA, the cyclic structure significantly reduces the formation of 

carbamate and boosts the formation of HCO3
− during CO2 uptake, which was verified 

by the species profiles in amine solutions detected with NMR spectroscopy.18

Speciation for the CO2 absorption of  at 343.15 K into 0.3 M aqueous PZ solution 

was conducted by Kadiwala et al.74 by using Electrolyte-NRTL model. The authors 

found an interesting correlation between the concentration of the carbonate ion [CO3
2-] 

in solution and the amount of captured CO2: [CO3
2-] was high at loading values in the 

range 0.1-0.6, while it quickly decreased at loading values between 0.6 and 1.5; finally, 

for loading values higher than 1.5, the carbonate concentration did not vary 

substantially, indicating that the loading increase was mainly due to physical absorption.

Pashaei et al.75 justified with the penetration models for the mass transfer flux that 

the absorption efficiency increased with increasing stirring speed. After investigating 

five different types of single amines including PZ with K-E modelling, Hwang et al.76 

concluded that the VLEs of the single amines fit well to K-E model. Zhang et al.68 

applied Gaussian software to develop a computational modeling in which the effect of 
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varying chain length on the stability of mono-carbamate was simulated. The results 

obtained from the experimental, together with the quantum chemistry calculations, 

proved that carbamates formed from zwitterions with C2 chains were energetically more 

difficult than from those containing C3 chains. In another paper of the same group,65 

the empirical model predictedCO2 equilibrized solubility at different temperatures with 

various CO2 partial pressures within acceptable average absolute deviations compared 

to the experimental data. In this model, the CO2 equilibrium solubility was approved as 

a function of temperature and CO2 partial pressure.

All researches mentioned in this section  are summarized in Table 1.
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Table 1. Summary of single amine-CO2-H2O systems

Type Absorbent Author Technology Contribution

MEA Fan et al.41 1. 1H and 13C NMR
2.  K-E model

1. Performed Qualitative, quantitative analysis and ions 
peak.

2. Determined the ratio of MEA and protonated MEA.

MEA Lv et al.52 13C NMR Evaluation of the mechanism on CO2 absorption and 
desorption

MEA, AMP, DEA 
and MMEA Barzagli et al.28, 53 13C NMR Preformed species analysis.

Pyrrolidine 
aqueous

García‐Abuín et 
al.54

1H and 13C NMR Developed experiment procedure and the speciation in 
this reaction.

MEA + sulfolane Wang et al.55 13C NMR Qualitative analysis of the two different phases of a phase-
change sorbent

4-AMTHP Li et al.56 Potentiometric titrations Determined protonation constants.

MEA Naser et al.57
1. Alkalinity titration 

measurement
2. Aspen Plus model

1. Calculated the concentration of ions.
2. Predicted speciation was compared with the 

experimental data.

MEA Luo et al.60 KE, e-NRTL and 
UNIQUAC Carried out a comparison between three different model.

Primary/ 
Secondary 
amine

MEA Preez, L. J., et 
al.61

Full and simplified version 
of the VLE model Predicted the concentrations for all ions.

1DMA2P, MDEA Zhang et al.65 13C NMR Determined the concentration profiles of bicarbonates and 
carbonates in aqueous solutions.Tertiary 

amine 1DMA2P Liang et al.64   
and Liu et al.42

1. pH + NMR method
2. K-E model

1. Developed ions (1DMA2P, 1DMA2PH+, HCO3
-, 

CO3
2-) speciation plots of two-dimensional (2D) and 

three-dimensional (3D).
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2. Calculated the solubility of CO2 in tertiary amine 
systems by Liang et al.

3. Get equilibrium constant K by Liu et al.
DEEA Luo et al.60 K-E model Predicted vapor-liquid equilibrium and Henry constant.

1DMA2P Liu et al.66, 77

Model developed by Kent-
Eisenberg, Austgen, Li-
Sheng, Hu-Chakma and 
Liu et al. successively

Determined the equilibrium solubility of CO2 and the 
solubility constant of N2O.

MEDA Zhang et al.67 13C NMR Analyze the speciation.
MEDA, MAPA, 
DMAEA and 
DMAPA

Zhang et al.68 1. 1H and 13C NMR
2. computational model

1. Identified and quantify species.
2. Explained the effect of the chain length on the 

stability.

DEAPA Zhang et al.65 1. 13C NMR
2. Empirical model

1. Determined the effect of the intra- and inter-molecular 
tertiary amino groups.

2. Described the trend observed in experiments.

PZ and 2MPZ Zhang et al.71 13C NMR Compared the amount of each ions and analyze the 
reasons for its difference.

TETA Liu et al.72 13C NMR Observed its speciation during the process of CO2 capture.
4-A1MPD and 4-
A1PPD Bencini et al.73 pH measurements Establish relationship between pKa and bicarbonate 

formation.
N, N-DM12EDA 
and N, 
NDM13PDA

Xiao et al.18 pH measurements and 
NMR spectroscopy Detected species profiles.

Piperazine 
solutions Kadiwala et al.74 Electrolyte-NRTL model Determined Speciation during the absorption process.

PZ Pashaei et al.75 Penetration models Determined absorption efficiency.

Polyamines

Five different 
types of single 
amines including 

Hwang et al.76 K-E models VLE model matches the K-E models.
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PZ
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 Blended amine-CO2-H2O systems

The wide diffusion and application of the single amine technology is limited due 

to several drawbacks, in particular  the high energy costs in regeneration to regenerate 

primary/secondary amines and the low reaction rates of tertiary amines.78 To avoid 

these shortcomings of single amines, mixtures of primary, secondary, tertiary, and 

heterocyclic amines attracted attentions.79 Typically, the blend consists of: (a) a primary 

or secondary amine, capable of quickly react with CO2 to form carbamate and (b) a 

strongly alkaline amine, usually a sterically hindered or tertiary amine, capable of 

accepting the proton (H+) generated and released from the reaction of the other amine 

in its reaction with CO2, thus promoting the formation of the carbamate (equation 16).

