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ABSTRACT

Unification was introduced by J.A. Robinson in the context
of automatic theorem proving and plays an important role in many
areas of symbolic manipulation. We present a general framework
where all known algorithms for unification can be described, and
in this context we introduce the most general version of our
algorithm. Two alternative refinements are then exposed, the
first leading to a simpler algorithm of wide applicability which
is linear with the total number of symbols and n log n with the
number of distinct variables; the second to a more complicated
linear algorithm. Full complexity analysis of both algorithms is
included.
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1 = INTRODUCTIOHN

In its simplest form, the unification problem can be expressed
as follows: Given two terms t{ and t2, with some variables, find,
if it exists, the simplest substitution (i.e. an assignment of some
term to every variable)as to make them equal. The resulting term
is called the most general unifier (mgu) and is unique up to varia-
blerzaaaiisg.

An equivalent statement of the problem makes more clear its
nature. Given a term t, let L{t) be the set of terms which can be
obtained from t with any substitution. Given terms tq and tp, find if

it exisgts, a term t such that

L(E) = L(tg)NL(t,)
For example, let

~t, = £(x,f(z,2)) and t, = £lg(y).y)

1
then the mgu is

e

t = £(g(f(z,2)),£(2,2))

Unification was first introduced by J.A. Robinson [1,2] as the
central step of the inference rule called resolution. This single,
powerful rule can réplase atl the axioms and inference rules of first
order predicate calculus, and thus was immediately recognized as
expecially suited to mechanical theorem provers. In fact, a number of
systems based on resolution were built, and tried on a variety of
different applications [ 3]. Even if further research made apparent
that resolution systems are difficult to direct during proof search
and thus are often prone to combinatorial explosion [4], they are
still likely to be the main symbol-cranching part of tomorrow's
general purpose theorem provers. Recent research was directed towards
a more accurate study of the data structures involved in this type of
symbol manipulation %5] and towards the possibility of embedding in
the resolution rule {and in the unification algorithm) such general
properties as function commutativity and associativity [6].

However resolution theorem proving is not the only agplication
of the unification algorithm. In fact its pattern matching nature
can be exploited in other cases of symbolic manipulation (@@gngh@ﬁ
deciding the applicability of a simplification rule); in procedure
invocation through pattern matching (as in some special artificial
intelligence programming languages [4]); in systems using a data base
organized in terms of productions [7].

Obtaining efficient versions of the unification algorithm was
immediately recognized as a main goal in symbolic manipulation [2]
but only recently the technigues of concrete complexity theory have
been applied to this subject [8]. Variations of the original algo-
rithms were considered, which appeared to have guasilinear complexity
[9,10]. FPinally, Paterzon [11] has presented a linear algorithm for
unification. However he gave no details on the algorithm and no formal
procf of its linearity. -
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The research described in this paper was carried on independently
from Huet and Paterson work, even if the linear algorithm we present
here is sgimilar, in its maln lines, to Paterson's. In Section 2 we
represent the unification problem as the solution of a system of egua-
tions. A nondeterministic algorithm is then defined, and proved correct,
which comprehends as special cases all known alforithms. To gain perspi-
cuity, in Section 3 we group together all equations with some member in
common, and thus we obtain a model for which the most general version of
our algorithm can be exposed.

To help the reader to grasp the main tricks and to follow the
complexity analysis, we give a structured presentation of the algorithm
through a seguence of successive refinements [12]. The refined algorithms
are expressed in the form of PASCAL programs, since this well-known
language, through the concept of user defined data types, allows to
develop step by step also the necessary data structures. The first refin-
ed program, even if very similar to the general version of the algorithm,
allows full complexity analysis of the most involved part, where the
actual matching of subterms takes place.

Two alternative refinements are then considered. The first pesult-
ing program, besides being linear on the total number of symbols, may
require in the worst case a computing time which is n log n with the
number of distinct variables in the problem. However this program uses
substantially simpler data structures, 1s rather straightforward to
understand, and will probably be faster on most problems of practical
size than both the classical algorithms and the subsequent linear algo~
rithm. Finally, in Section 6 we present the linear algorithm with its
complete complexity analysis. Both programs are shown to be linear in

space.

The Appendix contains the straightforward implementation of the
last level data structures and procedures (mainly lists and standard
operations on them) so that complete, running PASCAL programs for the
two algorithms can be extracted from the paper.

2 - UNIFICATION AS THE SOLUTION OF A SET OF EQUATIONS: A NONDETER¥
HINISTIC ALGORLITHM

In this se
theorems which %
rithmg. Our wa
general than t©
suggests a num

ction we introduce the basic definitions and gives few
se useful in proving the correctness of the algo-

ng the unification problem is slightly more

21 one due to Robinson [1] and directly .

ber of possible solution methods.

| A, {%m@% = @, i#y)

e Ay contains the i-adic function gymbols
onstant symbols). Furthermore, let V be the

{the elements A
e variables. The terms are defined recursively as follows:

alphabet of ti
-

h
a) Constant symbols

s and wvariables are terms.
%} zf t?gaa»s«%—»i {ﬁv;;%%

} aye terms and f eA;, then f{tﬁ,ae@;ti} is a term.
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A substitution is a set of ordered pairs &= {(tq,%xq)}, (t2,%3),.-

cos (tnsX,)} where ty are terms and xy are distinct variables,
i=1,...,n. To apply a substitution to a term t, we simultaneocusly
substitute all occurrences in t of every variable x; in a pair of
with the corresponding term ty. The resulting term will be called tg -

For instance, given a term t = f(xq,9(xz),a) and a substitution
G = {(h(xy),%q), (b,x3)} we have tg= £(h(x3),g(b),a).

The standard unification problem can be written as an equation
tt o= t"
A solution of the eqguation, called a unifier, is any gubstitution &,
if it exists, which makes the two terms identical. For instance, two
unifiers of the equation f£(xq,h(xq1),x2) = £(g(x3),x4,%x3) are
3= {(g{x3) ,x1), (x3,%2) , (h{g(x3)) ,x4)} and &5 = {(g(a),xq), (@a,x3),
(a@X:g}f(h{%?i%?}g}ig;}}e
Tn what follows, it will be convenient to consider also sets of
equations
t§ = t§ o= 1,000k o

Again, a unifier is any substitution which makes all pairs of terms
th ,£4 identical simultaneously. Now we are interested in finding
tZanS%szaﬁi@mg which produce equivalent sets of equations, namely
transformations which preserve the sets of all unifiers. Let us
introduce the following two transformations.

ay Term reduction
Let

(2.1) fle,

1

P LR & @ % )
By s e ty) = f(tzytzﬂu,tia o<i<m

be an equation where both terms are not variables and where the two
root function symbols are equal. The new set of equations is obtained
by replacling such eguation with the following ones

&

@é = t,
B g PR
b = [ o
(2.2} “ ., °
SR
%§ %i
if i=0, t symbol and the equation is simply erased.
b} Vardlable elimination
Let

be an eqgu . % ig a variable and t is any term(variable oxr
notl The new "~ quations is obtained by applying the substitu-
tion S i th terms of all other equations in the set

{(without




We can prove the following theorems.

Theorem 2.1 - Let S be a set of equations and let f’(t%,..a,tg) =
= f"(ti,ea,;t“) be an equation of S. If £'#f" then S has no unifier.

Otherw 1

se the new set of equations S', obtained by applying term
reduction to the given equation, is equivalent to S. ~

Proof - If f£7#£f", then no substitution can make the two terms identica}f
If £'=f", any substitution which satisfies (2.2) will also satisfy (zss;
and conversely for the recursive definition of term. ]

Theorem 2,2 - Let S be a set of equations and let us apply variable
elimination to some eguation x=t, getting a new set of equations s'.
If variable x occurs in t (but t is not x) then S has no unifier,
otherwise S and S' are equivalent.

Proof - If variable x occurs in t{but t is not x), then no substitution
Fcan make the two members of the equation x=t identical, since the
term which is substituted for x becomes a subterm of tg . Equation x=t
belongs both to § and to S' and thus any solution of S or S' must unigy
x and t. Now let t4 be any term in any other equation of 5§, and let t4
be the corresponding term in S°'. Since t4 has been obtained by substi-
tuting t for every occurrence of x in t4, any solution of S or S' must
unify ty and t; .

0

There is a special type of sets of equations for which Lhe set of
unifiers is evident. Such sets are called sets of equations in solved
form and must satisfy the following conditions:

a) The equations are xj = tj , J=1,...,k
b) Every variable which is the left member of some equation ocecurs

only there.
A set of equations in solved form has an obvious unifier
G = {it?gxi);{tzfxz)ﬁasee(tkexk)} .
Any other unifier (if any) can be obtained as

o = {{f‘g%}‘ yx’%} ; ({‘tg}&(\gﬁg):e o6 p (.(tk}c{ ﬁxk}} U

where ¢ is any substitution which does not rewrite variables KypoovoXye
Thus & is called a most general unifier (mgu).

The following nondeterministic algorithm shows how a set of equa-~
tions can be transformed into an equivalent set of equations in solved
form.




Algorithm A

Given a set of equations, repeatedly perform any of the following
transformations. If no transformation applies, stop with success.

a)

b)

c)

d)

Select any
i
where t is

X

Select any
be
where % is
Select any
t

eguation of the form

= X

not a variable and x is a variable, and rewrite it as
= i

equation of the form

= X

& variable, and erase it.
equation of the form

§ﬁt€%

where t' and t" are not variables. If the two root function symbols
are different, stop with failure; otherwise apply term reduction

Select any
®

where % 1is
equations,

equation of the form.
= t

a variable which occurs somewhere else in the set of
and t#¥x. If x occurs in t, then stop with failure; other-

wise apply variable elimination.

As an example, let us consider the following set of egunations

glx,) = x,
f(xggh€xi}yxz} = f(g(x3);X4,X3)

By applying transformation ¢) of Algorithm A to the second eguation

we get

gix,) = x,

By applying trans d) to the second equation we get

We now apply transformation ¢} to the first equation and transforma-

tion a} to the third egquation

mgw



Xy = glxg)
| X, = h(géxg}}
*y T %3

Finally, by applying transformation d) to the first equation and trans-
formation b) to the last equation, we get the set of equationsin solved

form
X, = Xg
Xy = g{xy)
| x4 = hig(xy))

Therefore, a mgu of the given system is
G = (g txg) yx), Gegx,) , (h(g(xg)) )] .

The following theorem proves the correctness of Algorithm A.

