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Optimal control of an Allen-Cahn

equation with singular potentials

and dynamic boundary condition

Pierluigi Colli1 and Jürgen Sprekels2

Abstract

In this paper, we investigate optimal control problems for Allen-Cahn equations with
singular nonlinearities and a dynamic boundary condition involving singular non-
linearities and the Laplace-Beltrami operator. The approach covers both the cases
of distributed controls and of boundary controls. The cost functional is of standard
tracking type, and box constraints for the controls are prescribed. Parabolic prob-
lems with nonlinear dynamic boundary conditions involving the Laplace-Beltrami
operation have recently drawn increasing attention due to their importance in ap-
plications, while their optimal control was apparently never studied before. In this
paper, we first extend known well-posedness and regularity results for the state equa-
tion and then show the existence of optimal controls and that the control-to-state
mapping is twice continuously Fréchet differentiable between appropriate function
spaces. Based on these results, we establish the first-order necessary optimality
conditions in terms of a variational inequality and the adjoint state equation, and
we prove second-order sufficient optimality conditions.

1 Introduction

Let Ω ⊂ IRN , 2 ≤ N ≤ 3 , denote some open and bounded domain with smooth boundary
Γ and outward unit normal n , and let T > 0 be a given final time. We put Q := Ω×(0, T )
and Σ := Γ× (0, T ) , and we assume that βi ≥ 0 , 1 ≤ i ≤ 6 , are given constants which
do not all vanish. Moreover, we assume:
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2 Optimal control of an Allen-Cahn equation

(A1) There are given functions

zQ ∈ L2(Q), zΣ ∈ L2(Σ), zT ∈ H1(Ω), zΓ,T ∈ H1(Γ),

ũ1, ũ2 ∈ L∞(Q) with ũ1 ≤ ũ2 a. e. in Q,

ũ1Γ, ũ2Γ ∈ L∞(Σ) with ũ1Γ ≤ ũ2Γ a. e. in Σ .

We then consider the following (tracking type) optimal control problem:

(CP) Minimize

J((y, yΓ), (u, uΓ)) :=
β1
2

∫ T

0

∫

Ω

|y − zQ|2 dx dt +
β2
2

∫ T

0

∫

Γ

|yΓ − zΣ|2 dΓ dt

+
β3
2

∫

Ω

|y(·, T )− zT |2 dx +
β4
2

∫

Γ

|yΓ(·, T )− zΓ,T |2 dΓ

+
β5
2

∫ T

0

∫

Ω

|u|2 dx dt + β6
2

∫ T

0

∫

Γ

|uΓ|2 dΓ dt (1.1)

subject to the parabolic initial-boundary value problem with nonlinear dynamic boundary
condition

yt −∆y + f ′(y) = u a. e. in Q, (1.2)

∂tyΓ −∆ΓyΓ + ∂
n
y + g′(yΓ) = uΓ, y|Γ = yΓ, a. e. in Σ, (1.3)

y(·, 0) = y0 a. e. in Ω, yΓ(·, 0) = y0Γ a. e. on Γ, (1.4)

and to the control constraints

(u, uΓ) ∈ Uad :=
{
(w,wΓ) ∈ L2(Q)× L2(Σ) :

ũ1 ≤ w ≤ ũ2 a. e. in Q, ũ1Γ ≤ wΓ ≤ ũ2Γ a. e. in Σ } . (1.5)

Here, y0 and y0Γ are given initial data, ∆Γ is the Laplace-Beltrami operator on Γ, and
the functions f , g are given nonlinearities, while u , uΓ play the roles of distributed or
boundary controls, respectively. Note that we do not require uΓ to be somehow the
restriction of u on Γ; such a requirement would be much too restrictive for a control to
satisfy.
We remark at this place that for the cost functional to be meaningful it would suffice to
only assume that zT ∈ L2(Ω) and zΓ,T ∈ L2(Γ) . However, the higher regularity of zT
and zΓT

requested in (A1) will later be essential to be able to treat the adjoint state
problem.
The system (1.2)–(1.4) is an initial-boundary value problem with nonlinear dynamic
boundary condition for an Allen-Cahn equation. In this connection, the unknown y
usually stands for the order parameter of an isothermal phase transition, typically the
fraction of one of the involved phases. In such a situation it is physically meaningful to
require y to attain values in the interval [0, 1] on both Ω and Γ. A standard technique to
meet this requirement is to postulate that the first derivatives of the bulk potential f and
of the surface potential g become singular at 0 and at 1. A typical form for such a poten-
tial is f = f1+ f2 , where f2 is smooth on [0, 1] and f1(y) = α [y ln(y)+ (1− y) ln(1− y)]
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with some α > 0 . Another possibility is to choose f1 as the indicator function I[0,1] of
the interval [0, 1] ; in this case f ′

1 has to be replaced by the subdifferential ∂I[0,1] , and
f becomes a double obstacle potential. In this case, (1.2) has to be understood as a dif-
ferential inclusion or variational inequality. Similar choices can be made for the surface
potential g .

There exists a vast literature on the well-posedness and asymptotic behaviour of the Allen-
Cahn equation with the no-flux boundary condition ∂

n
y = 0 in place of (1.3). Also, the

well-posedness and asymptotic behavior of the system (1.2)–(1.4) has been the subject of
numerous papers (see [3] and the many references given there).

Moreover, distributed and boundary control problems for the Allen-Cahn equation with
no-flux boundary conditions or boundary conditions of the third kind have been studied
in a number of recent papers, in particular, for the case of the double obstacle potential.
In this connection, we refer to [5] and [6]. Associated stationary, that is, elliptic MPEC
problems have been studied in [9] (see also the monograph [14]), and the related Cahn-
Hilliard case was recently analyzed in [10]. We also like mention the works [7], [8], [12]
that treated optimal control problems for the Caginalp-type temperature-dependent gen-
eralization of the Allen-Cahn equation in the case of nonsingular potentials and standard
boundary conditions; a thermodynamically consistent temperature-dependent model with
singular potential of the above logarithmic type was the subject of [13].

The main novelty of the present paper is to study optimal control problems with singular
potentials of the logarithmic type and dynamic boundary conditions of the form (1.3).
In fact, while various types of dynamic boundary conditions have already been studied
in connection with optimal control theory (see [11], for a recent example), it seems that
dynamic boundary conditions involving the Laplace-Beltrami operator have not been
considered before. One of the difficulties is that from the viewpoint of optimal control it
does not make sense to postulate that the controls u and uΓ satisfy u|Γ = uΓ .

The paper is organized as follows: in Section 2, we give a precise statement of the problem
under investigation, and we derive some results concerning the state system (1.2)–(1.4)
and a certain linear counterpart, which will be employed repeatedly in the later analysis.
In Section 3, we then treat the optimal control problem, proving the existence of optimal
controls and deriving the first-order necessary and the second-order sufficient optimality
conditions. During the course of this analysis, we will make repeated use of the elementary
Young’s inequality

a b ≤ γ|a|2 +
1

4γ
|b|2 ∀ a, b ∈ IR ∀ γ > 0,

of Hölder’s inequality, and of the fact that we have the continuous embeddings H1(Ω) ⊂
Lp(Ω) , for 1 ≤ p ≤ 6 , and H2(Ω) ⊂ L∞(Ω) in three dimensions of space. In particular,
we have

‖v‖Lp(Ω) ≤ C̃p ‖v‖H1(Ω) ∀ v ∈ H1(Ω), (1.6)

‖v‖L∞(Ω) ≤ C̃∞ ‖v‖H2(Ω) ∀ v ∈ H2(Ω), (1.7)

with positive constants C̃p , 1 ≤ p ≤ ∞ , that only depend on Ω.
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4 Optimal control of an Allen-Cahn equation

2 General assumptions and the state equation

In this section, we formulate the general assumptions of the paper, and we state some
results for the state system (1.2)-(1.4). To this end, we introduce the function spaces

H := L2(Ω), V := H1(Ω), HΓ := L2(Γ), VΓ := H1(Γ),

H := L2(Q)× L2(Σ), X := L∞(Q)× L∞(Σ),

Y :=
{
(y, yΓ) : y ∈ H1(0, T ;H) ∩ C0([0, T ];V ) ∩ L2(0, T ;H2(Ω)),

yΓ ∈ H1(0, T ;HΓ) ∩ C0([0, T ];VΓ) ∩ L2(0, T ;H2(Γ)), yΓ = y|Γ
}
, (2.1)

which are Banach spaces when endowed with their natural norms. In the following, we
denote the norm in a Banach space E by ‖ · ‖E ; for convenience, the norm of the space
H × H ×H will also be denoted by ‖ · ‖H . Identifying H with its dual space H∗ , we
have the Hilbert triplet V ⊂ H ⊂ V ∗ , with dense and compact embeddings. Analogously,
we obtain the triplet VΓ ⊂ HΓ ⊂ V ∗

Γ , with dense and compact embeddings. We make the
following general assumptions:

(A2) f = f1+ f2 and g = g1+ g2 , where f2, g2 ∈ C3[0, 1] , and where f1, g1 ∈ C3(0, 1)
are convex and satisfy the following conditions:

lim
rց0

f ′
1(r) = lim

rց0
g′1(r) = −∞ , lim

rր1
f ′
1(r) = lim

rր1
g′1(r) = +∞ . (2.2)

∃ M1 ≥ 0, M2 > 0 such that |f ′
1(r)| ≤ M1 +M2 |g′1(r)| ∀ r ∈ (0, 1). (2.3)

(A3) y0 ∈ V , y0Γ ∈ VΓ , and we have f1(y0) ∈ L1(Ω) , g1(y0Γ) ∈ L1(Γ) , and

0 < y0 < 1 a. e. in Ω, 0 < y0Γ < 1 a. e. on Γ . (2.4)

Remark 1: The condition (2.2) is obviously satisfied if f1 and g1 are potentials of
logarithmic type as those mentioned in Section 1, while (2.3) is needed for the existence
result from [3] that will be used below.