 It has recently been demonstrated that dual and trio-solvent blended amines can 

potentially increase the absorption efficiency and lower the required regeneration 

energy.80 For example, the blends of AMP-MDEA (1:2 in molar ratios) and AMP-DEA 

(2:1 in molar ratios) showed an improvement in absorption efficiency of 7-14% 

compared to single amines under the same operating conditions.28 The improved 

performances of the blended amines in comparison with individual amines were 

explained on the bases of cooperative effects disclosed by 13C NMR analysis, pH + 

NMR methods, and model prediction as below.

Dual-amine systems

Liu et al.72 studied the CO2 uptake in TETA-AMP-H2O system by using 13C NMR 

spectroscopy, they found that both TETA and AMP carbamates were formed at the very 

early stage of the CO2 uptake. As the loading increased, the CO3
2−/HCO3

− signal 

appeared, grew and moved from 162.9 to 160.6 ppm: this indicates that carbamates (in 
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particular AMP carbamate, with low stability) hydrolyzed to form bicarbonate, which 

therefore increased its concentration in solution. During the regeneration step, the 

intensity of CO3
2−/HCO3

− peak decreased until it disappeared while those of carbamates 

were still present after the desorption completion. 

The species formed in MEA-based blends, in particular MEA-1DMA2P and 

MEA-MDEA, were investigated at different CO2 loadings (at 293.15 K) by  using 13C 

NMR spectroscopy by Zhang et al.,65 and the results compared with the speciation of 

the single amine solutions. After detailed discussion , it was noted that MEA reacts 

more easily with CO2 than tertiary amines. When MEA is added into a tertiary amine 

system, the production of the CO3
2−/HCO3

− ions from the tertiary amine is inhibited. 

Conversely, tertiary amines can promote the formation of CO3
2−/HCO3

− from MEA at 

a lower CO2 loading ratio. HCO3
− plays an important role in amine regeneration, 

depending on CO2 loading, formulation ratio and the operating conditions. Using NMR 

spectroscopy to determine the species of MEA-4-diethylamino-2-butanol (DEAB) 

solutions, Yu et al.81 found that with the rise in temperature from 297 to 363 K, the 

HCO3
− concentration demonstrate a remarkable increases, and the 13C signal can be 

detected at a relative low CO2 loading stage (0.25). 

Ciftja et al.82 investigated the aqueous DEEA/MAPA blend, a phase-change 

sorbent, by NMR quantitative speciation. They found that the lower phase was 

contained most of CO2 and MAPA (a diamine with a primary and a secondary amine 

group), while the upper phase was lean in CO2 and rich in the tertiary amine DEEA. 

Furthermore, they found that by raising the partial pressure, the DEEA/MAPA ratio 

increased in the lower phase and simultaneously decreased in the upper phase.

Another phase-change sorbent, aqueous DETA-PMDETA, has been reported by 

Ye et al.83 The 13C NMR analysis allowed  the identification and quantification of the 
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species in both phases to get information for best understanding to the mechanisms and 

reaction pathways. They observed that, during the uptake, CO2 firstly reacted with 

DETA in the lower phase and then formed bicarbonate and carbonate ions via the 

protonation of PMDETA. 

The quantitative results of MEA-DEAB-CO2-H2O system were successfully 

obtained using pH + NMR analysis: eight samples of the blended amine solutions with 

different CO2 loadings were tested at room temperature and the results displayed in 

Figure 6. The results showed that the pH + NMR method can be applied into a 

quaternary MEA-DEAB-CO2-H2O.84 The high concentration of carbamate ions was 

caused by the high fraction of MEA in the solution (MEA was 5.0 M, DEAB 1.25 M). 

In this system, the free MEA and free DEAB as two available proton acceptors exist at 

the low CO2 loading stages, while only MEA-proton-acceptor exists at the high CO2 

loading stages because the free DEAB is consumed.

Used as an addictive in the solutions of AMP, PZ can significantly enhance the 

CO2 absorption rate, as confirmed by Sun et al.85 in hybrid reaction rate modelling. In 

this model, CO2 reacts with PZ following a second-order kinetics, while the reaction of 

CO2 with AMP fits in the zwitterion mechanism. At higher temperatures and PZ 

concentrations, the apparent reaction rate constant (kapp), increases,  with an overall 

absolute percentage deviation of kapp of 7.7%.

The calculation of the concentration of HCO3
− in MEA-DEAB-CO2-H2O system 

is complicated, but it could be obtained via simulation with. The electrolyte nonrandom-

two-liquid model (e-NRTL), suitable for this utilization as it employs multiple 

equilibria and mass balance rules.81 Equilibrium behavior in aqueous solutions of MEA, 

benzylamine (BZA), and their blends was predicted by Conway et al.86 using a model 

programmed in MATLAB. The modelling approach undertaken, however, was 
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fundamentally based on the assumption that the individual chemical models for the 

amines present in the solutions adequately described the absorption chemistry and no 

additional synergistic behaviors were required.

Figure 6. the quantitative results of MEA-DEAB-CO2-H2O system by using pH 

+ NMR combined analysis. Reprinted with permission from ref.84 Copyright 2014 

American Chemical Society.

Trio-amine systems

Researches on the formation of species in trio-amine blends are rather scarce,87 

and only a few examples are found in the literature. 13C NMR technique was adopted 

to analyze CO2 loaded MEA-AMP-PZ samples with different CO2 loadings at 298 K: 

the possible species and the corresponding assignments of 13C peaks were discussed by 

Zhang et al.88 A higher AMP/PZ ratio in this trio-amine blends favors the production 

of more HCO3
− and less carbamate. Moreover, AMP-carbamates were not found during 

the CO2 uptake in any triple-solvent blended systems because the unstable AMP-

carbamates can quickly hydrolyze to produce HCO3
−.
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MEA, MDEA and PZ were selected to chosen to compose a trio-amine blends by 

Zhang et al.89 for CO2 capture and release studies. The possibly produced species shown 

were MEA, MEAH+, MEA-COO−, MDEA, MDEAH+, PZ, PZH+, PZ-COO−, PZ-di-

COO−, HCO3
− and CO3

2−, which were analyzed by 13C NMR technology together with 

pH measurements. The PZH2
2+ ion, containing two positive charges, was not stable and 

its concentration was negligible. 