Theorem 2.3 -~ Given a set of equations 8

a) Algorithm A always terminates, no matter which choices are made.

b} If Algorithm A terminates with failure, S has no unifier. If
%lg@ritbm A terminates with success, the set S has been transformed
in an equivalent set in solved form.

Proof - a) Let u e
a triple of nsa numbers (nq,nz,n3y). The first number nq is the
number of variab! in S which do not occur only once as the left
member of some equation. The second number ns is the total number of
occurrences of fu on symbols in 8. The third number ny is the sum

of the numbers of tions in S of type x=x and t=x, where x is a
variable and is Let us defline a total ovdering on such triples
as follows:

E}ﬁ ?,i w§:§) Yoy f s *‘ o

({ e an3) ﬂéoggyﬁg}

¥

and n2:>m2

and nl=nf and nl >nk
e IR B

a well=-founded set, i.e. a set
xists. Thus, 1f we prove that
forms a set § in & set §°

he fermination. In fact,

such that F({

transformati ase n3 and, possibly, ni.
Transformat se n3 and decrease n4, but

Transformation d} can possibly change
nq .
the thesis immediately follows

A terminates with success, the result-
ivalent to the given set S. In fact,

surely decr
n3 and incre:




transformations

learly do not change the set of unifiers,
y and 4} this fact is stated in theorems
s in solved form: In fact, if a), b) and
means that the equations are all in the

while for tran
2.1 and 2.2. T
¢} cannot be a

form x=t, with d} cannot be applied, 1t means that every
variable which jeft memnber of some equation occurs only there.

In the
+o auvthors
{?g§§8g€%§?

to two Terms
follows:

Alagcrithm R

{Consider I

ations as consisting of two lists of equations)

Step 1 - first list with the equation %?gtz and set the

empty list.

Step 2 - iist is empty. Take the
if it is of the form
transformation aj.

rransformation bl.

v transformation c) and put the resulting

+he order, on top of the first list.
naformation d), if possible, and move
the second list.

Ste; The second list is the final system in

ith Algorithm R a mgu of the two
3} . After initialization, we

For
terms

Now the i the form iv), and thus we can
alimina
listt

.l’:ai;?j H

199

b

“
& @ S o
i 0 G £ @ o Fis £
2 3
listZ ¢



_Finally, the last two executions of Step 2 eliminate variables Xy and Xqt
listl ¢ ()

list2 : (xg =Xy X, = hégixSB}; Xy = g(x3))

3 - A REFINED ALGORITHM WHICH EXPLOITS A PARTIAL ORDERING AMONG SETS OF
VARIABLES

In this section we present an extension of the previous formalism
to model more closely our algorithm. We first introduce the concept of
multiequation. A multiequation groups together many equations with
common members. It is of the form

8 = M

where S is a set of variables and M is a multiset(*) of terms which
are not variables. M, but not §, may be empty. Many different sets of
equations may correspond to a multiequation. For instance, to

fgrxgoxg) = (£g08))

may correspond both

WK
I
¥

¢t
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e
v
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In general, a ¢

uations I

E

correspond to a
(i=1;...,k} and

UM there exists a seguence

Zor &

oth ﬁé and ﬁﬁ belong to SUM
e

{(x)

iy of elements where no ordering exists, but
elements may occur. The right member of a
iset, since we do not want to check for

A multiset is a f an
where many ic
multieguatio

£

repetion of




such that either 4.4 = ty4 oF gy = i34 belongs to I, for i=2,...,9.
Obviously all sets of equations corresponding to a multiequation

(or a set of multiequations) are equivalent, i.e. they have exactly the
same solutions. :

We now introduce a few transformations of sets of multiequations,
- which are generalizations of the transformations presented in the
previous section.

To introduce the first transformation we define recursively the
common part and the frontier of a multiset of terms (variables or not).
The common part {if it exists) of a nonempty multiset is a term and,
the frontier is a set of multieguations.

Given a nonempty multiset M of terms, if some of the terms is a
variable then

a) The common part of M is any of the variables and the frontier of M
is a set containing a single multiequation whose left member is the
set of all variables in M, and whose right member is the multiset
of all terms in M which are not variables;

else

b) if all root function symbols in the terms of M are equal to the
same symbol £, then

b1) the common part of M is the term f£(tq,ty,...,ty) where
ts{i=1,...,1) is the common part of the multiset Mj obtained
by taking the j-th argument of all terms in M, and” the frontier
of M is the union of the frontiers of all multisets Ms (¥), If
some multiset M: has no common part and no frontier, ~then also
M has no common part and no frontier;

else

b2} M has no common part and no frontier.
For instance, given the multiset of terms

(£(xy.9(a,x,)),E£(hia,xy),9(a,b)),£(x,,9(a,b)))

the common part is

and the frontier is

e the transformation of multieguation reduction.
ion belonging to a set Z of multiequations.
ined only if M is nonempty and has a common

Let
The

% . .
(%) If £ is a zero-adic function symbol, then the common part of M is
the constant £ and the frontier is empty.

- 0 =



part. Let C be the common part and F the frontier of M. The new set of
multiequations is sd by @iﬁq S=M with the union of the multi-
equation S=(C) and of all the multieguations of F,.

nonempty) be a multiequation of a set Z of
5 no common part, or if some variable in S
belongs to the le nber of some multiequation in the frontier F of
M, then Z has no inif‘ Otherwise, by applying multiegquation reduction
ion S8=M we get an equivalent set Z' of multiequations.

Theorem 3.1 - Let
multiequations.

o

yigty then the multiequation
1 be made equal having a
ﬁdiﬂg subterms. Moreover, if
¢ membey of the frontler, then
EYs ﬁ thus the equation u=t, with x
£ of equations equivalent to Z. But this
theorem 2.2.

equivalent, we show first that a unifier
%ﬁgtg if a @ugstitubian & makes all

Proof - If the comme
S=M has no unifier,
different fumﬁ&i@?
some variable x
it also occurs in
occurring in &,
set has no unifi

To prove that
of Z 1s alsc a unif
terms of M equal,
in particular all
memb@Ls @f %ag EE

'@% whi@h belong. to left and right

in the frontier. The multiequation
stion. Conversely, if 9 satisfies Z°',
sat g&&i%d In fact all terms in S and
M are mad@ @qu@ H
equation S=(C} and

4&§t {(the subterms not included in the
common part) dus -ia

egquationsF.

rmation, Given a set of multiequa-
et Z' of multieguations with

ton of compactification, defined

oned in classes in such a way that
every two mul either have a nonempty intersection
of the left ; > exists a chain of multiequations in the
class from az@ ¢ ' "iii@qu&tiﬁm where every pair of
successive ; this property. Finally the malti@qa&ti@ns

in every ci are transformed in single multiequa-
tions by making and right members. In other words,
we re?eataaﬁy ong whose left members have a
mbers are disjoint. Clearly, Z

nonempty in
and Z2' are e sts a set of equations correspond-

ing to both 7

We now introd
tiong 2, we oz
digjoint %@e‘
as follows.

ructure to.a
z¢em of multd-
and U7 is a set

For conv
set of mult
equations.

Qg muitie suat
a} The sets of 1t
eguations in both 7 S ;o all vax:

b) The right
one term;

he left members of all multi-
ables and are disjoint;

%M

in T consist of no more than

member of some multieguation in

c) All variab.
2r of any preceding multiequation

T can only
in 7.




We present now an algorithm for solving a given system R of multi-
equations. When the computation starts, the T part is empty, and every
step of the following Algorithm B consists of "transferring” a multi-
equation from the U part, i.e. the unsolved part, to the T part, i.e.
the triangular or solved part of R. When the U part of R is empty, the
system is essentially soclved. In fact, to get a system whioch has an
equivalent set of equations in solved form, it is sufficient to substi-
tute backwards . Notice that by keeping a solved system in this
triangular form, we can hope of finding efficient algorithms for unifi-
cation even when the mgu has a size which is exponential with respect
to the size of the initial system. For instance, the mgu of the set of
multiegquations

{{}%} = g
{x,} = (h(xg,x4)),
{xy} = (hixg,x3))}

is
{(h(x@;x%}@xz}y{h{héx%fxﬁ}gh(xﬁ,x?)),x3),(h(h(h(xirx13rh(xﬁax1))e
h(h<§’§.«§5§§a§} ghi}i%rﬁ’iﬁ}}g ?Ké}} s

However an equivalent solved system can be given with empty U part and
whose T part is :

{2’%3} = {h(xzﬁxz)}r
(x,} = (hixg,x.)),
ey o= ).

Furthermore, a term representation using factorized subtrees could
use a solution directly in this form.

Given a system with an empty T part, an equivalent system with
an empty U part can be computed with the following algorithm.

Algorithm B
Let R=(T,U) be the given system of multiequations.

Repeat Steps 2-7 until the U part of R contains only multi-

Step 1 .t )
equations, if any, with empty right members.

i

Step 2 - Select a multleguation S=M of U, with M#g.
Step 3 - Compute the common part C and the frontier F of M. If M has

o common part, stop with fallure.
Step 4 - If the left members of the frontier of M contain some variable
of 5, stop with fallure.

Step 5 ~ Transform U using multiequation reduction on the selected
multiequation and compactification.

- i1 =



Step 6 - Let S = {%q,...,%,}. Apply the substitution J}={(C,x1),...,(C,xnﬁ
to all terms in the right member of the multiequations of U.

Step 7 - Transfer the multiequation S=(C) from U to the end of T.

Step 8 - Transfer all the multiequations of U to the end of T, and stop
with success.

Of course, if we want to use this algorithm for unifying two terms
tq and t,, we have to comstruct an initial system with empty T part and
wlth the following U part:

{{x} = ﬁis@@tz)i {X?}& @, {xz}g Brooeos {xn}“" g},

where % 7 X200 %, are all the variables in t, and t9 and x is a new
variable which does not occur in t¢ and tj. For instance, let

tq = £(xq,9(xy,%x3),%5,b) and t, = f(g(h(a,xs),xz),x1,h(a,x4),x4)e
The initial system is: .