To simplify notation, in the following we will denote the trace y|Γ (if it exists) of a function
y on Γ by yΓ without further comment. Now observe that set Uad is a bounded subset
of X . Hence, there exists a bounded open ball in X that contains Uad . For later use it
is convenient to fix such a ball once and for all, noting that any other such ball could be
used instead. In this sense, the following assumption is rather a denotation:

(A4) U is a nonempty open and bounded subset of X containing Uad , and the constant
R > 0 satisfies

‖u‖L∞(Q) + ‖uΓ‖L∞(Σ) ≤ R ∀ (u, uΓ) ∈ U . (2.5)

The following result follows as a special case from [3, Theorems 2.3–2.5 and Remark 4.5]
if one puts (in the notation of [3]) β = f ′

1 , βΓ = g′1 , π = f ′
2 , πΓ = g2 there.
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Theorem 2.1 Suppose that the general assumptions (A2), (A3) are satisfied. Then we
have:
(i) The state system (1.2)–(1.4) has for any pair (u, uΓ) ∈ H a unique solution (y, yΓ) ∈ Y
such that

0 < y < 1 a. e. in Q, 0 < y0Γ < 1 a. e. on Σ .

(ii) Suppose that also (A4) is fulfilled. Then there is a positive constant K∗
1 , which only

depends on Ω , T , y0 , y0Γ , f , g , and R , such that for every (u, uΓ) ∈ U the associated
solution (y, yΓ) ∈ Y satisfies

‖(y, yΓ)‖Y = ‖y‖H1(0,T ;H)∩C0([0,T ];V )∩L2(0,T ;H2(Ω))

+ ‖yΓ‖H1(0,T ;HΓ)∩C0([0,T ];VΓ)∩L2(0,T ;H2(Γ)) ≤ K∗
1 , (2.6)

‖f ′(y)‖L2(0,T ;H) + ‖g′(yΓ)‖L2(0,T ;HΓ) ≤ K∗
1 . (2.7)

Moreover, there is a positive constant K∗
2 , which only depends on Ω , T , y0 , y0Γ , f ,

g , and R , such that the following holds: whenever (u1, u1Γ), (u2, u2Γ) ∈ U are given and
(y1, y1Γ), (y2, y2Γ) ∈ Y denote the associated solutions of the state system, then we have

‖y1 − y2‖2C0([0,T ];H) + ‖∇(y1 − y2)‖2L2(Q) + ‖y1Γ − y2Γ‖2C0([0,T ];HΓ)

+ ‖∇Γ(y1Γ − y2Γ)‖2L2(Σ)

≤ K∗
2

{
‖u1 − u2‖2L2(0,T ;H) + ‖u1Γ − u2Γ‖2L2(0,T ;HΓ)

}
. (2.8)

Remark 2: (i) It follows from Theorem 2.1, in particular, that the control-to-state
mapping S , (u, uΓ) 7→ S(u, uΓ) := (y, yΓ) is well defined as a mapping from X into Y ;
moreover, S is Lipschitz continuous when viewed as a mapping from the subset U of H
into the space

(
C0([0, T ];H) ∩ L2(0, T ;V )

)
×
(
C0([0, T ];HΓ) ∩ L2(0, T ;VΓ)

)
.

(ii) Observe that we cannot expect y to be continuous in Q , since both ∂tyΓ and
∆ΓyΓ only belong to L2(Σ) , so that also only ∂

n
yΓ ∈ L2(Σ) . However, we have y ∈

L2(0, T ;C0(Ω)) and yΓ ∈ L2(0, T ;C0(Γ)) .

The next result is concerned with a linear problem with dynamic boundary condition. It
will later be needed to ensure the solvability of a number of linearized systems.

Theorem 2.2 Suppose that functions (u, uΓ) ∈ H , c1 ∈ L∞(Q) , c2 ∈ L∞(Σ) , w0 ∈
H1(Ω) , and w0Γ ∈ H1(Γ) are given. Then we have:
(i) The linear initial-boundary value problem

wt −∆w + c1(x, t)w = u a. e. in Q, (2.9)

∂
n
w + ∂twΓ −∆ΓwΓ + c2(x, t)wΓ = uΓ a. e. on Σ, (2.10)

w( · , 0) = w0 a. e. in Ω, wΓ( · , 0) = w0Γ a. e. on Γ, (2.11)

has a unique solution (w,wΓ) ∈ Y .
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(ii) There exists a constant Ĉ > 0 , which only depends on Ω , T , ‖c1‖L∞(Q) , and
‖c2‖L∞(Σ) , such the the following holds: whenever w0 = 0 and w0Γ = 0 then

‖(w,wΓ)‖Y ≤ Ĉ ‖(u, uΓ)‖H . (2.12)

Proof: We put β(w) := βΓ(w) := w and define the operators

Π(w)(x, t) := c1(x, t)w(x, t)− w(x, t), ΠΓ(wΓ)(x, t) := c2(x, t)wΓ(x, t)− wΓ(x, t).

With these definitions, we may rewrite the equations (2.9) and (2.10) in the form

wt −∆w + β(w) + Π(w) = u, (2.13)

∂
n
w + ∂twΓ −∆ΓwΓ + βΓ(wΓ) + ΠΓ(wΓ) = uΓ, (2.14)

respectively. Since the functions β and βΓ are strictly monotone increasing in IR, the
system (2.11), (2.13), (2.14) has almost the same form as the system considered in Theo-
rem 2.5 in [3], the only difference being that here Π,ΠΓ are linear and continuous operators
while π, πΓ in [3] were Lipschitz continuous functions. However, a closer inspection of
the proof of Theorem 2.5 in [3] reveals that the argumentation used there carries over
to the present situation with only minor and obvious modifications. Hence, the asserted
existence result is valid.
Now let w0 = 0 and w0Γ = 0. In the following, we denote by Ci , i ∈ IN, positive
constants that only depend on the quantities mentioned in the assertion of (ii). Testing
(2.13) by wt yields for every t ∈ (0, T ] the inequality

∫ t

0

∫

Ω

w2
t dx dt +

1

2
‖w(t)‖2V +

∫ t

0

∫

Γ

|∂twΓ|2 dΓ dt +
1

2
‖wΓ(t)‖2VΓ

≤
∫ t

0

∫

Ω

((|c1|+ 1)|w| + |u|) |wt| dx dt +
∫ t

0

∫

Γ

((|c2|+ 1)|wΓ| + |uΓ|) |∂twΓ| dΓdt ,

whence, using Young’s inequality and the fact that c1 ∈ L∞(Q) and c2 ∈ L∞(Σ) , we
obtain

∫ t

0

∫

Ω

w2
t dx dt + ‖w(t)‖2V +

∫ t

0

∫

Γ

|∂twΓ|2 dΓdt + ‖wΓ(t)‖2VΓ

≤ C1

(∫ t

0

∫

Ω

(|w|2 + |u|2) dx dt +
∫ t

0

∫

Γ

(|wΓ|2 + |uΓ|2) dΓ dt
)
.

Gronwall’s lemma then yields that

‖w‖H1(0,T ;H)∩C0([0,T ];V ) + ‖wΓ‖H1(0,T ;HΓ)∩C0([0,T ];VΓ) ≤ C2 ‖(u, uΓ)‖H . (2.15)

Next, a comparison argument in (2.9) shows that also

‖∆w‖L2(0,T ;H) ≤ C3 ‖(u, uΓ)‖H . (2.16)

Now we invoke [1, Theorem 3.1, p. 1.79] with the specifications

A = −∆, g0 = y|Γ, p = 2, r = 0, s = 3/2,
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to conclude that

∫ T

0

‖w(t)‖2
H3/2(Ω) dt ≤ C4

∫ T

0

(
‖∆w(t)‖2H + ‖wΓ(t)‖2VΓ

)
dt, (2.17)

whence it follows that
‖w‖L2(0,T ;H3/2(Ω)) ≤ C5 ‖(u, uΓ)‖H . (2.18)

Hence, by the trace theorem, we have that

‖∂
n
w‖L2(0,T ;HΓ) ≤ C6 ‖(u, uΓ)‖H , (2.19)

so that, by comparison in the equation resulting from (2.10), we obtain

‖∆ΓwΓ‖L2(Σ) ≤ ‖(u, uΓ)‖H (2.20)

and consequently
‖wΓ‖L2(0,T ;H2(Γ)) ≤ C9 ‖(u, uΓ)‖H . (2.21)

Now, owing to standard elliptic estimates, we infer

‖w‖L2(0,T ;H2(Ω)) ≤ C7 ‖(u, uΓ)‖H . (2.22)

This concludes the proof of the assertion.