The ion concentrations changing with the CO2 loadings is plotted in Figure 7.

Figure 7. The speciation results of MEA-MDEA-PZ with various of CO2 

loadings. Reprinted with permission from ref.89 Copyright 2017 ELSEVIER

It has universally been accepted that CO2 desorption mainly entails the 

decomposition of HCO3
− and carbamate ions. Different CO2-rich solutions could be 

expressed by CO2 desorption kinetic model such as Avarami’s fractional-order kinetic 

model which may be the best fitting model. As reported by Liu et al.,90 the curves 

generated from the optimized parameters well fit the experimental data. 7% MEA + 3% 

MDEA + 1% AMP has showed the best performance due to the full interaction between 

amines. The bicarbonate and carbonate ions produced were more than other mixing 

proportions.

All researches mentioned in this section are summarized in Table 2.
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Table 2. Summary of blended amine-CO2-H2O systems 

Type Absorbent Author Technology Contribution
TETA-AMP-
H2O

Liu et al.72 13C NMR The peaks of ions.

MEA-
1DMA2P and 
MEA-MDEA

Zhang et al.65 13C NMR Ions concentration profiles.

MEA-DEAB Yu et al.81 13C NMR Ion speciation plots.

DEEA-MAPA Ciftja et al.82 13C NMR Qualitative and quantitative analysis in a phase-
change sorbent

DETA-
PMDETA Ye et al.83 13C NMR Determination of mechanisms and reaction pathways 

in a phase-change sorbent
MEA-DEAB Shi et al.84 pH + NMR methods Speciation plots.
AMP-PZ Sun et al.85 A hybrid reaction rate model PZ can significantly increase the CO2 absorption rate.
MEA-DEAB Liu et al.87 E-NRTL Governing the complex CO2-amine interactions.

Dual-amine 
systems

MEA-BZA Conway et 
al.86

A modelling tool developed in 
MATLAB Equilibrium behavior.

MEA-AMP-
PZ Zhang et al.88 13C NMR Speciation during the process of CO2 capture.

MEA-MDEA-
PZ Zhang et al.89 13C NMR together with pH method Evaluating possible produced species.Trio-amine 

systems
MEA-MDEA-
AMP Liu et al.90 Avarami’s fractional-order kinetic 

model CO2 desorption kinetic.
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 Nonaqueous systems

In recent years, interest has grown in using nonaqueous amine solutions as 

sorbents for the CO2 capture. The use of organic diluents instead of water redirects the 

reaction between CO2 and amine towards less stable carbonated species: consequently, 

the temperatures required for the regeneration of the absorbent would be lower and the 

total energy required for the process would decrease. At the same time, lower 

desorption temperatures also ensure less amine degradation and evaporation.12, 91-93 

Recently, some common organic diluents including methanol, ethanol, ethylene glycol 

(EG), diethylene glycol (DEG), and triethylene glycol (TEG) have been tested to 

replace water.72 As reported in literature, the greater solubility of CO2 in organic 

diluents compared to water could enhance the CO2 absorption, and the lower vapor 

pressures and heat capacities and of organic diluents with respect to water could reduce 

the heat required for the sorbent regeneration.94, 95 Moreover, organic solvents could 

generally cause less equipment corrosion and avoid foaming problems.94, 96 As new type 

of absorbents, a few models are available to predict their solubility, capacity, 

equilibrium constants, and so on. It should be noted that the pH method cannot be 

applied in systems without water. 

Single nonaqueous organic amines

In TETA-ethanol system, Liu et al.72 replaced water with ethanol and employed 

13C NMR to probe the speciation and reaction mechanism during absorption-desorption 

processes. The carbamates in this solution were detected at 163.8-164.4 ppm while the 

peak at 159.9 ppm did not identify to CO3
2−/HCO3

−, since it could not have formed 

without the presence of water, but rather referred to the alkyl carbonate of C2H5OCO2
−. 
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Alkyl carbonates in different organic diluents are quite unstable species that could be 

generated during the absorption, when CO2 is in significant excess with respect to amine, 

as demonstrated also from a 13C NMR spectroscopic study carried out by Barzagli et 

al.13 As C2H5OCO2
− is an unstable species, it quickly disappears during the desorption 

process; meanwhile, amine carbamates decrease but still exist.72 Solutions of AMP in 

triethylene glycol dimethyl ether (TEGDME) and in N-methyl-2-pyrrolidone (NMP) 

were investigated by Svensson et al.97 A precipitate was formed during these 

experiments which was identified as the AMP carbamate with NMR analysis. The 

formation of the precipitate could increase the absorption capacity and reduce the 

energy requirement. The quantitative 13C NMR analysis has been applied by Chen et 

al.98 to explore the species distribution in 2-(ethylamino) ethanol (EMEA) + ethanol 

solutions. The 13C NMR spectrum for a CO2 loading of 0.547 mol-CO2/mol-amine is 

depicted in Figure 8, and the data obtained referring to the amount of different species 

was plotted in Figure 9 to explain the phenomena appearing in the uptake experiments. 

Further reactions, such as the formation of R1O-CO2
− (from carbamate with CO2) and 

R1NHCH2CH2O-CO2
−

, did not occur, and the final loading value remained low.

Figure 8. The qualitative analysis of CO2-loaded EMEA + ethanol solution (CO2 

loading = 0.547). Reprinted with permission from ref.98 Copyright 2016 ELSEVIER.
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Figure 9. Speciation profile of the CO2 loaded EMEA- ethanol- at 313 K: ■, 

R1R2NCOO−; ●, R1R2NH2
+; ▴, EMEA; ×, R1O-CO2

−.  Reprinted with permission 

from ref.98 Copyright 2016 ELSEVIER.