U s {{x} = (£0x,,9(xy, %) ;%,,b) ,E(g(hla,xg) ,xy)  xqrh(a,3,)s%y) ),
{X%}@ @: {Xz}ﬁ @, {xg}g B, {xé}z 2, {X5}= g}

T : ()
After the first iteration of Algorithm B we get

U = {{xy= (g(hla,xg) ,Xy) 19 (X50%3)),
{x,0= (h(a,x,)),

{xg}g @P
{ng}? (b},
{xcp= 2}

T (x) = (£0y,%,%y,%4)))

We now eliminate variable Xo4 obtaining

U : {{x.}= (g(hla,x.),hia,x,)),gh(a,x,),x)),
i o 4 4 3
{2‘{3}52 @,
{x, 0= (b},
{xg}= 0}
T {‘gx};’\” {f{x%,:}i?;}izgx%}}§
{x,0= (h{a,x,)))

By eliminating variable Xy WE get

L o fom g 3
13 {{X@){x {Eii&gxé}}:?
) y
1

é"éfx;j‘}gg {i}}}



Finally, by eliminating first the set {x4,x5} and then Xq, We get the
solved system
- ’ U : ¢
T. .z ({X} = (f(xﬁf}i?lvxzixé))p
{x,}= (hia,x,)),
{x,)= (g(h(a,x,),%3)),
{}{435{5} = (b},
{xy}= (h(a,b))

We can now prove the correctness of Algorithm B.

Theorem 3.2 - Algorithm B always terminates. If it stops with failure,
then the given system has no unifier. If it stops with success, the
resulting system is equivalent to the given system and has an empty
unsolved part.

Proof - All transformations obtain systems equivalent to the given one.
In fact, in Step 5 multiequation reduction obtains an equivalent set of
equations according to theorem 3.1 and compactification transforms it
again in a system. Step 6 applies substitution only to the terms in U,
and its feasibility can be proved as in theorem 2.2. Step 7 can be
applied since the multiequation S=(C), introduced during multiequation
reduction, has not been modified by compactification, due to the condi-

. tion tested in Step 4. For the same condition, transferring multiequa-
tion S=(C) from U to T still leaves a system. Step 8 is clearly feasible.

If the algorithm stops with failure, the system presently denoted
by R {equivalent to the given one) has no solution according to theorem
3.1. Otherwise the final system has clearly an empty U part. Finally,
the algorithm always terminates since at every cycle some variable is
eliminated from the U pert.

O

It is easy to see that, for a given system, the size of the final
system depends heavily on the order of elimination of the multiequations.
For instance, given the same system we showed earlier

U(ix,) =@,
U (hls e ) )
(%, (hixy,x4)),
{XE} = (hgxzaxz))f
T o {3

By eliminating the variables in the order xz,xz,xé,x? we get the final
system

- 13 -



T : ({xz} (h(x?'xi))’
{Xg} = (h(h(xifx%)rh(x1,xﬁ)))t
{x,} = (h(h(h(xy,xg) ,h(xg,x9)) h(blx,x) ,hx.x0))),
{x4} =)

Instead, by eliminating the variables in the order xé,x3,x2,x1 we get

U : @

T {{xg} = (hfx33x3})@
{XB} = (h(x,,%5)),
{XZ} = (hfxﬁax1))y
{x,0 = @)

Looking at Algorithm B it is clear that the main source of com-
plexity is Step 6, since it may make many copies of large terms. In
the following (and this is the heart of our algorithm) we show that if
the system has unifiers, then there always exists a multiequation in
U (if not empty) such that by selecting it we do not need Step 6 of
the algorithm, since the variables in its left member do not occur
elsewhere in U. We need the following definition.

Given a system R, let us consider the subset V, of variables
obtained by making the union of all left members S; of the multiequa-
tions in the U part of R. Since the sets S; are disjoint, they
determine a partition of V. Let us now define a relation on the
classes S; of this partition:

S;< 84 iff there exists a variable of S; occurring in some term
of M,, whefe M; is the right member of the multiequation whose left

memb%r is Sig et now <¥be the transitive closure of <.

Now we can prove the following theorem and coroilary.

Theorem 3.3 - If a system R has a unifier, then the relation <® is a
partial ordering.

Proof - If S5;<84, then in all unifiers of the system, the term sub-
stituted for every variable in S, must be a subterm of the term sub-
stituted for every variable in S;. Thus, if the system has a unifier,
the graph of the relation < @annét have cycles. Therefore its iran-
sitive closure must be a partlal ordering. ]

Corollary - If the system R has a unifier and its U part is nonempty,
there exists a multiequation S=M such that the variables in S do not
occur elsewhere in U.
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Proof - Let S=M be a multiequation such that S is "on top" of the
partial ordering-<*(i,e.,~a S;,5<8;). The variables in 8 sc not occur

neither in the other left members of U (since they are disjoint) not
in any right member M; of U, since otherwise S<S5j. 0

We can now refine the nondeterministic Algorithm B giving the
general version of our unification algorithm.

Algorithm UNIFY
Let R = (T,U) be the given system of multiequations.

Step 1 - Repeat Steps 2-6 until the U part of R is empty; then stop
with success.

Step 2 - Select a multiequation S=M of U such that the variables in S
do not occur elsewhere in U. If a multiequation with this
property does not exist, stop with failure.

Step 3 - If M is empty, then transfer this multiequation from U to the
end of T and go to Step 1.

Step 4 - Compute the common part C and the frontier F of M. If M has
no common part, stop with failure.

Step 5 - Transform U using multiequaticn reduction on the selected
multiequation, and compactification.

Step 6 - Transfer the multiequation §=(C) from U to the end of T.

A few comments are needed. Besides Step 6 of Algorithm B, we have
erased also Step 4 for the same reason. Furthermore, in Algorithm B we
were forced to wait to transfer multiequations with empty right membexrs
since substitution in that case would have required a special treatment.

By applying Algorithm UNIFY to the system which was previously
solved with Algorithm B, we see that we must first eliminate variable
x, then variable xq, then variables xp and x3 together and finally
variables x4 and x5  together, getting the following final system

U : @

T o ({X} = (f(x;i pX1 szpxé})i
{XZfXB} = (h(afxg})!
{Képxg} = {b) }

Nete that the solution obtained using Algorithm UNIFY is more
concise than the solution previously obtained using Algorithm B, for
two reasons. First, variables x, and X, have been recognlzed as
equivalent; second, the right mémber of x, is more factorized. This
improvement is not casual, but is intrinsec in the ordering behaviour
of Algorithm UNIFY.



type system = record
T,U : +ListOfMulteq
end;
multiequation = record
S : 4SetOfVariables;

M : tListOfTerms
end;
TempMultiequation = record
' S,M : +ListOfTerms

end;
“term = record ~
= case isfun : boolean of
true :{(fsymb : funname;
args : tListOfTerms)$
false :{(v : tvariable)
end;
Psystem = +t+system;
Pterm = +term;
PListOfTerms = +ListOfTerms;
PListOfTempMulteq = tListOfTempMulteq;

Fig. 1

4 - COMPLEXITY ANALYSIS OF MULTIEQUATION REDUCTION

We begin heré the complexity analysis of our algorithm, by discuss-
ing the part performing multiequation reduction. To carry on this analy-
sis we show in Fig. 1,2 and 3 a PASCAL version of the algorithm. This
program is not complete and will be refined in the next sections. How=
ever, we emphasize that all the missing procedures, except for "Select-
Multiequation" and “"compact", have an obvious meaning and can be easily
implemented with constant complexity. In the Appendix we give a possible
implementation of these procedures. Similarly, the data types defini-
tions in Fig. 1 will be refined in the next sections by adding new =
fields to the records. Furthermore, the unspecified data types "SetOfVa-
riables" and "variable” will be defined, while the remaining unspecified
data types are all straightforward and are implemented in the Appendix.

Note that the frontier is represented as a list of so called tem-
porary multiequations, which are a simplified version of the multiequa-
tions. In a "TempMultiequation" the left member (S field) consists of a
l1ist of variable terms, whereas the left member of a "multiequation®
has a more complex structure which will be described in the next sec-
tions.

The procedure "reduce” in Fig. 3 computes the common part and the
frontier of a list of terms M, in a way which closely corresponds to
the definition given in the previous section. The repeat statement
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1 procedure unify (var R : Psystem); '
2 var mult : 4multiequation;C : +term;F : +ListOfTempMulteq; o f

begin

3
4 repeat

5 SelectMultiequation(R+.U,mult);

6 if not EmptyListOfTerms (mult+.M) then

7 begin

8 reduce (mult4 . M,C,F);

9 compact (F,R+.0) ;

10 multt M:=AddToEndOfListOfTerms (C,CreateListOfTerms)
11 end;

12 R+.T:=AddToEndOfListOfMulteq (mult,R+.T)

13 until EmptyListOfMulteq(R+.U);

14 end; (#unify#) '

Fig. 2

(lines 12-24) computes a list "argsofm" which contains all the arguments
of the terms of M. More precisely, if each term of M has i arguments,

then "argsofm” has i elements, and the j-th element of "argsofm”
(ij=1,...,1) is a multiset M of terms obtained by taking the j-th

argument of all terms in M. For the efficiency of subsequent computations,
we represent the elements M4 of "argsofm" as temporary multiequations, in
such a way that we can sepatrate variable and non variable terms by putting
them in the left and right member of the temporary multiequations. This is
achieved by procedure "AddTerm" which adds a term (the first argument) to
the first temporary multiequation of a list of temporary multiequations
(the second argument) and then moves this temporary multiequation to the
end of the third argument.

The while statement at the end of procedure "reduce" (lines 25-37)
computes, at each iteration, the common part and the frontier of the j-th
element My of "argsofm". According to the definition given in the previous
section, two cases may arise: either some term of My is a variable or not.
In the former case, i.e. when the S field of the temporary multiequation
representing M4y is not empty, the common part and the frontier are obtain-
ed according to part a) of the definition; otherwise "reduce" is called
recursively on M.

We first analyze a single call to procedure "reduce™. Let cy be a
constant denoting the complexity in time of executing lines 1-11, 25%, and
38-39; ¢, of 12-18, and 23-24; ¢, of 18-22; cg of 25%-29, and 35-37; Cg of
30-33 and cf of 34. Furthermore let Ny, Ns and ng be the number of (func-
tion and variable) symbols respectively in the multiset M of terms (which
is the datum of procedure "reduce®}, in the common part and in the fronties:
of M (if they exist); and let nyp and nyg be the number of terms respecs’
tively in M and in all the multiequations of the frontier of M.