Remark 3: It follows from (ii) in Theorem 2.2 that for zero initial data the solution
operator (u, uΓ) 7→ (w,wΓ) is a continuous linear mapping from H into Y .

While it cannot be expected that the solution to the linear system (2.9)–(2.11) is bounded,
we now establish a boundedness result for the solution to the nonlinear state system (1.2)–
(1.4) that will be of key importance in the subsequent analysis. To this end, we need the
following assumption:

(A5) y0 ∈ L∞(Ω) , y0Γ ∈ L∞(Γ) , and it holds

0 < ess inf
x∈Ω

y0(x), ess sup
x∈Ω

y0(x) < 1,

0 < ess inf
x∈Γ

y0Γ(x), ess sup
x∈Γ

y0Γ(x) < 1 . (2.23)

Lemma 2.3 Suppose that the assumptions (A2)–(A5) are satisfied. Then there are
constants 0 < r∗ ≤ r∗ < 1 , which only depend on Ω , T , y0 , y0Γ , f , g , and R , such
that we have: whenever (y, yΓ) = S(u, uΓ) for some (u, uΓ) ∈ U then it holds

r∗ ≤ y ≤ r∗ a. e. in Q, r∗ ≤ yΓ ≤ r∗ a. e. in Σ. (2.24)

Proof: Let (u, uΓ) ∈ U be arbitrary and (y, yΓ) = S(u, uΓ) . Then we have

‖u‖L∞(Q) + ‖uΓ‖L∞(Σ) ≤ R.
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By virtue of (2.2) and (2.23), there are constants 0 < r∗ ≤ r∗ < 1 such that

r∗ ≤ min

{
ess inf
x∈Ω

y0(x) , ess inf
x∈Γ

y0Γ(x)

}
, (2.25)

r∗ ≥ max

{
ess sup

x∈Ω
y0(x) , ess sup

x∈Γ
y0Γ(x)

}
, (2.26)

max {f ′(r) +R , g′(r) +R} ≤ 0 ∀ r ∈ (0, r∗), (2.27)

min {f ′(r)−R , g′(r)−R} ≥ 0 ∀ r ∈ (r∗, 1). (2.28)

Now define w := (y − r∗)+ . Clearly, we have w ∈ V and w|Γ ∈ VΓ . We put wΓ := w|Γ

and test (1.2) by w . Thanks to (2.26), we readily see that

0 =
1

2
‖w(T )‖2H +

∫ T

0

‖∇w(t)‖2H dt

+
1

2
‖wΓ(T )‖2HΓ

+

∫ T

0

‖∇ΓwΓ(t)‖2HΓ
dt + Φ,

where, owing to (2.27) and (2.28),

Φ :=

∫ T

0

∫

Ω

(f ′(y)− u)w dx dt +

∫ T

0

∫

Γ

(g′(yΓ)− uΓ)wΓ dΓdt ≥ 0 .

In conclusion, w = (y − r∗)+ = 0, i. e., y ≤ r∗ , almost everywhere in Q and on Σ. The
remaining inequalities follow similarly by testing (1.2) with w := −(y − r∗)

− .

Observe that in view of (A2) and of Lemma 2.3, we may (by possibly choosing a larger
K∗

1 ) assume that also

max
0≤i≤3

{
max

{
‖f (i)(y)‖L∞(Q) , ‖g(i)(yΓ)‖L∞(Σ)

}}
≤ K∗

1 , (2.29)

whenever (y, yΓ) = S(u, uΓ) for some (u, uΓ) ∈ U .

Remark 4: Lemma 2.3 entails that the singular components in the state equations of
the control problem (CP) are only active in a domain of arguments where they behave
like standard bounded smooth nonlinearities. As a consequence, we could use classical
differentiability results to see that both f and g generate three times continuously dif-
ferentiable Nemytskii operators on suitable subsets of L∞(Q) and L∞(Σ) , respectively.
From this point, it would in principle be possible to derive the subsequent differentia-
bility results for the control-to-state mapping by using the implicit function theorem. A
corresponding approach was taken in Chapter 5 in [16] for the case of standard Neumann
boundary conditions not involving dynamic terms or the surface Laplacian. Here, we
prefer a direct approach which, while being slighthly longer and possibly less elegant than
the use of the implicit function theorem, has the advantage of yielding the explicit form
of the corresponding derivatives directly.

https://www.researchgate.net/publication/268892478_Optimal_control_of_partial_differential_equations_Theory_procedures_and_applications?el=1_x_8&enrichId=rgreq-9016cf0f-f381-4536-a2bb-30eca0b28e56&enrichSource=Y292ZXJQYWdlOzIzMzg3MTQ5NTtBUzoxMDM1ODM5ODcwMTE1OThAMTQwMTcwNzc1NjQxOQ==
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With Lemma 2.3 at hand, we are now able to improve the stability estimate (2.8) from
Theorem 2.1.

Lemma 2.4 Suppose that the general assumptions (A2)–(A5) are satisfied. Then there
is a constant K∗

3 > 0 , which only depends on Ω , T , f , g , and R , such that the
following holds: whenever (u1, u1Γ), (u1, u2Γ) ∈ U are given and (y1, y1Γ), (y2, y2Γ) ∈ Y
are the associated solutions to the state system (1.2)–(1.4), then we have

‖(y1, y1Γ)− (y2, y2Γ)‖Y ≤ K∗
3 ‖(u1, u1Γ)− (u2, u2Γ)‖H . (2.30)

Proof: In the following, we denote by Ci , i ∈ IN , positive constants that only depend
on the quantities mentioned in the assertion. We subtract the state equations (1.2)–(1.4)
corresponding to ((ui, uiΓ), (yi, yiΓ)) , i = 1, 2 , from each other and multiply the equation
resulting from (1.2) by ∂t(y1 − y2) . Putting u = u1 − u2 , uΓ = u1Γ − u2Γ , y = y1 − y2 ,
and yΓ = y1Γ − y2Γ , we have for all t ∈ [0, T ] the estimate

∫ t

0

∫

Ω

y2t dx ds +
1

2

∫

Ω

|∇y(t)|2 dx +

∫ t

0

∫

Γ

|∂tyΓ|2 dΓ ds +
1

2

∫

Γ

|∇ΓyΓ(t)|2 dΓ

≤
∫ t

0

∫

Ω

|f ′(y1)− f ′(y2)| |yt| dx ds +

∫ t

0

∫

Γ

|g′(y1Γ)− g′(y2Γ)| |∂tyΓ| dΓ ds

+

∫ t

0

∫

Ω

|u| |yt| dxds +

∫ t

0

∫

Γ

|uΓ| |∂tyΓ| dΓds . (2.31)

Now observe that Lemma 2.3 (see also (2.29)) and the mean value theorem imply that
there is some constant C1 > 0 such that

|f ′(y1)− f ′(y2)| ≤ C1 |y| a. e. in Q, |g′(y1Γ)− g′(y2Γ)| ≤ C1 |yΓ| a. e. in Σ .

Hence, it follows from Young’s inequality and (2.8) that

‖y‖H1(0,T ;H)∩C0([0,T ];V ) + ‖yΓ‖H1(0,T ;HΓ)∩C0([0,T ];VΓ) ≤ C2 ‖(u, uΓ)‖H . (2.32)

From this point we may continue as in the proof of Theorem 2.2 after proving the estimate
(2.15): indeed, by the arguments used there, we can repeat the estimates (2.16) to (2.21)
with (w,wΓ) replaced by (y, yΓ) to come to the conclusion that (2.30) is satisfied. This
concludes the proof of the assertion.

3 The optimal control problem

We now consider the optimal control problem (CP) under the general assumptions (A1)–
(A4).

3.1 Existence

We have the following existence result.
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Theorem 3.1 Suppose that the general assumptions (A1)–(A4) are fulfilled. Then the
optimal control problem (CP) admits a solution.

Proof: Let {(un, unΓ
)} ⊂ Uad be a minimizing sequence for (CP), and let (yn, ynΓ

) =
S(un, unΓ

) , n ∈ IN . By virtue of the global estimates (2.6) and (2.24), we may assume
(by possibly selecting a suitable subsequence again indexed by n ) that there are functions
(ū, ūΓ) ∈ X and (ȳ, ȳΓ) ∈ Y , such that

un → ū weakly-* in L∞(Q),

unΓ
→ ūΓ weakly-* in L∞(Σ),

yn → ȳ weakly-* in H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;H2(Ω)) ∩ L∞(Q),

ynΓ
→ ȳΓ weakly-* in H1(0, T ;HΓ) ∩ L∞(0, T ;VΓ) ∩ L2(0, T ;H2(Γ)) ∩ L∞(Σ) .

In particular, we have

∂
n
yn → ∂

n
ȳ, ∆ΓynΓ

→ ∆ΓȳΓ, both weakly in L2(Σ).