Barzagli et al.83 investigated some phase-change nonaqueous sorbents, in 

particular the secondary alkanolamines MMEA and EMEA in diethylene glycol diethyl 

ether (DEGDEE) as a diluent. The 13C NMR experiments aimed at determining 

speciation showed that the upper phase was composed by the diluent DEGDEE as well 

as the unreacted free amine (traces), while the lower phase contained the ionic couple 

protonated amine and carbamate (MMEA or EMEA) with a small amount of DEGDEE. 

It is worth noting that tertiary amines cannot be used for single nonaqueous 

systems because they do not form carbamate and cannot produce bicarbonate in the 

absence of water.

Binary non-aqueous organic amines

To further enhance the performance of the absorbents, binary non-aqueous organic 
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amines were studied. Barzagli et al.13, 91, 99 devised a technique for chemical CO2 

capture with non-aqueous AMP-based solvents.  AMP was blended with DEA, 

MDEA, MMEA, EMEA, 2-(isopropylamino)ethanol (IPMEA), 2-

(tertbutylamino)ethanol (TBMEA) and bis(2-hydroxypropyl)amine (DIPA). The 

organic diluents used was 1-propanol, EG and diethylene glycol monomethyl ether 

(DEGMME). 13C NMR analysis was applied to evaluate the distributions of the species 

in these solutions, and the results indicated that CO2 was reversibly captured as mono-

alkyl carbonates, R-OCO2
−, (R = CH3, C2H5, CH2CH2OH, nC3H7), and amine (such as 

MMEA, DEA, DIPA) carbamates. The carbamates of the amine blended with AMP are 

always the prevailing species  compared to alcohol carbonates, while the carbonate 

derivatives of DEGMME was negligible and not detectable. 

The speciation during absorption process in TETA-AMP-ethanol system, 

investigated by Liu et al.72 using 13C NMR, was similar to TETA-ethanol system, 

however both carbamates of TETACO2
− and AMPCO2

− and the alkyl carbonate, 

C2H5OCO2
−, were not found after desorption.

All researches mentioned in this section are listed in Table 3.

Page 34 of 68

ACS Paragon Plus Environment

ACS Sustainable Chemistry & Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



35

Table 3. Summary of nonaqueous systems

Type Absorbent Author Technology Contribution

TETA-ethanol Liu et al.72 13C NMR Probed the speciation and reaction mechanism.

AMP in EG/PrOH or in 

EG/DEGMME
Barzagli et al.13 13C NMR

Observed that alkyl carbonated of different organic 

diluents are quite unstable species.

AMP-NMP or TEGDME Svensson et al.97 13C NMR

Observed that a precipitate was formed during these 

experiments which was identified as the AMP 

carbamate.

EMEA in ethanol Chen et al.98 13C NMR Provided species distribution.

Single 

nonaqueous 

solutions

MMEA or EMEA in DEGDEE Barzagli et al.94 13C NMR Species distribution in phase-change sorbents

AMP blends with DEA, MDEA, 

MMEA, EMEA, IPMEA, TBMEA, 

DIPA in different organic diluents: 

EG, PrOH, DEGMME

Barzagli et al.13, 

91, 99
13C NMR Evaluated the distribution of the species.

Binary 

nonaqueous 

solutions

TETA- AMP in ethanol Liu et al.72 13C NMR Probed the speciation and reaction mechanism.
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 Applicability of reported methods for speciation

NMR spectrometry

NMR experiments

1H and 13C NMR experiments are convenient techniques for qualitative and 

quantitative analysis of amine-CO2-diluent systems. NMR data are provided as spectra 

containing several peaks: the position of the peaks, called chemical shifts, is 

characteristic of the nuclei (of H or C) contained in the compound under examination 

(qualitative information), while the area of the peaks is correlated to the number of 

equivalent nuclei that contribute to the signal (quantitative information). In this way, it 

is possible to characterize and quantitatively evaluate even unknown compounds, 

without the need for standard reference.27 1H NMR spectroscopy is fast and reliable, 

but does not allow to determine some important species, such as carbonate and 

bicarbonate in aqueous solutions. On the contrary, with 13C NMR spectroscopy is 

possible to collect direct information on all the interacting carbon-containing species in 

the systems. Furthermore, 13C NMR is more suitable than 1H NMR to analyze more 

complex organic systems, because 13C NMR operates in a wider spectral range and 

without interferences between the peaks (which are usually present in 1H NMR 

spectra).27 However, 13C NMR analysis requires more measuring time than 1H NMR, 

due to the longer the spin-lattice relaxation time for carbon nuclei compared to 

protons.34 As reported by Perinu et al,27 13C NMR data are particularly suitable for 

determining the species distributions for the study of the reaction mechanisms of CO2 

absorption/desorption processes in amine-based sorbents. 1H NMR data are usually 

combined with 13C data for accurate speciation (rarely the speciation is based only on 
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1H NMR data) or for the development of thermodynamic models. 

The single-pulse NMR sequence is a common choice for 1H NMR experiments, 

while for the acquisition of 13C NMR spectra the pulse sequence with proton decoupling 

and NOE (Nuclear Overhauser Effect) suppression with a 90° pulse angle is widely 

used.27

To improve the accuracy of qualitative and quantitative analyses of each ion, the 

relaxation time (T1) needs to be determined in the NMR experiment of each amine 

solvent. Long enough testing time should be applied to ensure that the peak intensity of 

each possible ion in the sample can be displayed on the spectrogram. As a general 

practice, the delay time between each pulse, as a key parameter in the NMR test, should 

be at least 5×T1 ( where T1 is the  longest relaxation time  of the nuclear spins). 13C 

NMR experiments require long measuring time due to the long relaxation time of the 

carbon atom in carboxyl group (carbamates, carbonates and bicarbonates), generally 

considered in the range 20-30 seconds. Only few T1 values of the different species 

involved in amine-CO2-diluent system are reported in literature. Moreover, Ciftja et 

al.34 observed that the relaxation time for a particular 13C nucleus does not always 

remain the same, but could change from single amine system to blended system, due to 

different chemical environments, such as pH and ionic strength. 