(#) In the complexity analysis, the first line of a while statement is
considered twice to take into account the first time the test is

executed .,
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grocedure reduce (M : PListOfTerms;var commonpart : Pterm;
var frontier : PListOfTempMulteq);

var f£s : funname;argsofm,argsofmil,newfrontier : tListOfTempMulteq;
t,newcommonpart : +term;argsoft,argsofcp : tListOfTerms;
temp : +TempMultiequation;
begin
frontier:=CreatalListOfTempMulteqs;
argsofep:=CreateListOfTerms;
argsofm:=CreatelListOfTempMulteq;
t:=HeadOfListOfTerms (M) ;
fs:=t+.fsymb;
repeat
argsofmi :=CreatelListOfTempMulteq;
t:=HeadOfListOfTerms (M) ;
M:=TailOfListOfTerms (M) ;
if diffsymb(t+.fsymb,£fs) then fail;
argsoft:=t+.args;
while not EmptyListOfTerms (argsoft) do
begin
AddTerm(HeadOfListOfTerms (argsoft) ,argsofm,argsofmi) ;
argsoft:=TailOfListOfTerms (argsoft)
end;
argsofm:=argsofmi
until EmptyListOfTerms (M) ;
while not EmptyListOfTempMulteq(argsofm) do
begin
temp:=HeadOfListOfTempMulteq (argsofm) ;
argsofm:=TailOfList0fTempMulteqg (argsofm) ;
if not EmptyListOfTerms (temp+t.S) then

begin
newcommonpart:=HeadOfListOfTerms (temp+.S) ;

newfrontier :=AddToEndOfListOfTempMulteq (temp,CreateListOfTempMulteq)

end ;
else reduce {tempt.M,newcommonpart,newfrontier) ;
argsofcp:=AddToEndOfLis tO0fTerms (newcommonpart,argsofcp) ;
frontier:=AppendListsOfTempMulteq(frontier,newfrontier)
end:
commonpart:=BulldFunctionTerm(fs,argsofcp)
and;: {Ereduced)

Fig. 3

Note that n.,. is the number of terms in the datum of every recursive

call of "reduce', and is also the number of terms (variable and not) in every
multiequation in the frontier. Thus, the value ngg/nyy is the number of multi-
eguations in the frontier. Furthermore, among ng,nc,nf,ngm and ngg the follow-
ing relation holds

noo.n,_ =0 o~ n_. +on,.



In fact, every symbol in the common part which is not a variable stands
for ngp function symbols in the part of M not included in the frontier,
while every symbol of the common part which is a variable stands for a
multiequation in the frontier.

We can now prove the following theorem.

Theorem 4.1 - Let us consider a call to procedure "reduce” with a multi-
set M of terms.

a) If the procedure terminates with success, then the complexity in time
is

c_+c 0 o .+
a_d f)+n' (c + d e
t£ c n

(4.1) C = (nmmnf)(cb+cc+ = -

)«(c n, +c.+c.)
m em c'tm d £
b) If the procedure terminates with success or if the procedure fails,
then teh complexity in time is bounded by
] ca+cd+ce+cf

< ¥ -
{(4.2) Cm““ %m(ab+cc+ Ao ) (ccntm+cd+cf)

Proof -

a) We prove (4.1) inductively on the recursive calling structure of
"reduce”. Thus the basis consists of analyzing the complexity of a call
to "reduce" which does not call itself. There are two possibilities:

i) the root function symbol of all terms in M is a constant; ii) for
every j, there exists a term in M such that its j=th argument is a
variable. We will prove the basis together with the inductive step.
During a generic call to "reduce", let Sq(S;) be the set of argument
positions j, for which there exists (does not exist) a term in M such
that its j-th argument is a variable. Furthermore, let k4 and k, be the
cardinalities of Sq and Sy. Thus kq+ky=k, where k is the number of
arguments of all terms in M. Therefore the basis i) corresponds to the
case ki=kz=k=0, while the basis 1i) corresponds to the case k2$0° Now
let My be the multiset of terms obtajined by, taking the j-th argument of
all terms in M, and, 1if j €Sy, let n%,ng,n and nl. be the above defined
quantities for Mj. Note that nj =n . Weé have the "following relations:

TS
ntf jé"?i; ntf ia k_,t s ﬁtm
w2

(4.3)
n_ o~ n, = n + §h (nd - nl)
| “m £ tm jgé m f

2

Finally let C; be the complexity of applying the procedure “reduce” to Mj

(5 e S2}°
By symbolically executing the procedure “reduce” on the multiset of
terms M, we have
F A A% el G .. . 4 P 5 ) P - j
NS C "= oo b on ~ 4+ kn, ¢+ ko, + k.o 4+ + k.C
v m a  Ttamp " enSe T KCq 17e L O 27f
3582
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: . c_+c . +c
cd = (nd - nj)(c + e + -2 49 f)+
m £ b c n
tm
. c . +c
j ( _,,.,93_.@.,,91)‘.
t nie |\, *F n (cne +¢cq % cf),

from (4.4) and (4.3) we get (4.1).

b) We prove (4.2) inductively. Here the basis is the same as for part a)
{which is proved simply by checking that the right member of (4.2) is an
upper bound for the right member of (4.1)) plus the case in which the
procedure fails directly. Here the complexity is at most

c_+n,_c + -
a tmcb (ﬁm ntm) Cc

and thus (4.2) holds, since ny=nems
During the induction step we will use the following relation

o - -
(4.5) ,Z;/ Iﬁnégnm nﬁﬁz k%ntm
3682

By symbolically executing the procedure *reduce®, we have the same
right member as in (4.4), but here the < sign holds, since some of the
work may be skipped if one of the internal recursive calls to "reduce”
fails. Using the inductive hypothesis

. s c +Ccqtc +C
cl<nd {o + o+ -2 d e f) -
m m \"b < n

i

{c¢ n + cy + CfX

from (4.5) we get (4.2}.

O

We can now give an upper bound to the complexity of all the calls
to "reduce®.

s tg be the total number of symbols in the initial

Theorem 4.2
Lo

T
system of multieguations, and let tyfr be the total number of terms
(variable and not) which zppear in all the frontiers returned by
“reduce” in all iterations of "unify" before its termination (with
success or failure).Then the complexity in time of all the calls to
*reduce® is bounded by

&

Cosog o+ o b o b oh e o) b b o+ c,t
r s'7a b < d e £) tfr( c d e
{4.1} is a lower bound to the total
I the U part of the system in an itera-
tieon of “ur fact, 1 to "reduce® eliminates (ng-ng)

ity I
symbols, but creates a new term which is the common part. However this
term (together with some variables) is put in the T part by line 12 of
“unify®. Furthermore, other variable symbols may be eliminated by
"compact”. The total complexity of the calls to "reduce” in a number

e 2(} v



of iterations of "unify® is thus bounded by

o § 8
(4.7) Cés;(ts ts)(ca+ ct ct cgt cf) + ttfr(cc+ cq?t ce)
where t& is the total number of symbols in the U part of the system after
these iterations and tlg, is the total number of terms which appeared.in

all the frontiers obtained up to now. Note that (4.7) can be obtained
from (4.1) since ngy =1, because otherwise "reduce” would not be called.

If "unify" terminates with success, then (4.6) is obtained from (4.7)
since at the end t§ =0 and tg¢fy=trfr . If "unify" fails because "Select-
Multiequation” fails, then t¢fy=ti{s,. and (4.6) still holds. If "unify”
fails because “reduce" fails, then the complexity of the last call to
¥reduce® is bounded by (4.2). Since téz:nm and ttfrztéfr' we can thus
derive (4.6). 0

5 - A FINAL REFINEMENT: A SIMPLE ALGORITHM FOR UNIFICATION

In this szction we present an algorithm which associates to every
multiequation a counter which contains the number of other occurrences
in U of the variables in its left member. This counter is initialized
by scanning the whole U part at the beginning; is decremented whenever
occurrences of some of its variables appear in the left members of the
multiequations of some frontier after multiequation reduction; is tested
for zero to select the multiequation to be transferxed. More specifically,
to avoid scanning the whole U part, whenever the counter of a multiequa-
tion is decreased to zero, the multiequation is put on a stack of multi-
equations ready to be transferred. When two or more multiequations in U
are merged in the compactification phase, the counter associated with the
new multiequation is obviously set to a value which is the sum of the
contents of the old counters.

In Fig. 4-6 we add the data type definitions and the procedures
necessary to completely specify the program in Fig. 2 and 3 (a few
straightforward parts are still missing and will be reported in the
Appendix) . We want to add a few comments. According to the definition
of system of multiequations, every variable occurs in the left member of
a single multiequation. In the compactification phase, this multiequation
must be accessed from other occurrences of the variable. Thus all variable
occurrences (represented by "terms" with the tag field equal to false)
have a field "v" pointing to a single "variable", and the "variable" has a
field "m" pointing to the multiequation. When two multiequations are merg-
ed by "compact", one of them is erased and thus all the pointers to it
must be moved to the other. Therefore, to minimize the computing cost, we
add to every multieguation S$=M a counter "varnumb® containing the number
of variables in 8, and we choose to erase the multiequation with the small-
est number of variables.

Finally, we remark that, to avoid using a doubly-linked list, we do
not actually remove erased multiequations, but simply mark them using the
"erased” field. Furthermore we use as a stack the same list representing
the U part by moving to the top the multiequations ready to be transferred.



system = record
T,U0 : +ListOfMulteq
end;
SetOfvVariables = record
counter ,varnumb : integer;
vars : +ListOfVariables

end;
multiequation = record
erased : boolean;
S : t+8etOfvVariables;
M : +ListOfTerms
end;
TempMultieqguation = record
S,M : +ListOfTerms
end;
variable = record
name : varname;
m : 4multieguation
end;
term = reco fd
case isfun : boolean of
true :(fsymb : funname;
args : tListOfTerms};
false :({v : tvariable)
end;
Psy&tam = tgyatem;
Pterm = +term:
PListOfTerma = +tListOfTerms;
PListOfMulteg = +ListOfMulteq;
PListOfTempMulteq = +tListOfTempMulteq;
Pmultiequation = tmultieqguation;

To complete the complexity analysis of procedure "unify", let

be the complexity in time of executing lines 1-3 and 14 of "unify”
of lines 4-13 of "unify”, 1-8 and 14 of "SelectMultiequation”, 1-5

and 42 of "compact®:

of lines 9-13 of "SelectMultiequation”;
of lines 2~41 of Ycompact®;
of lines of "compact®;
of lines of Taomnpact®.,

sguations in the initial system;

Py

in the initial system of multieguations;

{variable and not} which appear in all



procedure SelectMultiequation (var U : PListOfMulteq; e
var mult : Pmultiequation); =i
var NotErasedHeadOfU : boolean;m : +multiequation;
begin
mult:=HeadOfListOfMulteqg(U) ;
if mult+.erased or not(multt.St.counter = 0) then fail;
mult4 .erased:=true;
NotErasedHeadOfU:=£false;
repeat
:=HeadOfList0fMulteq (U) ;
if m+.erased then U:=TallOfListOfMulteq (U)
else NotErasedHeadOfU:=true
until EmptyListOfMulteq(U) or NotErasedHeadOfU;
end; (@selectMultiequation#)

o L DD =2 W O~ ML e W N =2

s wmd med esd cod

Fig. 5

tmnf “be the total number of multiequations in the final system;

thefr be the total number of temporary multiequations which appear in all
the frontiers;

t¥fr be the total number of variable occurrences in the left members of
the temporary multiequations in all the frontiers;

tv be the total number of distinct variables in the system;

t £ be the total number of pointers from variables to multieguations
which are moved by "compact” in the merging phase.