Clearly, (ū, ūΓ) ∈ Uad . Moreover, we infer from standard compact embedding results
(cf. [15, Sect. 8, Cor. 4] that, in particular,

yn → ȳ strongly in C0([0, T ];H), (3.1)

ynΓ
→ ȳΓ strongly in C0([0, T ];HΓ). (3.2)

But then we can conclude from the Lipschitz continuity of f ′
2 and g′2 (see (A2)) that also

f ′
2(yn) → f ′

2(ȳ) strongly in C0([0, T ];H),

g′2(ynΓ
) → g′2(ȳΓ) strongly in C0([0, T ];HΓ),

while (2.7) and (A2) allow us to deduce that

f ′
1(yn) → ξ̄ weakly in L2(0, T ;H),

g′1(ynΓ
) → ξ̄Γ weakly in L2(0, T ;HΓ).

for some weak limits ξ̄ and ξ̄Γ. Since f1 and g1 are convex (so that f ′
1 and g′1 are

increasing), the weak convergences above, along with (3.1)–(3.2), imply that ξ̄ = f ′
1(ȳ)

a.e. in Q and ξ̄Γ = g′1(ȳΓ) a.e. on Σ, due to the maximal monotonicity of the operators
induced by f ′

1 on L2(Q) and g′1 on L2(Σ) (see, e.g., [1, Prop. 2.5, p. 27]). At this
point, we may pass to the limit as n → ∞ in the state system (1.2)–(1.4) (written for
(yn, ynΓ

), (un, unΓ
) , n ∈ IN) to conclude that (ȳ, ȳΓ) = S(ū, ūΓ) , that is, the pair ((ū, ūΓ),

(ȳ, ȳΓ)) is admissible for (CP). It then follows from the lower sequential semicontinuity
of the cost functional J that (ū, ūΓ) is in fact an optimal control for (CP).

3.2 Differentiability of the control-to-state operator

Suppose now that (ū, ūΓ) ∈ Uad is a local minimizer for (CP), and let (ȳ, ȳΓ) = S(ū, ūΓ)
be the associated state. We consider for fixed (h, hΓ) ∈ X the linearized system:
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ξt −∆ξ + f ′′(ȳ) ξ = h a. e. in Q, (3.3)

∂
n
ξ + ∂tξΓ −∆ΓξΓ + g′′(ȳΓ) ξΓ = hΓ, ξΓ = ξ|Γ, a. e. on Σ, (3.4)

ξ( · , 0) = 0 a. e. in Ω, ξΓ( · , 0) = 0 a. e. on Γ. (3.5)

By Theorem 2.2 the system (3.3)–(3.5) admits for every (h, hΓ) ∈ H (and thus, a fortiori,
for every (h, hΓ) ∈ X ) a unique solution (ξ, ξΓ) ∈ Y , and the linear mapping (h, hΓ) 7→
(ξ, ξΓ) is continuous from H into Y and thus also from X into Y .
We have the following differentiability result.

Theorem 3.2 Suppose that the assumptions (A2)–(A5) are satisfied. Then we have the
following results:

(i) Let (ū, ūΓ) ∈ U be arbitrary. Then the control-to-state mapping S , viewed as a
mapping from X into Y , is Fréchet differentiable at (ū, ūΓ) , and the Fréchet derivative
DS(ū, ūΓ) is given by DS(ū, ūΓ)(h, hΓ) = (ξ, ξΓ) , where for any given (h, hΓ) ∈ X the
pair (ξ, ξΓ) denotes the solution to the linearized system (3.3)–(3.5).

(ii) The mapping DS : U → L(X ,Y) , (ū, ūΓ) 7→ DS(ū, ūΓ) is Lipschitz continuous on
U in the following sense: there is a constant K∗

4 > 0 such that for all (u, uΓ), (ū, ūΓ) ∈ U
and all (h, hΓ) ∈ X it holds

‖(DS(u, uΓ)−DS(ū, ūΓ))(h, hΓ)‖Y ≤ K∗
4 ‖(u, uΓ)− (ū, ūΓ)‖H ‖(h, hΓ)‖H . (3.6)

Proof: We first show (i). To this end, let (ū, ūΓ) ∈ U be arbitrarily chosen, and let
(ȳ, ȳΓ) = S(ū, ūΓ) ∈ Y denote the associated solution to the state system. Since U is an
open subset of X , there is some λ > 0 such that for any (h, hΓ) ∈ X with ‖(h, hΓ)‖X ≤ λ
it holds (ū, ūΓ) + (h, hΓ) ∈ U . In the following, we consider such variations (h, hΓ) ∈ X ,
and we denote by (yh, yhΓ) the solution to the state system (1.2)–(1.4) associated with
(ū, ūΓ) + (h, hΓ) . Moreover, we denote by (ξh, ξhΓ) the unique solution to the linearized
system (3.3)–(3.5) associated with (h, hΓ) . We also denote by Ci , i ∈ IN , positive
constants that depend neither on the choice of (h, hΓ) ∈ X with ‖(h, hΓ)‖X ≤ λ nor on
t ∈ [0, T ] .
Now let

vh := yh − ȳ − ξh, vhΓ := yhΓ − ȳΓ − ξhΓ.

Obviously, we have (vh, vhΓ) ∈ Y . Since the linear mapping (h, hΓ) 7→ (ξh, ξhΓ) is by
Theorem 2.2 (ii) continuous from X into Y , it obviously suffices to show that there is an
increasing function G : [0, λ] → [0,+∞) which satisfies limrց0 G(r)/r = 0 and

‖(vh, vhΓ)‖Y ≤ G (‖(h, hΓ)‖H) . (3.7)

Apparently, vh is a solution to the initial-boundary value problem

vht −∆vh + f ′(yh)− f ′(ȳ)− f ′′(ȳ) ξh = 0 a. e. in Q, (3.8)

∂
n
vh + ∂tv

h
Γ −∆Γv

h
Γ + g′(yhΓ)− g′(ȳΓ)− g′′(ȳΓ) ξ

h
Γ = 0 a. e. on Σ, (3.9)

vh(·, 0) = 0 a. e. in Ω vhΓ(·, 0) = 0 a. e. on Γ. (3.10)
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Next, we observe that it follows from Taylor’s theorem and from the global estimate (2.24)
(cf. also (2.29)) that almost everywhere on Q we have

f ′(yh)− f ′(ȳ)− f ′′(ȳ) ξh = f ′′(ȳ) vh + Φh, (3.11)

with some function Φh ∈ L∞(Q) such that, almost everywhere in Q ,

|Φh| ≤ 1

2
max

r∗≤r≤r∗
|f (3)(r)| |yh − ȳ|2 ≤ K∗

1

2
|yh − ȳ|2 . (3.12)

By the same token, there is a function ΦΓ ∈ L∞(Σ) such that, almost everywhere on Σ,

g′(yhΓ)− g′(ȳΓ)− g′′(ȳΓ) ξ
h
Γ = g′′(ȳΓ) v

h
Γ + Φh

Γ, (3.13)

where

|Φh
Γ| ≤

K∗
1

2
|yhΓ − ȳΓ|2 . (3.14)

Hence, with c1 := f ′′(ȳ) ∈ L∞(Q) , c2 := g′′(ȳΓ) ∈ L∞(Σ) , u := −Φh ∈ L2(Q) , and
uΓ := −Φh

Γ ∈ L2(Σ) , we see that the system (3.8)–(3.10) satisfied by (vh, vhΓ) has exactly
the structure of the system (2.9)–(2.11). It therefore follows from (2.12) in Theorem 2.2
that

‖(vh, vhΓ)‖Y ≤ C1 ‖(Φh,Φh
Γ)‖H . (3.15)

Now observe that, owing to the embedding V ⊂ L4(Ω) and to (2.30) in Lemma 2.4, we
have

‖Φh‖2L2(Q) ≤ C2

∫ T

0

∫

Ω

|yh − ȳ|4 dx dt = C2

∫ T

0

‖yh(t)− ȳ(t)‖4L4(Ω) dt

≤ C2 T ‖yh − ȳ‖4C0([0,T ];V ) ≤ C3 ‖(h, hΓ)‖4H . (3.16)

Similar reasoning shows that also

‖Φh
Γ‖2L2(Σ) ≤ C4 ‖(h, hΓ)‖4H .

In conclusion, (3.7) is satisfied for the function G(r) = C1(
√
C3 +

√
C4) r

2 , which con-
cludes the proof of assertion (i).
Next, we show the validity of (ii). To this end, let (ū, ūΓ) ∈ U be arbitrary, and let
(k, kΓ) ∈ X be such that (ū + k, ūΓ + kΓ) ∈ U . We denote (yk, ykΓ) = S(ū + k, ūΓ + kΓ)
and (ȳ, ȳΓ) = S(ū, ūΓ) , and we assume that any (h, hΓ) ∈ X with ‖(h, hΓ)‖X = 1 is
given. It then suffices to show that there is some L > 0 , independent of (h, hΓ) , (ū, ūΓ)
and (k, kΓ) , such that

‖(ξk, ξkΓ)− (ξ, ξΓ)‖Y ≤ L ‖(k, kΓ)‖H , (3.17)

where (ξk, ξkΓ) = DS(ū + k, ūΓ + kΓ)(h, hΓ) and (ξ, ξΓ) = DS(ū, ūΓ)(h, hΓ) . For this
purpose, we denote in the following by Ki , i ∈ IN , positive constants that neither depend
on (ū, ūΓ) , (k, kΓ) , nor on the special choice of (h, hΓ) ∈ X with ‖(h, hΓ)‖X = 1 .
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To begin with, observe that from part (i) it easily follows that (w,wΓ) := (ξk, ξkΓ) −
(ξ, ξΓ) ∈ Y solves the initial-boundary value problem

wt −∆w + f ′′(ȳ)w = − ξk (f ′′(yk)− f ′′(ȳ)) a. e. in Q, (3.18)