Usually, in 1H/13C NMR spectroscopic analyzes, deuterated water (D2O) and 

hexadecane oxide are applied as solvents. The former is mainly used to lock the field 

of the signal obtained in optical NMR measurements, while the latter is mainly used as 

reference to calibrate the chemical shifts of the obtained carbon spectrum because the 

standard chemical shift of hexadecane oxide in 13C spectrum is 66.79 ppm, as 

previously reported.59 Other referent solvents used are: 1,4-dioxane, acetonitrile, 3-

(trimethylsilyl)-propionic acid sodium salt or tetramethylsilane.92
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Validation of NMR spectrometry

The NMR spectrometry was validated by Zhang et al.65 using 1.5 M aqueous 

DEAB solution as a reference solvent at 297.65 K. A validation, by formulating the 

fresh amine and HCl solution with corresponding protonation ratio, was carried out to 

build the calibration curves for the corresponding carbon atoms. Figure 10 shows the 

experimental results by Zhang et al.65 in comparison with those obtained by Shi et al.100  

The figure reveals that the calibration curves generally agreed with the experimental 

results at 297.65 K, which confirms that the analysis with the NMR spectrometry are 

accurate and reliable.

Figure 10. Validation of NMR analysis in 4-diethylamino-2-butanol (DEAB). 

Adapted with permission from ref.65 Copyright 2016 American Chemical Society.

The total CO2 loading is also determined by HCl titration as a reference of 13C 

NMR method. The HCl titration method for determining the CO2-loading was 

originally proposed by Horwitz et al.101 Moreover, Liu et al.42 predicted the CO2 loading 
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in aqueous 1DMA2P with a tolerable average deviation (AAD) of 9.2%. According to 

the report of Zhang et al.,68 the total CO2 loadings calculated from NMR method 

parallels the results of HCl titration at low loading stage, where the AAD between these 

two techniques is the acceptable value of 1.98%, as presented in Figure 11. 

Figure 11. Comparison of the CO2 loading values between the NMR and HCl 

titration method. Reprinted with permission from ref.68. Copyright 2017 American 

Chemical Society.

NMR analysis assisted with HCl titration

The main ions produced by reactions between the CO2 and aqueous amines are: 

free amines (Am), protonated amines (AmH+), amine carbamates (AmCOO−, for 

primary and secondary amines only), HCO3
− and CO3

2−. The proportions of carbamates, 

bicarbonate, and carbonate can be calculated directly based on the chemical shifts and 

peak areas on the NMR spectra. However, for protonated amines and free amines, extra 

protonation calibration curves and mass balances of amines are required.102 In the 13C 
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NMR spectrum of primary amine-CO2-H2O systems at 293.15 K,65 the ion 

concentrations are calculated with the following equations:103, 104

 (18)
[𝐴𝑚𝐶𝑂𝑂 ― ]

[𝐶𝑂2 ―
3 ] + [𝐻𝐶𝑂 ―

3 ] =
𝑆𝑐𝑎𝑟𝑏𝑎𝑚𝑎𝑡𝑒

[𝑆𝑏𝑖𝑐𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑒 + 𝑐𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑒] = 𝑅

 (19)[𝐴𝑚𝐶𝑂𝑂 ― ] =
𝑅

1 + 𝑅[𝐶𝑂2]0

 (20)[𝐶𝑂2 ―
3 ] =

(𝛿 ― 161.45)
(168.03 ― 161.45)(1 + 𝑅)[𝐶𝑂2]0

 (21)[𝐻𝐶𝑂 ―
3 ] =

(168.03 ― 𝛿)
(168.03 ― 161.45)(1 + 𝑅)[𝐶𝑂2]0

δ denotes the chemical shift of fast exchanging bicarbonate/carbonate (a single 

peak for the two species), 168.03 and 161.45 ppm represent  the chemical shifts of 

CO3
2− and HCO3

−, respectively, which are in agreement with the conclusions obtained 

by Jakobsen et al.59 also from 13C NMR analysis, within an absolute deviation of 0.27%. 

[CO2]0 is the CO2 capacity (mol) in 1L solution. Scarbamate and Sbicarbonate+carbonate represent 

the peak integration of carbamate and of the total value of CO3
2− and HCO3

−, 

respectively, in the 13C NMR spectrum. The [CO2]0 can be calculated from Eq. 22; 

meanwhile, the concentration of amine and CO2 loading were calibrated with 1 mol/L 

HCl solution.105

 (22)[𝐶𝑂2]0 = 𝐶𝑎𝑚𝑖𝑛𝑒 × 𝛼

 (23)α =
𝑉 ― 𝑉𝐻𝐶𝐿

22.4 × 𝐶𝑎𝑚𝑖𝑛𝑒
×

273.15
273.15 + 𝑇

where , V, VHCl, T and Camine represent the CO2 loading (mol /mol), volume change α

of trachea (mL), HCl solution volume change (mL), room temperature (℃) and amine 

solution concentration (mol/L), respectively.

Once the concentration of amine and CO2 loading were calibrated, the 

concentrations of ions can be calculated from Eqs. 18 - 21 together with the chemical 

shifts and peak areas in 13C NMR spectra. Because few carbonate and bicarbonate ions 
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are produced at low CO2 loading, the 13C intensities of carbonate and bicarbonate are 

not detectable, so the concentrations in the blended system can be calculated with Eqs. 

24 and 25. 