The following theorem can be easily proved.

Theorem 5.1 - The complexity in time of "unify®, with the versions of
SelectMultiequation® and "compact® given in this section, is bounded by

(5.1} Cfﬁ{@a% ¢b¢ GC+ @é¢ c@+ cﬁ)ts + (cc+ cd+ ce)ttfr +

5 N N
- Gg - ghtmef + Ci(imei+ 2ﬁmef) * cjtmefr + cktvfx €1 pf

Proof - Most of the terms in (5.1) can be derived by the definitions of
fanify®, "SelectMultieqguation® and "compact® by simple inspection or by
utilizing theorem 4.2. We only want to comment on the fifth term. The
total number of elements deleted from the list U in line 11 of "Select-
Multieguation® is -equal to the number of initial multiequations plus the
number of "ready® multiequations added on top of the list U by line 40
of "compact". The latter is exactly tgef- Furthermore the body of the
repeat statement of "gelectMultiequation®” is executed once for each call
of "SelectMultiequation” (i.e. tgef times) without deleting any element.
Finally, note that if "unify” faiis, (5.1) still holds if the values
tefre tmefrtmefr: tvfr and tpf are referred to the state of the system

when fallure occurs. 0
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procedure compact (F : PListOfTempMulteq;var U : PListOfMulteq);
-yar temp : tTempMultiequation;mult,multi,multt : tmultiequation;
v : +tvariable;varterm : tterm;

while not EmptyListOfTempMulteq(F) do

|
2
3
4
5
6 Eegin
7 temp :=HeadOfListOfTempMulteq (F);
8 F:=TailOfListOfTempMulteq (F) ;
9 varterm:=HeadOfListOfTerms (tempt.S);
10 multe=varterm+.v+t.m;
11 temp+.S:=TailOfListOfTerms (tempt.5) ;
i2 mult+.S+.counter:=multt.S+.counter - 1;
13 while not EmptyListOfTerms (temp+.S) do
14 begin :
15 varterm:=HeadOfListOfTerms (temp+.S) ;
16 multl :svartermt .v+.m;
17 tempt .S:=TailOfListOfTerms (temp+t.S) ;
i8 multi+.S+.counter:=multi+.S+.counter - 1;
19 if not(mult = multi) then
- 20 begin .
21 if mult+.St.varnumb < malttt.S¥.varnumb-then
22 begin
23 multts=multi;
24 multd s=nmult;
25 multe=multt
26 end; :
27 mult4.S4.counter:=mult+.S+.counter + multi+.S+.counter;
28 mult+.S+.varnumb:=mult+.S+.varnumb + multi+.S+4.varnumb;
29 repeat
30 v:=HeadOfListOfVariables (mult1t.S+.vars);
31 multi+.S4.vars:=TailOfListOfVariables (multi+.S+.vars);
32 vt .me=mult;
33 mult+,S+.vars:=AddToEndOfListOfVariables (v,mult+.St.vars)
34 until EmptyListOfVariables (multit.St.vars);
35 multt . M:=AppendListsOfTerms (mult+ .M, multl+.M);
36 multit.ervased:=true
37 end
38 end;
39 multt.M:=AppendListsOfTerms (mult+ .M, tempt . M) ;
40 if mult+.St.counter = 0 then U:=AddToFrontOfListOfMulteq(mult,U)
41 end

42 end; (ecompact®)

Fig. 6

We can prove the following theorem.

Theorem 5.2 = Letggﬁ, e the total number of distinct variables in the system.
Then an upper bound'®’ to tog is given by

toesty | 1log ﬁvj

, I
(#) The better bound tyffgtiﬁﬁg{éﬁg t%} can be obtained with a more accurate

analysis.
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Proof -~ Let us compute the maximum number of times the procedure
"compact™ can move a pointer from a variable V; to a multiequation.

A pointer from V; to a multiequation S=M is moved when this multiequa-
tion is merged with a multiequation §'=M' such that |S|<|s'| . Thus,
after the merging, Vi will point to a new multiequation S"=M? with
|s®|=2|s|. Therefore, the total number of times the pointer from Vi can
be moved is bounded by |log ty| Since the total number of variables is
ty, then t s must be bounded by tvl}og tup

O
We can now determine the complexity of algorithm “unify"”.

Theorem 5.3 = The computational complexity in time of algorithm "unify",
with the versions of "SelectMultiequation®™ and "compact®” given in this
section, is bounded by

C<e, + cpt, + oty [}og tYJ

where t; is the total number of symbols and t, the total number of
distinct variables in the initial system of multiequations, and CprCye
Cp are sultable constants.

Proof - This result derives from theorem 5.1 by noting that we trivi-
ally have tmef <ty,tmei <ty, tmefr < ttfr, tvfr Stefr and tpf <ty|log tyf
for theorem 5.2. Furthermore, te¢fr < tg since all the terms in the
frontier appear in only one frontier and their roots are different
symbols of the initial system. 0

Theorem 5.4 - The algorithm "unify" with the versions of "SelectMulti-
equation” and "compact™ given in this section, is linear in space with
the total number of symbols in the initial system of multiequations.

Proof - In our program, memory ig allocated only through declaration of
unstructured variables and through the execution of the single record-
-allocation procedure "new". Thus any part of the program which is
linear in time must also be linear in space. But the only part which is
not linear in time is lines 29-34 of "compact" where no variable decla-
ration is present, and where the number of calls to the allocating
procedure " new" is equal to .the number of calls to the deallocating
procedure “"dispose®. Thus the total number of allocated cells is not
modified in this part. O

In many practical cases the number of distinct variables is small
with respect to the total number of symbols and thus the dominant term
in.the complexity is the linear one. However, there are pathological
cases where the logarithmic term is dominant. For instance, let us '
consider the class of unification problems exemplified by the following
problem with two terms and 8 distinct variables:

f{x?lxggxggx7,x%gxsgx1) and

f{xz,xégxggxgﬂxg,x7px5)s
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It is easy to see that the total number of times pointers are moved is
proportional to ty log tv, whereas the total number of symbols tg is
linear with tvy:

We point out that we could improve the worst case behaviour of our
algorithm with a different implementation of the operation of multiequa-
tion merging. In fact, we could represent sets of variables as trees
instead of as lists, and we could use the well-known UNION-FIND algor.
rithms [15] . The complexity in time of this implementation is known to
be almost linesr with the number of FIND operations, i.e. of variable
ocgurrences in our case. However guch an implementation would be more
complicated that the one presented in this gection, and, in some’
cases, it might be less efficient. Furthermore, even with the above
modification, the complexity of the algorithm would not be linear,
wher?ag an algorithm of linear complexity is presented in the next
section.

6 - AN ALTERNATIVE FINAL REFINEMENT: THE LINEAR ALGORITHM

In the previous section we have seen a technique for determining a
multiequation S=M in the U part of the system such that the variables
in § do not occur elsewhere in U. This technique used a counter added
to every multiequation. In this section we introduce a depth-first
search technigue which is better in the worst case.

We remind that we have defined in section 3 a relation < between . the
gsets of variables S; which constitute the lefit members of the multiequa-
tions in the U part of a given system. If S3 <855, then a term can be
found in M4 where a variable of §j does occur. gur technique consists of
choosing & multiequation 5;= My whatsoever, and of constructing a seqguence

Sig = 54, Siiy Sizg@a@, $in

with
Si}{&: Sik‘%”i k3651 poece 'n“1

until a set Si, is found such that either no S5j exists with Sip< S84 or
Sip= Six for some O<k=n-1. In the first case we have found a suitable
multiequation to transfer, while in the second case theorem 3.3 assures
that the system has no unifier. :

Interpreting the above construction in terms of the graph G of the
relation <, we follow a simple path in the graph starting from a node Sji
whatsoever and marking the nodes on the path. We stop with a node Sip
when either no next node éxists or when we find a marked next node. In
the latter case we stop with failure, while in the former case we perform
a step of algorithm "unify” and we obtain a new system R'. It is easy to
see that the graph G' of the relation < defined in R' is obtained from G
with the following operations '

i) delete 53, and all ite. incoming arcs;
11) coalesce some sets of nodes of G;
£i1i) add some arcs.
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type system = record
T,U : +ListOfMulteqg
end;
SetOfVariables = record
vare : +ListOfVariables:

varocc : tListOfTerms;
egvar : +ListOfMulteq;
marked : boolean;
mergedmult : 4multiequation
end;
multiequation = record
erased : booleans
S : tSetOfvVariables;
M : +ListOfTerms
end;
TempMultieguation = record
S,M : +ListOfTerms
end;
variable = record
name : varname;
M : +tmultiequation
end;
term = record
marked : boolean;
case isfun : boolean of
true :(fsymb : funname;
args : tListOfTerms;
case top : boolean of
true :(mult : *multiequation);
false :(ffather : tterm));
false :(v : tvariable;
vfather : tterm;
deleted : boolean)
end;
Psystem = tsystem;
Pterm = t+term;
PListOfTerms = +tListOfTerms;
PListOfMulteq = +ListOfMulteq;
PListOfTempMulteqg = +ListOfTempMulteq;
Pmultiequation = +tmultiequation;

Pig. 7

By marking a coalesced node 1ff any of its components is marked, the path
of marked nodes in G is still a path of marked nodes in G'. If this path
is nonsimple, we can stop with fallure. Otherwise we can continue the
marking operation from its last node. If the deleted node Si, coincide
with the initial node Sjg, namely if it was the only marked n@deg we can
restart in G' from any new node.