∂
n
w + ∂twΓ −∆ΓwΓ + g′′(ȳΓ)wΓ = − ξkΓ (g

′′(ykΓ)− g′′(ȳΓ)) a. e. on Σ, (3.19)

w( · , 0) = 0 a. e. in Ω, wΓ( · , 0) = 0 a. e. on Γ. (3.20)

Hence, it follows from Theorem 2.2 that

‖(w,wΓ)‖Y ≤ K1

(
‖ξk (f ′′(yk)− f ′′(ȳ))‖L2(Q) + ‖ξkΓ (g′′(ykΓ)− g′′(ȳΓ))‖L2(Σ)

)
. (3.21)

Now, by Taylor’s theorem and (2.29), we have almost everywhere in Q (on Σ, respec-
tively)

|f ′′(yk)− f ′′(ȳ)| ≤ K∗
1 |yk − ȳ| and |g′′(ykΓ)− g′′(ȳΓ)| ≤ K∗

1 |ykΓ − ȳΓ| . (3.22)

At this point, we recall that U is obviously a bounded subset of H . Since (ū+k, ū+kΓ) ∈
U and ‖(h, hΓ)‖X = 1, we thus can infer from (2.29) and from the estimate (2.12) in
Theorem 2.2 that (ξk, ξkΓ) is bounded in Y independently of (k, kΓ) , (ū, ūΓ) , and the
choice of (h, hΓ) ∈ X with ‖(h, hΓ)‖X = 1. Using the embedding V ⊂ L4(Ω) and
Lemma 2.4, we therefore have

‖ξk (f ′′(yk)− f ′′(ȳ))‖2L2(Q) ≤ K2

∫ T

0

∫

Ω

|ξk|2 |yk − ȳ|2 dx dt

≤ K2

∫ T

0

‖ξk(t)‖2L4(Ω) ‖yk(t)− ȳ(t)‖2L4(Ω) dt

≤ K3 ‖(yk − ȳ, ykΓ − ȳΓ)‖2Y ≤ K4 ‖(k, kΓ)‖2H . (3.23)

Since an analogous estimate holds for the second summand in the bracket on the right-
hand side of (3.21), the assertion follows.

Remark 5: Notice that we could not establish Fréchet differentiability of S on H ;
in fact, we only were able to show differentiability on the bounded subset U of X .
In particular, the boundedness of (u, uΓ) in X was an indispensable prerequisite for
proving Lemma 2.3 and the global estimate (2.29), which in turn was fundamental for
the derivation of the differentiability result. This will below lead to a so-called two-norm
discrepancy in the derivation of second-order sufficient optimality conditions, i. e., we will
have to work with two different norms.

With Theorem 3.2 at hand, it is now straightforward to derive the standard variational
inequality that optimal controls must satisfy: indeed, it follows from the quadratic form
of J and from the chain rule that the reduced cost functional

J (u, uΓ) := J(S(u, uΓ), (u, uΓ)) (3.24)

is Fréchet differentiable at every (ū, ūΓ) ∈ U with the Fréchet derivative

DJ (ū, ūΓ) = D(y,yΓ)J(S(ū, ūΓ), (ū, ūΓ))◦DS(ū, ūΓ) + D(u,uΓ)J(S(ū, ūΓ), (ū, ūΓ)) , (3.25)



14 Optimal control of an Allen-Cahn equation

and, owing to the convexity of Uad , we have for every minimizer (ū, ūΓ) ∈ Uad of J in
Uad that

DJ (ū, ūΓ)(v − ū, vΓ − ūΓ) ≥ 0 ∀ (v, vΓ) ∈ Uad . (3.26)

Identification of the expressions in (3.25) from (1.1) and Theorem 3.2 yields the following
result:

Corollary 3.3 Let the assumptions (A1)–(A5) be satisfied, and let (ū, ūΓ) ∈ Uad be an
optimal control for the control problem (CP) with associated state (ȳ, ȳΓ) = S(ū, ūΓ) ∈ Y .
Then we have for every (v, vΓ) ∈ Uad

β1

∫ T

0

∫

Ω

(ȳ − zQ) ξ dx dt + β2

∫ T

0

∫

Γ

(ȳΓ − zΣ) ξΓ dΓ dt

+ β3

∫

Ω

(ȳ( · , T )− zT ) ξ( · , T ) dx + β4

∫

Γ

(ȳΓ( · , T )− zΓ,T ) ξΓ( · , T ) dΓ

+β5

∫ t

0

∫

Ω

ū(v − ū) dx dt + β6

∫ t

0

∫

Γ

ūΓ(vΓ − ūΓ) dΓdt ≥ 0 , (3.27)

where (ξ, ξΓ) ∈ Y is the unique solution to the linearized system (3.3)–(3.5) associated
with (h, hΓ) = (v − ū, vΓ − ūΓ) .

3.3 First-order necessary optimality conditions

We are now in the position to derive the first-order necessary optimality conditions for
the control problem (CP).

Theorem 3.4 Let the assumptions (A1)–(A5) be satisfied, and let (ū, ūΓ) ∈ Uad be an
optimal control for the control problem (CP) with associated state (ȳ, ȳΓ) = S(ū, ūΓ) ∈ Y .
Then the adjoint state system

− pt −∆p + f ′′(ȳ) p = β1 (ȳ − zQ) a. e. in Q, (3.28)

∂
n
p− ∂tpΓ −∆ΓpΓ + g′′(ȳΓ) pΓ = β2 (ȳΓ − zΣ) a. e. on Σ, (3.29)

p( · , T ) = β3(ȳ( · , T )− zT ) a. e. in Ω,

pΓ( · , T ) = β4 (ȳΓ( · , T )− zΓ,T ) a. e. on Γ, (3.30)

has a unique solution (p, pΓ) ∈ Y , and for every (v, vΓ) ∈ Uad we have
∫ T

0

∫

Ω

(p+ β5 ū)(v − ū) dx dt +

∫ T

0

∫

Γ

(pΓ + β6 ūΓ)(vΓ − ūΓ) dΓ dt ≥ 0 . (3.31)

Proof: First observe that the system (3.28)–(3.30) is a linear backward-in-time parabolic
initial-boundary value problem, which after the time transformation t 7→ T − t takes the
form of the system (2.9)–(2.11) provided we put

c1(x, t) := f ′′(ȳ(x, T − t)), c2(x, t) := g′′(ȳΓ(x, T − t)),

u(x, t) := β1 (ȳ − zQ)(x, T − t), uΓ(x, t) := β2 (ȳΓ − zΣ)(x, T − t),

w0(x) := β3 (ȳ(x, T )− zΓ(x)), w0Γ(x) = β4 (ȳΓ(x, T )− zΓ,T (x)) .
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Obviously, c1 ∈ L∞(Q) , c2 ∈ L∞(Σ) , u ∈ L2(Q) , uΓ ∈ L2(Σ) , w0 ∈ H1(Ω) , and
w0Γ ∈ H1(Γ) . Hence, by virtue of Theorem 2.2, the transformed system admits a unique
solution (w,wΓ) ∈ Y , so that (p, pΓ)(x, t) := (w,wΓ)(x, T − t) is the unique solution to
the adjoint system, and (p, pΓ) ∈ Y .
At this point, we may perform the standard calculation, using repeated integration by
parts and the systems (3.3)–(3.5) and (3.28)–(3.30), which shows that

β1

∫ T

0

∫

Ω

(ȳ − zQ) ξ dx dt + β2

∫ T

0

∫

Γ

(ȳΓ − zΣ) ξΓ dΓ dt

+ β3

∫

Ω

(ȳ( · , T )− zT ) ξ( · , T ) dx + β4

∫

Γ

(ȳΓ( · , T )− zΓ,T ) ξΓ( · , T ) dΓ

=

∫ T

0

∫

Ω

p h dx dt +

∫ T

0

∫

Γ

pΓ hΓ dΓdt , (3.32)

so that (3.31) follows from (3.27).

Remark 6: (i) It follows from the above considerations that the Fréchet derivative
DJ (ū, ūΓ) ∈ L(X ,Y) can be identified with the pair (p + β5 ū, pΓ + β6 ūΓ) in the sense
that, with the standard inner product ( · , · )H in the Hilbert space H , we have

DJ (ū, ūΓ)(h, hΓ) = ((p+ β5 ū, pΓ + β6 ūΓ), (h, hΓ))H ∀ (h, hΓ) ∈ X . (3.33)

(ii) If β5 > 0 and β6 > 0 then it follows from standard arguments that the condition
(3.31) can be given a pointwise interpretation in the following sense: we have almost
everywhere in Q (on Σ, respectively) that

ū(x, t) =





ũ2(x, t) if ũ2(x, t) < −β−1
5 p(x, t)

−β−1
5 p(x, t) if ũ1(x, t) ≤ −β−1

5 p(x, t) ≤ ũ2(x, t) ,

ũ1(x, t) if ũ1(x, t) > −β−1
5 p(x, t)

ūΓ(x, t) =





ũ2Γ(x, t) if ũ2Γ(x, t) < −β−1
6 pΓ(x, t)

−β−1
6 pΓ(x, t) if ũ1Γ(x, t) ≤ −β−1

6 pΓ(x, t) ≤ ũ2Γ(x, t) ,

ũ1Γ(x, t) if ũ1Γ(x, t) > −β−1
6 pΓ(x, t)

(3.34)

where ũ1, ũ2, ũ1Γ , ũ2Γ represent the control constraints defined in (A1).