 (24)[𝐴𝑚𝐻 + ] + [𝐻 + ] = [𝐻𝐶𝑂 ―
3 ] +2[𝐶𝑂2 ―

3 ] + [O𝐻 ― ]

 (25)[𝑀𝐸𝐴𝐶𝑂𝑂 ― ] + [𝐻𝐶𝑂 ―
3 ] + [𝐶𝑂2 ―

3 ] = [𝐶𝑂2]0

Quantification of NMR analysis from carbon classification

The relative amount of the different species in solution can be quantitatively 

calculated from 13C NMR spectrum. Possible ions in MEA- CO2-H2O system, for 

example, can be classified as in Figure 12a. The peak intensities vary with the related 

ion concentrations, which are shown in Figure 12b and 12c. The peak area of each 

aliphatic carbon or carbonyl carbon of corresponding species can be used to determine 

its ratio (mol species/mol amine). In practice, because of the errors caused by peak area 

integral, deviations should be considered. Therefore, to avoid this error and improve 

the accuracy of the quantification, the average of peak areas ((a+a'+b+b')/2) is used as 

denominator to calculate the relative concentrations of ions (mol species/mol amine), 

as shown in Eqs. 26 – 28: 68

 (26)[𝐻𝐶𝑂 ―
3 /𝐶𝑂2 ―

3 ] =
𝑑

(𝑎 + 𝑎′ + 𝑏 + 𝑏′)/2

 (27)[𝑀𝐸𝐴𝐶𝑂𝑂 ― ] =
(𝑎′ + 𝑏′)/2

(𝑎 + 𝑎′ + 𝑏 + 𝑏′)/2

 (28)[𝐶𝑂2]0 =
𝑑

(𝑎 + 𝑎′ + 𝑏 + 𝑏′)/2 +
(𝑎′ + 𝑏′)/2

(𝑎 + 𝑎′ + 𝑏 + 𝑏′)/2

When CO2 completely reacts with amine, it exists in the forms of MEACOO−, HCO3
−, 

and CO3
2−. Therefore, the total CO2 loading in solution should be sum of these three 

ions, as showed by Eq. 28.
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Figure 12. (a) Possible ion classes in CO2-MEA-H2O system, (b) stacked 13C 

NMR and (c) stacked 1H NMR spectrum of the CO2-MEA-H2O system. Reprinted 

with permission from ref.68 Copyright 2017 American Chemical Society.

The results calculated from 13C spectrum (Figure 12b) and 1H (Figure 12c) should 

match each other. Moreover, the accuracy of CO2 loading calculated from Eq. 28 can 

be validated by HCl titration as well.

The qualitative and quantitative studies of the peak intensities of the ions on NMR 

spectra mainly depend on the following factors:

a) For the same amine, the peaks of protonated and free amines overlap on 13C 

NMR spectrum with the peak area decreasing with the increases of CO2 loading.

b) Due to the fast proton transferring reaction between the CO3
2− and HCO3

−, 

there is only one single peak between 161 and 169 ppm in the 13C NMR spectra 

representing the total amount of both of above ions. This peak shifts downward 

obviously while the peak area increases gradually with the increasing of CO2 loading 

in the solution.

c) The peak intensity of carbamate is in the low field of 13C NMR spectrum, and 
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its chemical shift always locates at the same position for the same amine, without 

correlation with the CO2 loading.59

Calibration curves

The calibration was applied to calculate the exact protonation ratio of the free and 

protonated amines. Zhang et al.65 and Shi et al.100, 102 employed DEAB to build the 

calibration equations respecting that the chemical shifts (δ) of amines will moves either 

up- or down-field with different protonation stage.106 A specific calibration method, 

based on DEAB and 13C chemical shifts of MEA, was used by Liang et al.59 Here we 

report their careful description. Ten tubes containing protonated samples were used 

with mole ratios of HCl: MEA = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0, 

respectively. Those ratios were confirmed by titration with standard known 

concentration of HCl solution. The prepared standard samples were tested at a certain 

temperature by 13C NMR to get their chemical shifts. Then calibration curves were 

obtained by taking protonation rates as abscissa and chemical displacements as ordinate. 

The protonation ratios (H+/amine) of amine samples could be calculated from the 

calibration curves using interpolation based on the chemical shifts δ of the selected 

carbon atom on 13C NMR spectrum.

Calibration curves demonstrate a slightly different for the tested amines at 

different temperature as the different δ (ppm) obtained. Although these changes are 

small, they can still affect the accuracy of 13C NMR analytic results.84 In a more 

complex system, the application of NMR analysis is illustrated carefully by Shi et al.84 
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pH + NMR combination

Validation of pH + NMR methods

The ion concentrations measured with pH meter matched those analyzed by NMR 

exploiting the experimental results of Shi et al.,102 as shown in Figure 13. Therefore, it 

was confirmed that the ions speciation obtained from the pH measurement are reliable 

and accurate .

Figure 13. Comparison of the speciation between the pH method and NMR 

technology. Reprinted with permission from ref.102 Copyright 2015 American 

Chemical Society.

The concentrations of free/protonated amines and HCO3
−/ CO3

2− are calculated 

from pH measurement by means of reaction equilibrium constants K,59 while the 

concentrations of  HCO3
−, CO3

2−  and carbamate, are calculated from NMR 

analysis.84 Thus, all ion concentrations can be calculated by combining the two 

techniques. The advantage of this binary method is that it is unnecessary to establish 
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protonation calibration curves to get all main ion’s concentration.84, 107

Calculation methodology using pH + NMR combination

In this section, the tertiary amine 1DMA2P has been taken as an example42 to 

explain pH + NMR combination, the reactions involved in the CO2 capture with 

aqueous 1DMA2P are as follows:

 (29)1DMA2P + 𝐻 + 𝐾1
1𝐷𝑀𝐴2𝑃𝐻 +

 (30)𝐶𝑂2 +1DMA2P + 𝐻2𝑂
𝐾2

1𝐷𝑀𝐴2𝑃𝐻 + +𝐻𝐶𝑂 ―
3

 (31)𝐻2𝑂 + 𝐶𝑂2
𝐾3

𝐻 + +𝐻𝐶𝑂 ―
3

 (32)𝐶𝑂2 +O𝐻 ― 𝐾4
 𝐻𝐶𝑂 ―

3

 (33)𝐻𝐶𝑂 ―
3

𝐾5
𝐻 + +𝐶𝑂2 ―

3

 (34)𝐻2𝑂
𝐾6

𝐻 + +O𝐻 ―

where Ki represents the equilibrium constant of reaction i, and the H+ concentration can 

be calculated using Eq. 1, from the pH value.