Since a mark can be eliminated only by erasing a node, whereas trying
to mark a marked node causes faillure, no node can be marked twice. Thus

w— 2T -



procedure SelectMultiequation (var U : PListOfMulteq;var mult :

Pmultiequation) ; :

var me,meil : tmultiequation;ontop,MelEquatedToMe,ErasedHeadOfU :
boolean:vterm : +term;

begin

me+t.St.marked:=true;
ontop:=£false;

1
2
3
4
5
6 me :=HeadOfListOfMulteq{U) ;
7
8
9
0
1
2

: repeat
1 while not EmptyListOfTerms (met.S+.varocc) do
1 begin
1 vterm:=HeadOfListOfTerms (me+.St.varocc) ;
13 if vtermt.deleted then
14 me+ .5+ .varocc:=TallOfListOfTerms (me+ .S+ .varocc)
15 else me:=DominatingMulteqg(vterm)
16 end;
17 Me1EquatedToMe:=true;
18 while (not EmptyListOfMulteq(me+.S+.eqvar)) and MelEquatedToMe do
19 begin
20 mel :=HeadOfListOfMulteqg (me+ .S+ .eqgvar) ;
21 if (mel = me) or (meit.St.mergedmult = me) then
22 me+.S+.eqgvar:=TailOfListOfMulteq (met .S+ .eqvar)
23 elgse MelEquatedToMe:=false '
24 end;
25 if EmptyListOfMulteq(met.S+.eqvar) then ontop:=true
26 else
27 begin
28 me+ .5+ .eqgvar :=TallOfListOfMulteq (met .S+ .egvar) ;
29 merge {(me ,mel}
30 end
31 until ontop;
32 mult:=me;
33 met.erased s=true;
34 ErasedHeadOfU:s=true;
35 while (not EmptyListOfMulteq(U)) and ErasedHeadOfU do
36 begin
37 mei s=HeadOfListOfMulteq (U) ;
38 if mel+.erased then U:=TailOfListOfMulteq(U)
39 else ErasedHeadOfU:=false
40 end ;

41 end; (#SelectMultiequation®)

Fig. 8

the cost of the above construction, during the entire execution of algo-
rithm "unify”, is linear with the number of nodes in the initial graph,
{.e. with the number of distinct variables in the system.

The nonlinear behaviour of the program given in the previous section
was due to the fact that in the compactification phase two multiequations
were possibly merged which were both already the result of previous merg-
ings. Since every merging implies rewriting some pointers, it could happen
that some peinter had to be rewritten a number of times which, in the
worst case, was logarithmic with the number of distinct variables. To
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1 function DominatingMulteq(vterm : Pterm) : Pmultiequation;
2 var me : tmultiequation;fterm : +term;
3 begin

4 vtermt . .marked::=true;

5 fterm:=vterm+.vfather;

6 if fterm+.marked then fail:

7 Ttermt.marked:=true;

8 while not fterm+.top do

9 begin
10 fterm:=fterm+.ffather;
11 1f fterm+.marked then fail;
12 fterm+ .marked :=true
13 end;

14 me:=fterm+.mult;
15 if me+t.St.marked then fail;

16 met .5t .marked:=true;

17 DominatingMulteqg:=me

18 end; (#DominatingMulteqe)

Fig. 9

avoid this fact, instead of actually merging two multiequations, a
two-way link could simply be added between every pair of multiequations
to be merged. The actual merging should then take place only when a
"head" can be determined, for each set of multiequations to be merged,
which constitutes a unique propagation starting point. Of course one
must be sure never to have to merge two heads.

In the program described in the previous section such a delayed
merging technique was not useful, since at any time an updated global
counter had to be maintained for every set of "equivalent" variables.
The pointers to such global counters might then again have to be moved
a logarithmic number of times.

Here one may delay mergings until the above mentioned marked node
path meets a node with no successors. Then this node is considered a
suitable propagation head and the mergings with it take place until
either a node to be merged is marked or a merged node happens to have
successors. In the former case the program stops with failure, while in
the latter case the marking phase is continued. If all the required
mergings take place without finding successors, then the resulting node
corresponds to a multieguation suitable to be transferred. In conclusion,
in any intermediate step of the algorithm, there is more than one propaga-
tion head. However, all heads are marked nodes, and thus any attempt to
merge two propagation heads causes failure.

In Fig. 7-11 we give the data type definitions and the procedures
necessary to complete the program in Fig. 2-3 (straightforward parts are
given in the Appendix). During the marking phase, the path of marked
nodes is obtalned by visiting the terms from the leaves (variable
occurrences) to the roots. Thus a field pointing to the father (selected
by “"ffather” in function terms and by "vfather"” in variable terms} has
been added to each term. When a function term is in the right member of
a multieguation it has no father and thus an alternative field "mult®
points to such a multieguation.
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procedure merge (me,mel : Pmultiequation) ;
var fterm : +term;v : +variable;

begin
1f met1+.S4.marked then fail:;

1
2
3
4 if
5 mei 4.5+ .marked:=true;
6 repeat

7 v:=HeadOfListOfvVariables (mei4.8+.vars);

8 mel+.S4.vars:=TailofListOfVariables (me1+.54.vars);
9

Vi.m=me;

10 met.84.vars ::=AddToEndOfListOfVariables (v,me+ .St .vars)
11 until EmptyListOfVariables (meit.S+4.vars);

12 met.54.varocc:=mel +.54.varocc;

13 me+@S%O%qvarzgéppedzistsafﬁulteq(me+.S+,eqvar,me1+es+.eqvar);
14 meit+.S+ . mergedmuli:=me;

15 while not EmptyListOfTerms (meft.M) do

16 begin

17 fterm:=HeadOfListOfTerms (me1+. . M) ;

18 mel+ . M:=TallOfListOfTerms (melt.M);

19 frterm+ . multe=me:

20 met M:=AddToEndOfList0fTerms (fterm,met M)

21 end;

22 melt.erased :=true

23 end; (#Emerges)

Fig. 10

Tn a “Set0fVarizbles®, besides the field "vars" containing a list of
the variables of the set, there are the fields "varocc" and "eqvar". The
first field contains the list of all the occurrences of the variables in
the set, and the second field contains the list of all the multiequations
containing variables which have been equated to some variables in the set.
In other words "egvar" contains the list of all multiequations which ought
to be merged with the given multiequation, but whose merging has been delay-
ed. After merging, the field "mergedmult® of the eliminated multiequation
points to the resulting multiequation. This field is needed to redirect the
pointers from the "egvar® field of other multiequations. Furthermore, - '
instead of actually deleting variable occurrences from the "varoce” lists,
we mark their "deleted” field.

The multiequation to be transferred idé detected by the repeat statement
(lines 9-31) of "SelectMultiequation®”. The body of this statement consists
of the sequence of two phases: the marking phase and the merging phase. The
marking phase (while statement, lines 10-16) goes on until a multieguation
is found such that the variables in its left member do not occur elsewhere
in the U part (i.e. its "varocc” field is empty). Then this multiequation
becomes a propagation head in the merging phase, and it is merged with the
first multiequation different from itself (if any) found in its "egvar”
list.

To perform the complexity analysis of procedure "unify”, let
cg be the complexity in time of executing of lines 1-3 and 14 of "unify”;

of lines 1-8, 32-35 and 41 of "SelectMulti-

¢_ of lines 4-13 of "unify"®,
lines 1-5 and 41 of "compact”;

equation”, and of

mBG”



procedure compact(F : PListOfTempMulteqg;var U : PListOfMulteq);
var temp : +TempMultiegquation;vterm, vtermi,t : tterm;
mult,mult? : +multiequation;
begin
while not EmptyListOfTempMulteq(F) do
begin
temp:=HeadOfListOfTempMulteq (F) ;
F:=TailOfListOfTempMulteq (F) ;
vterm:=HeadOfLigtOfTerns (tempt.S) ;
temp+t.5:=TailOfListOfTerms (temp+t.S) ;
mult:=svtermt.vi.m;
vterm+t.deleted:=true;
if vtermt.marked then U: AddToFrontOfListofMulteq(mult U}
while not EmptyListOfTerms (temp+.S) do
begin ‘
vterm] :=HeadOfListO£fTerms (temp+.8) ;
tempt.5:=TallOfListOfTerms (temp+.S);
multis=svtermit.v4t.m;
vitermit.deleted:=true;
if vtermi+.marked then U~aAddToFrontOfListOfMulteq(mult1 uj);
if not(mult = multT)then
begin
mult+t.St.eqvar :=AddToEndOfListOfMulteq(multi,mult+.St.eqvar);
multi+ .54 .eqvar :=AddToEndOfListOfMulteq(mult, multi+.St.eqvar)
end
end;
while not EmptyListOfTerms (temp+.M) do
begin
t:=HeadOfListOfTerms (temp+ .M) ;
temp+.M:=TailOfListOfTerms (temp+.M) ;
tt.toprstrue;
tt.multe=mult:
multt . M:=AddToEndOfListOfTerms (t, mult+.M);
if t+.marked then
in
%g multt.5+.marked then fail
else UamédéTcFr@nthListofMulteq(mult U)
@nd
end
end
end; (®compact#)

Fig. 11

3
e

Q O o O
a L I o Se

of lines 9-1C¢, 17-18 and 25-31 of "SelectMultiequation®, and of lines
1-5, 12=15 and 22-23 of "merge"¥;

of lines 10-16¢ of "SelectMultiequation”, and of lines 1-8 and 14-18 of
"DominatingMulteq®;

of lines 8-13 of "DominatingMulteqg”;

of lines 18-24 of "SelectMultiegquation”;
of lines 6-11 of "merge”;

cf lines 15-2% of "merge®;

- 31 -



of lines 35-40 of "SelectMultiequation®;

c
—u

Cy of lines 5-14, 27 and 40 of "compact®;
C, of lines 14-26 of "compact";

c, of lines 27-39 of “"compact”.

In addition to the quantities tg, t¢fr,... defined in the previous
section, let tys be the total number of variable occurrences in the

initial system.
We can now prove the following theorem.

Theorem 6.1 - The complexity in time of "unify", with the versions of
FgelectMultiequation® and "compact”™ given in this section, is bounded by

< ; +
(6.1) C.W{ca$ c b et cqt ce+ cf)ts + (cc+ cd+ ce)ttfr + cg + Cmtmef

t +
S

+ ot + 2¢_t + ¢ t + 2c_t
T Vo q’s r t

+ct +c
n meli 8 v

vEr
+ @u(t )

. Ztm@f)+ rel + ¢ t + cx(ttfr“ t

vtmefr w vfr vfr

mei
Proof - Most of the terms in (6.1) can be derived from the procedure
definitions by simple inspection or by analogy with the corresponding
terms in (5.1). Among the new terms, we comment on terms cgtg, Cgty and
crtg. The first term derives from the fact that every term can be marked
at most once, since if we try to mark it twice we cause failure. The
second and third term measure the cost of multiequation merging and rely
on the fact that every multiequation is merged at most once with a
propagation head. Finally the term 2.cy.tyfy Measures the complexity of
examining the lists of two-~way links between multiequations generated
in delaying merging.