3.4 The second-order Fréchet derivative of the control-to-state

operator

Since the control problem (CP) is nonconvex, the first-order necessary optimality con-
ditions established in the previous section are not sufficient. However, it is of utmost
importance, e. g., for the numerical solution of (CP), to derive sufficient optimality con-
ditions. For this purpose, it is necessary to show that the control-to-state mapping is
twice continuously Fréchet differentiable. We have the following result.
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Theorem 3.5 Assume that in addition to the general conditions (A1)–(A5) we have:

(A6) f, g ∈ C4(0, 1) .

Then we have the following results:

(i) The control-to-state operator S is at any (ū, ūΓ) ∈ U twice Fréchet differentiable,
and the second Fréchet derivative D2S(ū, ūΓ) ∈ L(X ,L(X ,Y)) is defined as follows: if
(h, hΓ), (k, kΓ) ∈ X are arbitrary, then D2S(ū, ūΓ)[(h, hΓ) , (k, kΓ)] =: (η, ηΓ) ∈ Y is the
unique solution to the initial-boundary value problem

ηt −∆η + f ′′(ȳ) η = −f (3)(ȳ)φψ a. e in Q, (3.35)

∂
n
η + ∂tηΓ −∆ΓηΓ + g′′(ȳΓ) ηΓ = −g(3)(ȳΓ)φΓ ψΓ a. e. on Σ, (3.36)

η( · , 0) = 0 a. e. in Ω, ηΓ( · , 0) = 0 a. e. on Γ, (3.37)

where we have put

(ȳ, ȳΓ) = S(ū, ūΓ), (φ, φΓ) = DS(ū, ūΓ)(h, hΓ), (ψ, ψΓ) = DS(ū, ūΓ)(k, kΓ) . (3.38)

(ii) The mapping D2S : U → L(X ,L(X ,Y)) , (ū, ūΓ) 7→ D2S(ū, ūΓ) , is Lipschitz con-
tinuous on U in the following sense: there exists a constant K∗

5 > 0 such that for every
(u, uΓ), (ū, ūΓ) ∈ U and all (h, hΓ), (k, kΓ) ∈ X it holds

‖(D2S(u, uΓ)−D2S(ū, ūΓ))[(h, hΓ), (k, kΓ)]‖Y
≤ K∗

5 ‖(u, uΓ)− (ū, ūΓ)‖H ‖(h, hΓ)‖H ‖(k, kΓ)‖H . (3.39)

Proof: We first prove part (i) of the assertion. To this end, let (ū, ūΓ) ∈ U be fixed,
(h, hΓ), (k, kΓ) ∈ X be arbitrary, and (ȳ, ȳΓ), (φ, φΓ), (ψ, ψΓ) ∈ Y be defined as in (3.38).
Then, with

c1 := f ′′(ȳ) ∈ L∞(Q), c2 := g′′(ȳΓ) ∈ L∞(Σ), u := −f (3)(ȳ)φψ ∈ L2(Q),

uΓ := −g(3)(ȳΓ)φΓ ψΓ ∈ L2(Σ),

the system (3.35)–(3.37) takes the form (2.9)–(2.11) and thus enjoys a unique solution
(η, ηΓ) ∈ Y . Moreover, by (2.12) we have the estimate

‖(η, ηΓ)‖Y ≤ Ĉ
(
‖f (3)(ȳ)φψ‖L2(Q) + ‖g(3)(ȳΓ)φΓ ψΓ‖L2(Σ)

)
. (3.40)

In the remainder of the proof of part (i), we denote by Ci , i ∈ IN, positive constants that
do not depend on the quantities (h, hΓ) , (k, kΓ) , and (ū, ūΓ) . Using (2.29) and (2.30),
and invoking the embedding V ⊂ L4(Ω) , we find that

‖f (3)(ȳ)φψ‖2L2(Q) ≤ K∗
1
2

∫ T

0

∫

Ω

|φ|2 |ψ|2 dx dt ≤ C1

∫ T

0

‖φ(t)‖2L4(Ω) ‖ψ(t)‖2L4(Ω) dt

≤ C2 ‖φ‖2C0([0,T ];V ) ‖ψ‖2C0([0,T ];V ) ≤ C3 ‖(h, hΓ)‖2H ‖(k, kΓ)‖2H , (3.41)

where the validity of the last inequality can be seen as follows: by definition (recall (3.38))
(φ, φΓ) is the unique solution to the linear problem (3.3)–(3.5) with zero initial conditions,
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and thus we can infer from Theorem 2.2 (see, in particular, (2.12)) that ‖(φ, φΓ)‖Y ≤
Ĉ ‖(h, hΓ)‖H . By the same token, we conclude that ‖(ψ, ψΓ)‖Y ≤ Ĉ ‖(k, kΓ)‖H . The
asserted inequality therefore follows from the definition of the norm of the space Y , and
we obtain from similar reasoning that also

‖g(3)(ȳΓ)φΓ ψΓ‖L2(Σ) ≤ C4 ‖(h, hΓ)‖H ‖(k, kΓ)‖H .

In particular, it follows that the bilinear mapping X×X 7→ Y , [(k, kΓ), (h, hΓ)] 7→ (η, ηΓ) ,
is continuous.
Now we prove the assertions concerning existence and form of the second Fréchet deriva-
tive. Since U is open, there is some λ > 0 such that (ū + k, ūΓ + kΓ) ∈ U whenever
‖(k, kΓ)‖X ≤ λ . In the following, we only consider such perturbations (k, kΓ) ∈ X . Then
for (yk, ykΓ) = S(ū + k, ūΓ + kΓ) the global estimates (2.6), (2.29), (2.30) are satisfied.
Without loss of generality, we may also assume that

max
{
‖f (4)(yk)‖L∞(Q) , ‖g(4)(ykΓ)‖L∞(Σ)

}
≤ K∗

1 whenever ‖(k, kΓ)‖X ≤ λ . (3.42)

After these preparations, we observe that it suffices to show that

∥∥DS(ū+ k, ūΓ + kΓ)−DS(ū, ūΓ)−D2S(ū, ūΓ)(k, kΓ)
∥∥
L(X ,Y)

= sup
‖(h,hΓ)‖X=1

∥∥(DS(ū+ k, ūΓ + kΓ)−DS(ū, ūΓ)−D2S(ū, ūΓ)(k, kΓ)
)
(h, hΓ)

∥∥
Y

≤ G (‖(k, kΓ)‖H) , (3.43)

with an increasing function G : (0, λ] → (0,+∞) that satisfies limrց0 G(r)/r = 0.
To this end, let (h, hΓ) ∈ X be arbitrary with ‖h‖L∞(Q) + ‖hΓ‖L∞(Σ) = 1. We put
(ρ, ρΓ) = DS(ū+k, ȳΓ+kΓ)(h, hΓ) , define the pairs (φ, φΓ), (ψ, ψΓ) ∈ Y as in (3.38), and
put

(w,wΓ) := (ρ− φ− η, ρΓ − φΓ − ηΓ).

Then, according to (3.43), we need to show that

‖(w,wΓ)‖Y ≤ G (‖(k, kΓ)‖H) . (3.44)

Now, invoking the explicit expressions for the quantities defined above, it is easily seen
that (w,wΓ) is a solution to the linear initial-boundary value problem

wt −∆w + f ′′(ȳ)w = σ a. e. in Q, (3.45)

∂
n
w + ∂twΓ −∆ΓwΓ + g′′(ȳΓ)wΓ = σΓ a. e. in Σ, (3.46)

w( · , 0) = 0 a. e. in Ω, wΓ( · , 0) = 0 a. e. on Γ, (3.47)

where we have put

σ := −ρ
(
f ′′(yk)− f ′′(ȳ)

)
+ f (3)(ȳ)φψ,

σΓ := −ρΓ
(
g′′(ykΓ)− g′′(ȳΓ)

)
+ g(3)(ȳΓ)φΓ ψΓ . (3.48)
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In view of (2.29), and since it is easily checked that (σ, σΓ) ∈ H , we may again invoke
the estimate (2.12) in Theorem 2.2 to conclude that (3.44) is satisfied if only

‖(σ, σΓ)‖H ≤ G (‖(k, kΓ)‖H) . (3.49)

Applying Taylor’s theorem to f ′′ , and recalling (3.38), we readily see that there is a
function ωf ∈ L∞(Q) such that

f ′′(yk)− f ′′(ȳ) = f (3)(ȳ) (yk − ȳ − ψ) + f (3)(ȳ)ψ + ωf (y
k − ȳ)2 a. e. in Q . (3.50)

Hence, we have that

σ = −ρ f (3)(ȳ) (yk − ȳ − ψ) − ψ f (3)(ȳ) (ρ− φ) − ρ ωf (y
k − ȳ)2 . (3.51)