The K-E model43 has been widely used to predict the VLE data in amine-H2O-CO2 

systems.108, 109 This model suggests that the Ki for each reaction can be expressed as 

follows:43, 110

 (35)𝐾1 =
[1𝐷𝑀𝐴2𝑃][𝐻 + ]
[1𝐷𝑀𝐴2𝑃𝐻 + ] = 𝑒𝑥𝑝( ―7.11 ―

4390
𝑇 ) = 𝑓(𝑇)

𝐾5 =
[𝐶𝑂2 ―

3 ][𝐻 + ]
[𝐻𝐶𝑂 ―

3 ] = 𝑒𝑥𝑝

 (36)( ―294.74 +
36.4385 × 104

𝑇 ―
1.84157 × 108

𝑇2 +
0.41579 × 1011

𝑇3 ―
0.354291 × 1013

𝑇4 ) = 𝑓(𝑇)

𝐾6 = [𝑂𝐻 ― ][𝐻 + ] = 𝑒𝑥𝑝

 (37)(39.5554 ―
9.879 × 104

𝑇 +
0.568827 × 108

𝑇2 ―
0.146451 × 1011

𝑇3 +
0.136145 × 1013

𝑇4 ) = 𝑓(𝑇)

In addition, the mass balance and the charge balance in the system cannot be 
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neglected in a amine system,111 Eq. 38-40 present the balance equations for 1DMA2P 

system:

Total amine balance:

 (38)[1DMA2P]0 = [1DMA2P] + [1DMA2P𝐻 + ]

Charge balance:

 (39)[1DMA2P𝐻 + ] + [𝐻 + ] = [𝐻𝐶𝑂 ―
3 ] + [𝑂𝐻 ― ] +2[𝐶𝑂2 ―

3 ]

Total carbon balance:

 (40)𝛼 × [1DMA2P]0 = [𝐶𝑂2(𝑎𝑞)] + [𝐻𝐶𝑂 ―
3 ] + [𝐶𝑂2 ―

3 ]

where , α and  represents the initial amine concentration, CO2 [1DMA2P]0 [𝐶𝑂2(𝑎𝑞)]

loading, and the CO2 solubility.

Based on the equations 35-40, the main species’ concentration in the system can 

be calculated as below:42

 (41)[1DMA2P]0 = 𝑓(𝐶)

 (42)[1DMA2P] =
[1DMA2P]0𝐾1

[𝐻 + ] + 1 = 𝑓(𝐶,𝑇,𝑝𝐻)

 (43)[1DMA2P𝐻 + ] =
[1DMA2P]0[𝐻 + ]

[𝐻 + ] + 𝐾1
 = 𝑓(𝐶,𝑇,𝑝𝐻)

 [𝐻𝐶𝑂 ―
3 ] =

[1DMA2P]0[𝐻 + ]2 + [𝐻 + ]2([𝐻 + ] + 𝐾1) + 𝐾6([𝐻 + ] + 𝐾1)
[𝐻 + ]([𝐻 + ] + 𝐾1) ×

[𝐻 + ]
2𝐾5 + [𝐻 + ] = 𝑓(𝐶,𝑇,𝑝𝐻)

(44)

[𝐶𝑂2 ―
3 ] =

[1DMA2P]0[𝐻 + ]2 + [𝐻 + ]2([𝐻 + ]𝐾1) + 𝐾6([𝐻 + ] + 𝐾1)
[𝐻 + ]([𝐻 + ] + 𝐾1) ×

[𝐻 + ]
2𝐾5 + [𝐻 + ] ×

𝐾5

[𝐻 + ] = 𝑓

 (45)(𝐶,𝑇,𝑝𝐻)

As described previous equations, ion concentrations depend on  temperature, 

initial amine concentration, and the pH. As for the concentration of carbamate, NMR 

spectroscopy is useful as has been discussed above.

Page 46 of 68

ACS Paragon Plus Environment

ACS Sustainable Chemistry & Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



47

Model predictions

Prediction using the K-E model can be illustrated by 1DMA2P-H2O-CO2 system 

as an example.66 The related equilibrium constants for reactions 29 - 34, can be 

determined as below:

 (46)𝐾1 =
[1𝐷𝑀𝐴2𝑃𝐻 + ]

[1𝐷𝑀𝐴2𝑃][𝐻 + ] =
𝐾2

𝐾3

 (47)𝐾2 =
[1𝐷𝑀𝐴2𝑃𝐻 + ][𝐻𝐶𝑂 ―

3 ]
[𝐶𝑂2(𝑎𝑞)][1𝐷𝑀𝐴2𝑃]

 (48)𝐾3 =
[𝐻 + ][𝐻𝐶𝑂 ―

3 ]
[𝐶𝑂2(𝑎𝑞)]

 (49)𝐾4 =
[𝐻𝐶𝑂 ―

3 ]
[𝐶𝑂2(𝑎𝑞)][𝑂𝐻 ― ] =

𝐾3

𝐾1𝐾6

 (50)𝐾5 =
[𝐻 + ][𝐶𝑂2 ―

3 ]
[𝐻𝐶𝑂 ―

3 ]

 (51)𝐾6 = [𝐻 + ][𝑂𝐻 ― ]

Independent correlations exist among the four K2, K3, K5 and K6, while K1 and K4 

can be calculated by solving the above equations. Besides above, the  [𝐶𝑂2(𝑎𝑞)]

normally can be determined by using the Eq.52. 