O

We can now give our final results.

Theorem 6.2 - The computational complexity in time of algorithm "unify”®,
with the versions of "SelectMultiequation"™ and "compact” given in this
section, is linear with the total number tg of symbols in the initial
system of multieguations.

Proof - Since all quantities tefy, tmeis.ecs tvo in (6.1) are bounded by
tg, the result follows from theorem 6.1. 0

Theorem 6.3 — The algorithm "unify"” with the versions of "SelectMultieqgua~
tion® and "compact® given in this section, is linear in space with the
total number tg of symbols in the initlal system of multiequations.

Proof - Linearity in space descends from linearity in time using the same
argument of theorem 5.4.

0
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APPENDIX

In Fig. 12 and 13 we show a few straightforward data type defini-
tions and procedures necessary to complete both programs described in
sections 4, 5 and 6. We give the representation and the operation defini-
tion only for the lists of type "1.ia+0FfTerms” . The lists of type "ListOf-
Multeq", "ListOfTempMulteq® and "ListOfVariables™ are defined exactly in

the same way.

To help the reader in preparing a running program, in Fig. 14 we
give two procedures for reading and writing a system of multiequations,
while in Fig. 15 and 16 we show two initialization procedures for the two
programs of sections 5 and 6. The reading convenctions are as follows.
Variables and function symbols are represented by "V" and "F" immediately
followed by a two-figure integer. Terms must be written in the usual func-
tional notatiocn, while a multiequation is represented as a sequence of the
variable symbols in the left member and of the terms in the right member,
all separated by egual signs. If the right member is empty, then “=E" must
follow the last variable symbol. Finally, multiequations are separated by
semicolons and the whole system is enclossd in a pair of brackets, while
blanks are neglected everywhere. We show below an example of acceptable

input:
(VO1 = F10(P15(V02} ,FO1) = F10(V03,V04); V02 = E; VO3 = E; Vo4 = E}

Data type and procedure definitions must be assembled into a main
PASCAL program according to the following paradigm.

program unification {input,output]);
label 1;
{type definitions}
var s : tsystem;
{procedure definitions}
begin
s:=readsys;
initialize(s);
unify (s} ;
writesys (s);
1:end

To run the simpler program described in section 5, the part
{ type definitions} must consist of Fig. 12 and 4 and the part
{ procedure definitions) of Fig. 13, 15, 14, 6, 5, 3 and 2 in the order.
Conversely, for obtaining a running version of the linear progranm describ-
ed in section 6 {type definitions} must be substituted with Fig. 12 and 7
and {procedure definitions} with Fig. 13, 16, 14, 14, 10, 9, 8, 3 and 2 in
the order.




type funname = array [1..12] of ‘char;
varname = array [1..12] of char;
AuxListOfTerms = record

‘head : 4+ term;
tail o 4huxListOfTerms
end ;

ListOfTerms = record
first,last : +AuxListOfTerms
end;

Fig, 12

procedure aAddTerm(t1 : Ptermi;var argsofm,argsofmi : PListOfTempMulteq) ;

var temp : +TempMultiequation;

begin
if EmptyListOfTempMulteq (argsofm] then
begin

new (temp) ;
temp+t.S:=CreatellstOfTerms;
tempt .M:=CreatelListOiTerms
end
else begin
temyzzH@adOfLithfTempMulteq(argsofm);
argsofmz%TaileListOfTempMnlteq(argsofm)
end;
if ti+.isfun then
temy%.M:mAddT@EﬁdeLiSiOfTerms(t?,temp+‘M)
alse temp%BSgx&ddToEndOfLigtOfTerms(tﬁ,temp¢08);
argsafm?:ﬁAéchEndOfLiSthTempMulteq{tempfargsofm?)
end; (#AddTerms)
function BuildFunctionTerm(fs : funname;args : PListOfTernms) : Pterm;
var t : tterm;

begin
new {t,true) ;
tt.isfun:=true;
tt . fsymbe=£fs;
tt.args:=args;
BuildFunctionTerm:=t
end; (¢ BuildFunctionTerms)
function diffsymb(£51,£52 : funname
begin
diffsymb:=not{fs1 = £s2)
end; (¢#diffsymbs)
procedure fail;
begin
writeln (‘no unification’);
oto 1
end; (#fall#)

o
<
o
5,.‘5
o
w
o

Fig. 13a
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function CreateListOfTerms : PListOfTerms;
var s : tListOfTerms; 1 : tAuxListOfTerms;
begin
new (s) ;new (1) ;
g4 .firstei=lsst.lagt=1;
l1t+.head:=nil;l4+.tail:=nil;
CreateListOfTerms =
end; (¢#CreateListOfTernms #)
function AGATOERdOfListOfTerms (t : Pterm;s : PListOfTerms): PListOfTerms;
var 1 : tAuxListOfTerms;
begin
new(l);14+.head:=nil;l+.tail:=nil
g+.last4.head:=t;s+t.last+.tail:=1;
54,last:=1:Ad4ToEndOfListOfTerms =g
end; (@AddTOQﬁﬁ@€y$%?inéxm%ﬁ)
function HeadOfListOfTerms (s : PListOfTerms): Pterm;
begin
HeadOfListOfTerms:=s+ . first+ . head
end; (¢HeadOfListOfTerms &)
xunctlon TailOfListOfTerms (s : PListOfTerms): PListOfTerms;
zgg 1 ¢ AuxListOfTerms;
Dpegin
WM%§§3%,§ixgt;
g4, Firste=1t.tail;
dispose (1) ;
TailOfListCfTermg =8
end; (#TallOfListOfTerms &
fuﬁstlgn EmptyListOfTerms (s : PListOfTerms): boolean;
begin
if st.first = .last then EmptyListOfTerms:=true
else me%jLL%tQ Tafﬁ&:mfalse
end; (¢E tmptyListOfTerms #)
fmuﬁt;@ﬂ addToFrontOfListOfTerms (t ¢ Pterm ;s : PListOfTerms) : PListOfTerms;

var T +AuxListOfTerms:

new(l}:1+.head:=t;1+.tail:=st.first;
g+.first:=1;AddToFrontOfListOfTerms =8
end; (#AddToFrontOfListCfTerms®)
function AppendListsOfTerms (t1,t2 : PListOfTerms) ;: PLigtOfTerms;
begin ‘
if not({t2+.first = t2+.last) then
begiﬁ
£1+.last+t . head:=t2+.first+.head;
t14.last+ . tail:=t2+.firsts.tail;
t14.last:=t24.last
end;
dispose(t2t.first);
dispose(tl]};
Appendliste Qi@ﬁrm@amiﬁ
end; (#AppendListsOfTermse)

Fig. 13b




POHCTION READSYS :
- TYPE THODIGIW = 0..99;
- YAR CHB : CHBR:SYS : USYSTEH:AVAR
BULT :
Tog §TERH:
PROCEDURE HEXTCHAR:
BEGIE
BREPEAT
READ [CH)
UHTIL CH <> ¢ ¢
BEHD: ({(#HBITCHAR®}
POHCTION DECODE (HAHE :
BEGIH
DECODE:=
END: {(=DECODE#}
FORCTION GETYAR
AR IMDAR =
BEGIHE
READ(CH} :THDARA 17 :=CH:
BRBADICH) : ITHDARAZY=CHy
TED:=DECODE (INDARY ;

PSYSTEN;

VARNANE) :

PYARTABLE;
VARNARNE;IND : THODIGIHV

TP AVAR&GIND? = HIL THEH
BEGIH
HEEB{V} ;
BYRRAIHD? : =V :GCETVAR =V
¥, HAHE:=THDAR
BED
ELSE GETVAR:=AVARAIND?
EBD: (®GETVRR=®}
FONCTION RDVYTERM : PTERE;

¥AR T 2z ITERH:
BEGIH
HEB(T,? 3 s ISFUH: =FALSE;
?§@§QM““z%ﬁz;
HEZTCHAR
RDYTERHA: =
END: (®RDUYTERY®]
FPUNCYION RDFTERM @ PTERE:
VAR T,ABGC : ITERM;RIGHTPAR : BOOLEAN;
BEGIHE
NE® (T, TRUB} ;T1.ISFUN:=TRUE;
REEDICH) ;T! .PS5YHB&T?7:=CH;
READ(CH} :T!.FSYHB&2?:=CH;
T ARGS:=CREATELISTOVPTERYS

HEITCHAR
CASE 8 OF
8 §y%§§ § =t 8

Ty
B . e Ty
(¢ ¢ DEGLIH

t=RDPTERH;
=EDVYTERY

??

Fig.

(ORD (NAMEA2?Y~ORD {07} )+ {ORD {(NAHE&1?

@
@

s ARRAYATWODIGIN? OF {VARIABLE:
{HOLTTEOUATION:SETY ¢ ISETOPYARIABLES;IND :

TEHODIGIN: Y

THODIGIH:

) ~ORD (701} ) *10

I VARTABLE:

HDOFLISTOPTERKS (ARG, T¢ . ARGS) 3

1da
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CASE CH OF
,% ¢ RIGHTPAR:=FALSE;
¥y Y : RIGHTPAR:=TRUE
END
UWTIL RIGHTPAR;
NEXTCHAR
ENWD
B¥ED:
ROPTERH =T
EWD: (®RDFTERH=%}
BEGIHE
FOR IND:=0 TC 99 DO AVARLINWND?:=NIL;
HE®{SYS) ;
5988, Te=CREATELISTOFHULTEQ;
$¥31 . 0:=CREATELISTOFPHRULTEQ;
WELTCHAR:
REPBAT
HE® (HULT) :MULTI ,B:=CREATELISTCFTEHHES;
§E§($ET¥);%§L??QS:ﬁSET§;
SETVI,.VARS:=CREATELISTOFYARIABLES;
85¥51 . U:=4DDTOE ﬁSG?LEbTOFEﬁLTEQ(ﬁHLT SYSSQB).
REPEART
BEXTCHAR:
CASE CH OF
syge BEGIH
T:=GETTAR:
V!, Hz:=HOLT;
SETYE . ?RPS°“iDDTOENDOFL;STGF?AEIABLES(V SETVI.YARS) 3
BEYTCHAR
E¥D:
BEGIN
T'xRDFTWRH'
MULTY! . ADDTOENDOFLISTO?TERHS{T HUOLT!. M)
E¥D;
SE® : HEXTCHAR
END
OETIL CR < =7
UHTIL CH <» %1% 3
HEADSYS:=8%Y3
FED: (®#READ3YSs%):
PROGCEDURE HRITESYS (5YS ¢ PSYSTEH) ¢
COHST HAXLINE = 70: ‘
YAR LINELEE : INTEGER:MULTLIST : ILISTOFHULTEQ:HULT : {HULTIEQUATICHR:;
YARLIST : 'LISTOPVARIABLES:;V : !VARIABLE;
PROCEDURE OUT (CH ¢ CHAR}
REGTE
I¥ LIWELEY > HAXLIWE THEH
BEGLE
YRITELE (OUTPUT) : LINELEN:=0

(¥

i@e

bl

&

[PEECH) : LINELEN:=LINELEN®1
§%@§T@§
DORE URVYAR (V : PVARIABLE):

Fig: 14b
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OUT (V1. HANE&1?) ;
OUT (V! .HAME&2?)