Now recall that from the proofs of Fréchet differentiablity and of the Lipschitz continuity
of the Fréchet derivative (see, in particular, the estimates (3.6)–(3.16) and (3.17)–(3.23),
respectively) it follows that

‖(yk − ȳ − ψ, ykΓ − ȳΓ − ψΓ)‖Y ≤ C1 ‖(k, kΓ)‖2H ,

‖(ρ− φ, ρΓ − φΓ)‖Y ≤ C2 ‖(k, kΓ)‖H . (3.52)

Moreover, we can infer from Lemma 2.4 that

‖(yk − ȳ, ykΓ − ȳΓ)‖Y ≤ K∗
3 ‖(k, kΓ)‖H , (3.53)

and it follows from Theorem 2.2 that ρ is bounded in Y by a positive constant that is
independent of (k, kΓ), (h, hΓ) ∈ X with ‖(k, kΓ)‖X ≤ λ and ‖(h, hΓ)‖X = 1.
Finally, we conclude from Remark 3 that with a suitable constant C3 > 0 it holds

‖(ψ, ψΓ)‖Y ≤ C3 ‖(k, kΓ)‖H . (3.54)

After these preparations, and invoking Hölder’s inequality and the embeddings V ⊂ L4(Ω)
and V ⊂ L6(Ω) , we can estimate as follows:

‖σ‖2L2(Q) ≤ C4

∫ T

0

∫

Ω

(
|ρ|2 |yk − ȳ − ψ|2 + |ψ|2 |ρ− φ|2 + |ρ|2 |yk − ȳ|4

)
dx dt

≤ C4

∫ T

0

(
‖ρ(t)‖2L4(Ω)‖(yk − ȳ − ψ)(t)‖2L4(Ω) + ‖ψ(t)‖2L4(Ω)‖ρ(t)− φ(t)‖2L4(Ω)

)
dt

+C4

∫ T

0

‖ρ(t)‖2L6(Ω) ‖yk(t)− ȳ(t)‖4L6(Ω) dt

≤ C5 max
0≤t≤T

(
‖ρ(t)‖2V ‖(yk − ȳ − ψ)(t)‖2V + ‖ψ(t)‖2V ‖ρ(t)− φ(t)‖2V

+ ‖ρ(t)‖2V ‖yk(t)− ȳ(t)‖4V
)

≤ C6 ‖(k, kΓ)‖4H . (3.55)

By the same reasoning, a similar estimate can be derived for ‖σΓ‖L2(Σ) , which concludes
the proof of the assertion (i).
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Next, we prove the assertion (ii). To this end, suppose that (ū, ūΓ) ∈ U and that (h, hΓ)
and (k, kΓ) are arbitrarily chosen in X , and let (δ, δΓ) ∈ X be arbitrary with (ū+δ, ūΓ+
δΓ) ∈ X . In the following, we will denote by Ci , i ∈ IN , positive constants that do not
depend on any of these quantities. We put

(yδ, yδΓ) = S(ū + δ, ūΓ + δΓ), (ȳ, ȳΓ) = S(ū, ūΓ), (φ, φΓ) = DS(ū, ūΓ)(h, hΓ),
(ψ, ψΓ) = DS(ū, ūΓ)(k, kΓ), (φδ, φδ

Γ) = DS(ū+ δ, ūΓ + δΓ)(h, hΓ),

(ψδ, ψδ
Γ) = DS(ū+ δ, ūΓ + δΓ)(k, kΓ), (η, ηΓ) = D2S(ū, ūΓ)[(h, hΓ), (k, kΓ)],

(ηδ, ηδΓ) = D2S(ū+ δ, ūΓ + δΓ)[(h, hΓ), (k, kΓ)] .

From the previous results, in particular, (2.30) and (3.6), we can infer that there is a
constant C1 > 0 such that

‖(φ, φΓ)‖Y + ‖(φδ, φδ
Γ)‖Y ≤ C1 ‖(h, hΓ)‖H,

‖(ψ, ψΓ)‖Y + ‖(ψδ, ψδ
Γ)‖Y ≤ C1 ‖(k, kΓ)‖H,

‖(η, ηΓ)‖Y + ‖(ηδ, ηδΓ)‖Y ≤ C1 ‖(h, hΓ)‖H ‖(k, kΓ)‖H,

‖(yδ, yδΓ)− (ȳ, ȳΓ)‖Y ≤ C1 ‖(δ, δΓ)‖H,

‖(φδ, φδ
Γ)− (φ, φΓ)‖Y ≤ C1 ‖(δ, δΓ)‖H ‖(h, hΓ)‖H,

‖(ψδ, ψδ
Γ)− (ψ, ψΓ)‖Y ≤ C1 ‖(δ, δΓ)‖H ‖(k, kΓ)‖H . (3.56)

Now observe that (w,wΓ) = (ηδ, ηδΓ) − (η, ηΓ) satisfies the linear initial-boundary value
problem of the type (2.9)–(2.11)

wt −∆w + f ′′(ȳ)w = σ a. e. in Q, (3.57)

∂
n
w + ∂twΓ −∆ΓwΓ + g′′(ȳΓ)wΓ = σΓ a. e. on Σ, (3.58)

w( · , 0) = 0 a. e. in Ω, wΓ( · , 0) = 0 a. e. on Γ, (3.59)

where we have put

σ = −ηδ(f ′′(yδ)− f ′′(ȳ))− (f (3)(yδ)φδ ψδ − f (3)(ȳ)φψ) ,

σΓ = −ηδΓ(g′′(yδΓ)− g′′(ȳΓ))− (g(3)(yδΓ)φ
δ
Γ ψ

δ
Γ − g(3)(ȳΓ)φΓ ψΓ) . (3.60)

From Theorem 2.2 it follows that

‖(w,wΓ)‖Y ≤ Ĉ ‖(σ, σΓ)‖H , (3.61)

so that it remains to show an estimate of the form

‖(σ, σΓ)‖H ≤ C2 ‖(δ, δΓ)‖H ‖(h, hΓ)‖H ‖(k, kΓ)‖H . (3.62)

Moreover, we can infer from (2.30) and (3.6) that, almost everywhere in Q ,

|σ| ≤ K∗
1 (|ηδ| |yδ − ȳ| + |φδ| |ψδ| |yδ − ȳ| + |φδ| |ψδ − ψ| + |ψ| |φδ − φ|) . (3.63)
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Hence, by (3.56), and using Hölder’s inequality and the embedding V ⊂ L4(Ω) ,

∫ T

0

∫

Ω

|ηδ|2 |yδ − ȳ|2 dx dt ≤
∫ T

0

‖ηδ(t)‖2L4(Ω) ‖(yδ − ȳ)(t)‖L4(Ω) dt

≤ C3 ‖ηδ‖2C0([0,T ];V ) ‖yδ − ȳ‖2C0([0,T ];V ) ≤ C4 ‖(δ, δΓ)‖2H ‖(h, hΓ)‖2H ‖(k, kΓ)‖2H .
(3.64)

Similar reasoning yields

‖φδ(ψδ − ψ)‖2L2(Q) + ‖ψ(φδ − φ)‖2L2(Q) ≤ C5 ‖(δ, δΓ)‖2H ‖(h, hΓ)‖2H ‖(k, kΓ)‖2H . (3.65)

Moreover, we invoke (3.56), Hölder’s inequality, and the embeddings V ⊂ L4(Ω) and
H2(Ω) ⊂ L∞(Ω) , to conclude that

∫ T

0

∫

Ω

|φδ|2 |ψδ|2 |yδ − ȳ|2 dx dt ≤
∫ T

0

‖(yδ − ȳ)(t)‖2L∞(Ω) ‖φδ(t)‖2L4(Ω ‖ψδ(t)‖2L4(Ω) dt

≤ C6 ‖φδ‖2C0([0,T ];V ) ‖ψδ‖2C0([0,T ];V ) ‖yδ − ȳ‖2L2(0,T ;H2(Ω))

≤ C7 ‖(δ, δΓ)‖2H ‖(h, hΓ)‖2H ‖(k, kΓ)‖2H . (3.66)

Finally, we can estimate ‖σΓ‖L2(Σ) deriving estimates similar to (3.63)–(3.66), which
proves the validity of the required estimate (3.62). With this, the assertion is completely
proved.