 (52)𝑃𝐶𝑂2
= 𝐻𝑒𝐶𝑂2

[𝐶𝑂2(𝑎𝑞)]

where  is the CO2 partial pressure, and  represents the Henry’s law 𝑃𝐶𝑂2
𝐻𝑒𝐶𝑂2

constant. The  is the constant of proportionality between absorbed phase and gas 𝐻𝑒𝐶𝑂2

phase concentrations, as a function of temperature112 . The constants of K3
112, K5

112, 

K6
112 and HeCO2

43 within the 1DMA2P-H2O-CO2 system can also be calculated with 

the K-E model. The correlation constant K2 plays an important role in predicting the 

CO2 equilibrium solubility while it can be expressed as Eq. 53:

 (53)𝐾2 = 𝑒𝑥𝑝(𝐴 +
𝐵
𝑇 +

𝐶
𝑇2 +

𝐷
𝑇3 +

𝐸
𝑇4)

The factors (A – E) for 1DMA2P-CO2-H2O system are listed in Table 4. 

Page 47 of 68

ACS Paragon Plus Environment

ACS Sustainable Chemistry & Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



48

Table 4. Factors applied for K-E model. Reprinted from ref.66 Copyright 2017 

ELSEVIER.

Factors A B C D E

value -18.41±1.35 -5291±15 -32.95±2.43 0.7903±0.0204 0.05096±0.00123

 Summary and outlooks

In the present review three of the most popular techniques for the speciation 

analysis of amine-CO2-diluent systems, namely NMR spectroscopy, pH + NMR 

combination and model predictions, have been critically discussed and compared. 

1H NMR peaks overlap in most samples, and hence it is difficult to quantify 

different species by means of 1H NMR, while 13C NMR can be used to quantify most 

species in a great variety of systems.33, 113 However, this method consumes much longer 

analytical time compared to 1H, because of the poor abundance of isotopic 13C and the 

much longer spin-lattice (or longitudinal) relaxation time of different carbon atoms in 

a molecule (in particular, carbon atom in carboxyl group) .104 Nevertheless, the 13C 

NMR analysis is rather feasible in identifying and quantifying the carbonated species 

in aqueous and nonaqueous solution.114 Furthermore, carbamate peaks can be easily 

located in 13C NMR spectra because their chemical shifts shows almost no changes as 

the CO2 loading increased. On the contrary, the NMR chemical shifts of 1H signals for 

all species in the system vary a lot even within the same process.104 By comparing the 

NMR analysis methods, the NMR analysis assisted with HCl titration has lager errors 

caused by the titration of CO2 loading, but it is more established. On the other hand, the 

NMR analysis via carbon classification designed to calculate the relative amounts of 
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ions has higher accuracy, but the concentrations of carbonate and bicarbonate cannot 

be calculated separately. Nevertheless, both NMR analysis methods need protonation 

calibration curves and mass balances to calculate the concentrations of protonated and 

free amines. Without the aid of the pH measurement, NMR technique cannot provide 

accurate ion speciation as evidenced by Jakobsen et al.59 and Böttinger et al.49

The pH + NMR combination, which has been frequently applied to investigate the 

VLE profile, exhibits several advantages including not needing to establish protonation 

calibration curves to get concentrations of all main ions, thus simplifying the operation. 

In contrast, its applicability for a restricted range of operating temperatures (293∼308 

K)42 represents a limitation of which the NMR analysis is not affected. Furthermore, 

this technique cannot be applied with nonaqueous systems.

The K-E model43 is considered as a simple model depending only on 

temperature115 and it is applied to different systems with good predictions. This model, 

however, works well only within the given experimental conditions while extrapolating 

to higher pressure or temperature may lead to significant error due to the increasing 

system nonideality. When the system is not taken as ideal solution, activity coefficients 

which account for solution nonideality are needed. For the purpose, the E-NRTL model 

and the extended UNIQUAC in this case are applied to obtain accurate prediction.60, 116, 

117 Austgen et al.118, 119 proposed a thermodynamic model to correlate the equilibrium 

constant to solubility of acid gas. Similar to the K-E model, the Austgen model only 

varies equilibrium constant with temperature. The Li-Shen to model115 express 

equilibrium constant as a function of amine concentration, CO2 loading, and 

temperature can also be applied to correlate the solubility of CO2. Based on this model, 

Hu and Chakma120, 121 further proposed a modified mathematical model in which the 

temperature, the free amine concentration, and the concentration of the gas in the liquid 
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phase are all considered. Counting the physical solubility of CO2 in 1DMA2P instead 

of the CO2 loading amount might be the reason for the lower deviation of Hu-Chakma 

modelling.66 

In the present review, many experimental data relating to different amine-CO2-

diluent systems have been reported: these confirm that the three techniques can be 

successfully applied to provide information on speciation in solution. In simple amine-

CO2-H2O system, employing the NMR analysis with carbon classification is the most 

effective in calculating the proportion of ions. However, for complex systems, the 

situation at hand will dictate the appropriate methodology.
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 Acronyms

1DMA2P = 1-dimethylamino-2-propanol

2MPZ = 2-methylpiperazine

4-A1MPD = 1-methylpiperidine

4-A1PPD = 4-amino-1-propylpiperidine

4-AMTHP = 4-aminomethyltetrahydropyran

AMP = 2-amino-2-methyl-1-propanol

BZA = benzylamine

DEA = diethanolamine

DEAB = 4-diethylamino-2-butanol

DEAPA = 3-diethylaminopropylamine

DEEA = diethyl ethanolamine

DEGDEE = diethylene glycol diethyl ether

DEGMME = diethylene glycol monomethyl ether

DETA = diethylenetriamine

DIPA = bis(2-hydroxypropyl) amine

DMAEA = 2-Dimethylaminoethylamine

DMAPA = 3-Dimethylaminopropylamine

EMEA = 2-(ethylamino) ethanol

IPMEA = 2-(isopropylamino)ethanol
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MAPA = N'-Methylpropane-1,3-diamine

MEA = monoethanolamine

MEDA = N-Methylethylenediamine

MMEA = 2-(methylamino)ethanol

MDEA = methyl diethanolamine

N, N-DM12EDA = N, N-dimethyl-1,2-ethanediamine

N, NDM13PDA = N, N-dimethyl-1,3-propanediamine

PMDETA = N,N,N’,N’,N’’-pentamethyldiethylenetriamine

PZ = Piperazine

TBMEA = 2-(tertbutylamino)ethanol

TETA = triethylenetetramine
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