© EEDg {«¥RVAR=)
. PROCEDURE WRFTERHM {T : PTERH):
_ ¥AR ABRGLIST : !LISTOFTERHS;ARG : ITERH;

BEGIN
QUT(*P)
OUT(TI.FSYEB&1?) ;
OUT (Y. FSYNB&27?) ;
TP HOT EHPTYLISTOFTER¥S{T!.ARGS) THEN
BECTH
QUT(* (*) ¢
ARGLIST:=T1,ARGS;
T1,ARGS:=CREATELISTOFTERNS;
REPEAT
ARG:=HEADOFLISTOFTERHMS{ARGLIST) :
ARGLIST:=TAILOFLISTOFTERHMS (ARGLIST) ;
T8, ARGS : =ADDTOENDOFLISTOPTERMS (ARG, T!.ARGS) ¢
TF ABGCI.ISFUY THEVN WRFPTERH {ARG)
BLSE BRYAR{ARGI . V)
IF WOT EMPTYLISTOFTERHS{ARGLIST) THEW 0UT{',?)
GNTIL ENPTYLISTOFTERHS (ARGLIST)
GUT (%)%}
ERD
BND: (#HURFTERH¥)
BEGIH
LIBELENz=0;
BRITELN(GUTPUT) ;00T (" (%)
MULTLIST:=5YS!.T:
S¥S1.Te=CREATELISTOPHULTEQ:
BHILE EOT EEPTYLISTOFNULTEQ{MULTLIST) DO
BEGIN
HULT:=HEADOFLISTOFNMULTEQ (MULTLIST) ;
HOLTLIST: =TAILOFLISTOFHOLTEQ (KULTLIST) ;
SYS1 . Te=ADDTOENDOPLISTOFPHULTEQ (MULT,S¥ST.T) ;
VARLIST:=MULT!.S!.VYARS;
HUYLT!.S?. VARS: =CREATELISTOFPVARIABLES;
BEPEAT
¥:=HBADOFPLISTOFVARIABLES (VARLIST) ;
FARLIST:=TAILOFLISTOFVARIABLES (VARLIST) ;

BULT!.S!.VARS:=ADDTOENDOPLISTOPVARI ABLES(V, HOLT!.S1.VARS)3

¥RYAR (V) :
OUT {¥="}
UHTIL EMPTYLISTOFVARIABLES (VARLIST):
IF ERPTYLISTOFTERHS(MULT!.H) THEN OUT(*E?)
ELSE URFTERK (HEADOFLISTOFTERMS (HULTI.H)) 3
TP MOT EEPTYLISTOPHULTEQ (HULTLIST) THEW
BRGIN
DUT(":;7) :¥RTTELY (OUTPUT) ; LINELEN:=0
BED
EHD:
OUT (7) ¥} :HRITELN (OUTPUT)
END: (®HRITESYS#*)

Fig. 14dc
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PROCEDURE INITIALIZE (VAR SYS : PSYSTEH);

VAR HULT : {MULTIEQUATIOW:MULTLIST : !LISTOFHRULTEQ:

| YARLIST : (LISTOFVARIABLES;TERBLIST : !LISTOFTERHS:
?EQCEQSBE COURTOLC (T : PTERH) ;

VAR BRBGLIST : VLISTOFTERHES;

EGIH
I¥ Ti.ISFON THENW
BEGIN
‘ ﬁEGLES?:$T§@§RG“;
T8, ARGS:=CRE LISTOPTERAS:
HHILE KOT g@???i%f@?@ﬁﬁ%%{&ﬁ@ifﬁ?; ite
BEGIN

COGYTOCC {HBADOFLISTOP TERAS (ARGLIST) ) ¢
TE ARG :=A0DTOENNL ST ERES (HEADOFLISTOFTERHAS (ARGLIST), T!.ARGS])
AEGLIST:=TATLOPLISTOFTEHRS {ARGLIST)
B¥D
EHD
BELSE T1.VI,H1,8! COUNTER: =TI, VI HL,50, COUNTER + 1
FEDs {aC0UETOCDS)
BEGIH
BOLTLIST::=5
SYSL . Ur=CHE STOPHULTEG:
BEPERT

HULT=HEADOFLISTOPHULTEQ{HULTLIST) ¢
HULTLIST:=TATJLOFLISTOPHULTEQ (RULTLISTY ;
ﬁﬁg?§szﬁﬁ;&$*MEﬁLfE;

HULTE, 8¢ 63¥T2?¢“§3

-%é&L%?m””ﬁSL?EQ {.VARS:

HMULT! .S, YARS:=CREATELISTCPYARIABLES:
HULT!. 3!, YARHUHB:=

BEPEAT
BOULTI, S . YARNUHKB:=HULT!, S!, VARNUKB + 13
MULTI.S?.VARS :=ADDTOENDOPLISTOFYARTABLES (HEADOFLISTOPVARIABLES (VARLIST} ,

wF o

HOLT!.S?T.VARE}

] FOFVARIABLES(YARLIST)
;ngaﬁg%§iﬁgf§éﬁ I8Ty
?ﬁ%ﬁ? E%Téyﬁﬁi”?Q(ﬁULT 5¥St. )

FPHULTEQ (UL
LOPLISTOFRULTEQ

FLIST) ;
) (HOLTLIST) 3

% f}ijg’ ?551 ﬁgg M
%@@??EP%S§T?R§LI§T} Do

BULTI . #z=C

BHILE ROT

BEGIR
COouRTOCT OFLISTUOFTERNS {TERKBLISTY ) ¢

f@;%%ﬁ?g STOFTERMS (HEADOPLISTOFTERKES (TERHLIST) ,HULTI . H) ¢
S ke

OFLISTOPTERHS (TERALIST)

“ADDTORNDOFRLY
@?ﬁ%éf?

TOFHULTEQ{NULT,3Y58 . U}
{#

s
O (HULTLIST) ;



REPEAT
- HULT:=HEADOFLISTOFMULTEQ(MULTLIST) ;

HOLTLIST:=TAILOFLISTOFHULTEQ(HULTLIST) 3
IF MULT!.S!{.COUNTER = 0 THEN
SYS!.0: =ADDTOFRONTOFLISTOFHULTEQ(HULT,SYS!.U)
ELSE SYS5!.0:=ADDTOSNDOFLISTOPHULTEQ (HULT,SYS!.U)
UHTIL EHPTYLISTOPMULTEQ(MULTLIST)
END: (+INITIALIZE*)

PROCEDURE IWITIARLIZE (VAR 35IS 2 PSYSTEH) ;
YAR MULT : IHULTIEQGATION;MULTLIST 2 {LISTOFMUOLTEQ:T ¢ !TERHZ

@

TLIST : !LISTOFTERHNS

PROCEDURE INITTERN (T : PTERH) ;
VAR ARG : ITERM;ARGLIST : ILISTOFTERHS;
BEGIH

T{.MARKED:=FALSE:
IP T!.ISFUHN THEW
BEGIH
ARGLIST:=T! ARG5S
7§, ARGS:=CREATELISTOFTERHNS;
YHTLE MOT EMPTYLISTOFTERHS (ARGLIST) DO
BEGIH
ARG:=HEADOFLISTOFTERMS (ARGLIST) ;
ARGLIST:=TAILOFLISTOFTERHKS (ARGLIST)
IHITTERHE (ARG} ¢
IF ARGI.,ISFUN THEW ,
BEGIH
ABRG!.TOP:=FALSE;
ARGY! . FFATHER:=T
END
ELSE ARG! .VFATHER:=T;
TE@&BGS:ﬂEDDTOENﬁ@?LISTGFTERﬁS(ARGETQg&RGS)
E¥D
E¥D
ELSE
BEGIE
Ti.DELETED: =FALSE;

Ti@gg@ﬁg@Sg@?é?@QCggéﬁﬁfﬁﬁﬁDGFLESTOFTEBHS{T,T?.?ieﬁ!gS§QVARGCC)

HD

B
END: ($IHNITTERH%)

?igu i16a
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£F hed

GIW

BULTLIST:=5Ys81.1U:
3988 .0z= LRE ATFLISTOFKULTEQS
REPEAT

EﬁL"f“&H‘FgD

72

iH

1‘

GF1
?@LTEYS?@¢QEE
HOLT Em%ﬁmﬁzﬂ;
ﬁﬁLT . YARGTO 2=
HULT $€5§@W§@sa Qﬁﬁ‘?fi ?GF%%&?EQ@
§§L¢§¢Mosﬁéf&ﬁ3$m? L5E:

KOLT!.S!, RERGEDHULT:=NIL:

85¥51.0: -é“@TC ¥DOFLISTOFHULTEQ(HULT,STSE

HTTL BHPTYLISTOFHULTEQ(HULTLIST)

HULTLIST:=5Y51.U;
5Y 51,92 =CREATELISTOFHULTE QS
REPEAT

HOLT:=HEADOPLISTOFHULTEQ {HULTLIST) ;
MOLTLIST: =TAT LOFLISTOFRULTEQ (NULTLISY) §
PLISTe=HULT?!. H¥:
HOLTY  H:=CREATELISTOFTERHS
ZHILE HOT EMPTYLISTOFTERHS (TLIST) DO
BEGIE
Te=HEADOFLISTOFTERMS(TLIST)
PLTIST:=TALLOFLISTOFTERMS{TLIST) ¢
TEITTERAIT) §
FTL.POP:=TRUR
T, HULT:=BULT:
MULT! . H:=ADDTORWDOFLISTOFTERHKS (T, BULTY
EED:

S%S?@gzﬁéﬁﬁ?ﬁﬁﬁﬁé?iiS?O?ﬁﬁzTEQ{%GLT@SYSE

ONTIL EMPTYLISTOFHULTEQ (MULTLIST)

= o
F w

(FINLTIALIZEX)

Fig. 16b
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