3.5 Second-order sufficient optimality conditions

With Theorem 3.5 at hand, the road is paved to derive sufficient conditions for optimality.
But, because the control-to-state operator S is not Fréchet differentiable on H , we are
faced with the two-norm discrepancy, which makes it impossible to establish second-order
sufficient optimality conditions by means of the same simple arguments as in the finite-
dimensional case or, e. g., in the proof of Theorem 4.23 on page 231 in [16]. It will thus be
necessary to tailor the conditions in such a way as to overcome the two-norm discrepancy.
At the same time, for practical purposes the conditions should not be overly restrictive.
For such an approach, we follow the lines of Chapter 5 in [16], here. Since many of the
arguments developed here are rather similar to those employed in [16], we can afford to
be sketchy and refer the reader to [16] for full details.
To begin with, the quadratic cost functional J , viewed as a mapping on Y×U , is obviously
twice continuously Fréchet differentiable on Y ×U , and for any ((ȳ, ȳΓ), (ū, ūΓ)) ∈ Y ×U
and any ((v, vΓ), (h, hΓ)), ((w,wΓ), (k, kΓ)) ∈ Y × X it holds

D2J((ȳ, ȳΓ), (ū, ūΓ))[((v, vΓ), (h, hΓ)), ((w,wΓ), (k, kΓ))]

= β1

∫ T

0

∫

Ω

v w dx dt + β2

∫ T

0

∫

Γ

vΓ wΓ dΓ dt + β3

∫

Ω

v(T )w(T ) dx

+ β4

∫

Γ

vΓ(T )wΓ(T ) dΓ + β5

∫ T

0

∫

Ω

h k dx dt + β6

∫ T

0

∫

Γ

hΓ kΓ dΓ dt . (3.67)
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Hence, it follows from Theorem 3.5 and from the chain rule that the reduced cost func-
tional J is twice continuously Fréchet differentiable on U . Now let (ū, ūΓ) ∈ U be fixed
and (h, hΓ), (k, kΓ) ∈ X be arbitrary. In accordance with our previous notation, we put

(ȳ, ȳΓ) = S(ū, ūΓ), (φ, φΓ) = DS(ū, ūΓ)(h, hΓ), (ψ, ψΓ) = DS(ū, ūΓ)(k, kΓ),
(η, ηΓ) = D2S(ū, ūΓ)[(h, hΓ), (k, kΓ)] .

Then a straightforward calculation resembling that carried out on page 241 in [16], using
the chain rule as main tool, yields the equality

D2J (ū, ūΓ)[(h, hΓ), (k, kΓ)] = D(y,yΓ)J((ȳ, ȳΓ), (ū, ūΓ))(η, ηΓ)

+D2J((ȳ, ȳΓ), (ū, ūΓ))[((φ, φΓ), (h, hΓ)) , ((ψ, ψΓ), (k, kΓ))] . (3.68)

Now observe that the first summand of the right-hand side of (3.68) is equal to the
expression

β1

∫ T

0

∫

Ω

(ȳ − zQ) η dx dt + β2

∫ T

0

∫

Γ

(ȳΓ − zΣ) ηΓ dΓ dt

+ β3

∫

Ω

(ȳ(T )− zT ) η(T ) dx + β4

∫

Γ

(yΓ(T )− zΓ,T ) ηΓ(T ) dΓ (3.69)

and that (η, ηΓ) solves a system of the form (3.3)–(3.5), with h replaced by −f (3)(ȳ)φψ ∈
L2(Q) and hΓ replaced by −g(3)(ȳΓ)φΓψΓ ∈ L2(Σ) . Since the calculation leading to the
identity (3.32) also works for right-hand sides in L2(Q)× L2(Σ) , we can infer that

D(y,yΓ)J((ȳ, ȳΓ), (ū, ūΓ))(η, ηΓ)

= −
∫ T

0

∫

Ω

p f (3)(ȳ)φψ dx dt −
∫ T

0

∫

Γ

pΓ g
(3)(ȳΓ)φΓ ψΓ dΓdt , (3.70)

where (p, pΓ) ∈ Y is the adjoint state associated with ((ȳ, ȳΓ), (ū, ūΓ)) . Summarizing, we
have thus shown that it holds the representation formula

D2J (ū, ūΓ)[(h, hΓ), (h, hΓ)] =

∫ T

0

∫

Ω

(β1 − p f (3)(ȳ)) |φ|2 dx dt

+

∫ T

0

∫

Γ

(β2 − pΓ g
(3)(ȳΓ)) |φΓ|2 dΓdt + β3

∫

Ω

|φ(T )|2 dx + β4

∫

Γ

|φΓ(T )|2 dΓ

+ β5 ‖h‖2L2(Q) + β6 ‖hΓ‖2L2(Σ) . (3.71)

Equality (3.71) gives rise to hope that, under appropriate conditions, D2J (ū, ūΓ) might
be a positive definite operator on a suitable subset of the space H . To formulate such
a condition, assume that (ū, ūΓ) ∈ Uad is a given control with associated state (ȳ, ȳΓ) =
S(ū, ūΓ) ∈ Y and adjoint state p ∈ Y satisfying (3.28)–(3.30). We then introduce for
fixed τ > 0 the set of strongly active constraints for (ū, ūΓ) by

Aτ (ū, ūΓ) := {(x, t) ∈ Q : |p(x, t) + β5 ū(x, t)| > τ}
∪ {(x, t) ∈ Σ : |pΓ(x, t) + β6 ūΓ(x, t)| > τ} . (3.72)
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Apparently it follows from (3.31) that, depending on the signs of p(x, t) + β5 ū(x, t) and
of pΓ(x, t) + β6 ūΓ(x, t) , the control values ū(x, t) and ūΓ(x, t) , respectively, attain one
of the constraint values. We now define the τ−critical cone Cτ (ū, ūΓ) to be the set of all
(h, hΓ) ∈ X such that

h(x, t)





= 0 if (x, t) ∈ Aτ (ū, ūΓ)

≥ 0 if ū(x, t) = ũ1(x, t) and (x, t) 6∈ Aτ (ū, ūΓ)

≤ 0 if ū(x, t) = ũ2(x, t) and (x, t) 6∈ Aτ (ū, ūΓ)

,

hΓ(x, t)





= 0 if (x, t) ∈ Aτ (ū, ūΓ)

≥ 0 if ūΓ(x, t) = ũ1Γ(x, t) and (x, t) 6∈ Aτ (ū, ūΓ)

≤ 0 if ūΓ(x, t) = ũ2Γ(x, t) and (x, t) 6∈ Aτ (ū, ūΓ)

. (3.73)

After these preparations, we can formulate the second-order sufficient optimality condition
as follows:

There exist constants δ > 0 and τ > 0 such that

D2J [(ū, ūΓ) [(h, hΓ), (h, hΓ)] ≥ δ ‖(h, hΓ)‖2H ∀ (h, hΓ) ∈ Cτ (ū, ūΓ) ,

where D2J [(ū, ūΓ) [(h, hΓ), (h, hΓ)] is given by (3.71) with (ȳ, ȳΓ) = S(ū, ūΓ),
(φ, φΓ) = DS(ū, ūΓ)(h, hΓ) and the associated adjoint state (p, pΓ) . (3.74)

The following result resembles Theorem 5.17 in [16].

Theorem 3.6 Suppose that the assumptions (A1)–(A6) are satisfied, and assume that
the triple (ū, ūΓ) ∈ Uad , (ȳ, ȳΓ) = S(ū, ūΓ) ∈ Y and (p, pΓ) ∈ Y fulfills the first-order
necessary optimality conditions (3.28)–(3.31). Moreover, assume that the condition (3.74)
is fulfilled. Then there are constants ε > 0 and σ > 0 such that

J (u, uΓ) ≥ J (ū, ūΓ) + σ ‖(u− ū, uΓ − ūΓ)‖2H
whenever (u, uΓ) ∈ Uad and ‖(u, uΓ)− (ū, ūΓ)‖X ≤ ε . (3.75)

In particular, (ū, ūΓ) is locally optimal in the sense of X .

Proof: The proof closely resembles that of Theorem 5.17 in [16], and therefore we can
refer to [16]. We only indicate one argument that needs a bit more explanation. To this
end, let (u, uΓ) ∈ Uad be arbitrary. Since J is twice continuously Fréchet differentiable
in U , it follows from Taylor’s theorem with integral remainder (see, e. g., Theorem 8.14.3
on page 186 in [4]) that

J (u, uΓ)− J (ū, ūΓ) = DJ(ū, ūΓ)(v, vΓ) +
1

2
D2J (ū, ūΓ)[(v, vΓ), (v, vΓ)]

+RJ ((u, uΓ), (ū, ūΓ)) , (3.76)
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with the remainder

RJ ((u, uΓ), (ū, ūΓ))

=

∫ 1

0

(1− s)
(
D2J (ū+ sv, ūΓ + svΓ)−D2J (ū, ūΓ)

)
[(v, vΓ), (v, vΓ)] ds .

(3.77)

A lengthy but straightforward calculation, based on the representation formulas (3.67)–
(3.69) as well as on the Lipschitz estimates (2.30), (3.6), and (3.39), reveals that

∣∣RJ ((u, uΓ), (ū, ūΓ))
∣∣ ≤ C1

∫ 1

0

(1− s) s ‖(v, vΓ)‖3Hds

≤ C2 ‖(v, vΓ)‖X ‖(v, vΓ)‖2H , (3.78)

with global constants C1 > 0 and C2 > 0 that do not depend on the choice of (u, uΓ) ∈
Uad . From this point, we can argue along exactly the same lines as on pages 292–294 in
the proof of Theorem 5.17 in [16] to conclude the validity of the assertion.
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[1] H. Brezis, “Opérateurs maximaux monotones et semi-groupes de contractions dans
les espaces de Hilbert”, North-Holland Math. Stud. 5, North-Holland, Amsterdam,
1973.

[2] F. Brezzi, G. Gilardi, Chapters 1-3 in “Finite Element Handbook”, H.
Kardestuncer and D. H. Norrie (eds.), McGraw-Hill Book Co., New York, 1987.

[3] L. Calatroni, P. Colli, Global solution to the Allen-Cahn equation with singular
potentials and dynamic boundary conditions, preprint arXiv:1206.6738v1 [math.AP]
(2012) 1-23. Accepted for publication in Nonlinear Anal.
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