
1

Model Predictive Control for Energy-Efficient,

Quality-Aware, and Secure Virtual Machine

Placement
Mauro Gaggero and Luca Caviglione

Abstract—Modern datacenters rely on virtualization to de-
liver complex and scalable cloud services. To avoid inflating
costs or reducing the perceived service level, suitable resource
optimization techniques are needed. Placement can be used to
prevent inefficient maps between virtual and physical machines.
In this perspective, we propose a holistic placement framework
considering conflicting performance metrics, such as the service
level delivered by the cloud, the energetic footprint, hardware or
software outages, and security policies. Unfortunately, computing
the best placement strategies is nontrivial, as it requires the abil-
ity to trade among several goals, possibly in a real-time manner.
Therefore, we approach the problem via model predictive control
to devise optimal maps between virtual and physical machines.
Results show the effectiveness of our technique in comparison
with classical heuristics.

Note to Practitioners: Abstract—This paper is motivated by
the success of cloud-based services. Specifically, we consider the
case where the resources of datacenters are accessed through
the Infrastructure-as-a-Service paradigm. To efficiently handle
the load of requests and to tame operational costs, a proper
optimization is needed. To this end, we focus on the selection of
the best maps between virtual and physical machines. We propose
a holistic placement framework for the deployment of user-
requested virtual machines by pursuing different performance
goals, such as counteract to hardware outages or reboots due to
software aging issues, ensure proper security policies, maintain
a suitable service level perceived by users, and reduce power
requirements. The optimal strategies are computed with model
predictive control, which allows to consider complex constraints
and take advantage of future information. The proposed frame-
work is tested in different scenarios characterized by a variety of
workloads and traces gathered in a real cloud datacenter. Results
indicate that our approach outperforms bin-packing techniques.

Index Terms—Cloud computing, energy efficiency, model pre-
dictive control, quality-aware placement, security, virtual ma-
chine placement.

I. INTRODUCTION

Virtualization enables to access on-demand computing and

storage services in a flexible and cost-effective manner. This is

the key component of the cloud paradigm, where computing,

storage, and network resources of physical machines (PMs)

available in a datacenter are partitioned into virtual machines

(VMs) [1]. Thus, it is crucial to define how to map VMs over

PMs, possibly to satisfy some performance criteria. To this

end, two complementary approaches are available: placement

M. Gaggero and L. Caviglione are with the Institute of Intelligent Systems
for Automation, National Research Council of Italy, I-16149 Genoa, Italy
(e-mails: mauro.gaggero@cnr.it; luca.caviglione@cnr.it).

and consolidation. Placement prevents inefficient allocations

when VMs are firstly created by choosing the most suitable

PMs on which to deploy VMs requested by users. However,

fluctuations in the workload jointly with hardware/software

outages may require to update how VMs are placed. To

this end, consolidation periodically migrates VMs over PMs

to maintain proper performance levels. Many works already

investigated consolidation (see [2] for a survey), and all point

out that live migrating a VM requires significant resources and

poses several technical challenges [3]. Therefore, in this paper

we concentrate on placement and propose a novel strategy

based on model predictive control (MPC).

Designing new placement techniques is a nontrivial task, es-

pecially in Internet-scale datacenters, where hardware failures

may lead to permanent or temporary unavailability of PMs.

Besides, the intensive usage of virtualization frameworks could

lead to software aging issues requiring proper rejuvenation

strategies [4], [5]. Both situations may cause a reduction

of the service level perceived by users since some VMs

could be unavailable. Concerning issues due to aggressive

packing strategies, running too many VMs over a single PM

may create race conditions on shared resources or colocation

interference, potentially causing performance losses [6], [7].

Security further complicates the selection of the PM where to

deploy a VM, as some VMs should not be mixed to prevent

data leakage or privacy breaches [8]. Lastly, the power required

by the datacenter may be influenced by the placement policy

and lead to high environmental footprints or heat dissipation

problems [9].

Unfortunately, the conflicting nature of the aforementioned

constraints increases the effort needed to guarantee desired

performance levels. For instance, pursuing energy efficiency

may require to reduce the number of active PMs by packing

many VMs over the same server (see, e.g., [10] for the case

of energy-aware consolidation). However, this may violate

security policies or overload PMs, thus causing performance

degradation. In general, such aspects influence the available

pool of resources, which can be further reduced by the tem-

porary unavailability of PMs [11]. As a consequence, without

proper countermeasures, the “quality” experienced by users

can degrade in a quick and severe manner.

In this perspective, along the lines of the preliminary

work [12], we propose a novel mechanism to devise opti-

mal placement strategies considering all the aforementioned

performance aspects. In particular, the goal is to counteract

hardware outages or reboots due to software aging issues,



2

prevent violations of security policies, reduce operational costs

by taming power requirements, and maintain a suitable service

level perceived by users. To this aim, we adopt MPC, espe-

cially owing to its ability to handle constraints while exploiting

future information [13] as well as its proven capacity to face

a variety of engineering problems [14], [15]. The best map

between VMs and PMs is chosen by solving a finite-horizon

optimal control problem at each time step using a suitable

discrete-time dynamic model of the cloud infrastructure.

The contributions of this work are: (i) the development of

a holistic approach for placement allowing a tradeoff among

the service level delivered by the cloud and technological

constraints characterizing large-scale scenarios; (ii) the defi-

nition of a new, dynamic model to capture the evolution of

VMs created over PMs; (iii) the adoption of MPC to solve

the VM placement problem, possibly by satisfying real-time

constraints; (iv) the comparison with heuristics proposed in

the reference literature.

The rest of this paper is organized as follows. Section II

presents the related work, while Section III introduces the

problem statement. Section IV deals with the discrete-time

dynamic model of the datacenter. Section V describes the

proposed MPC approach for placement, while Section VI

contains the metrics used to quantify performances. Section

VII showcases the numerical results. Finally, Section VIII

concludes the paper.

II. RELATED WORKS

Placement allows to select the most suitable PM for hosting

a VM. An ideal scheme should consider several performance

goals, such as the reduction of the network traffic or the

energy consumed by the datacenter, as well as prevent the

need of future VM migrations or aggressive consolidation

policies [16]. It is also fundamental to balance the load offered

to the datacenter, implement fail-over disciplines, improve

scalability, and avoid wastages of resources [17]. Several

techniques have been proposed during the years, but the most

recent trend exploits placement to pursue very specific goals

[16], [17] or some form of energy-awareness [18].

As regards methods considering specific aspects of a dat-

acenter, in [19] a structural-aware placement scheme is pro-

posed to optimize how VMs are located within a server rack.

A similar idea is used in [20], where a power consumption

model is used to exploit the “natural” grouping of PMs,

e.g., racks, computing rooms, or company-defined branches.

Guaranteeing network performances is another goal usually

enforced through placement mechanisms. For instance, [21]

showcases a method to deploy VMs over PMs to avoid

bottlenecks in the links connecting remote datacenters. Similar

approaches are pursued in [22] and [23], which propose strate-

gies to avoid wastages of resources by taking into account also

the traffic among VMs. Reference [24] explicitly considers

heterogeneous servers by computing relations among VMs

to maximize the used resources, whereas [25] focuses on

the peak usage of every VM. A relevant portion of works

focuses on how placement can be used to provide some

form of fault-tolerance to users. Specifically, [26] and [27]

investigate approaches for placing VMs to counteract server

failures. A similar idea based on redundancy is discussed in

[28], but authors prefer to focus on legislation aspects and

colocation issues. Maintaining a proper service level is another

important topic, especially to maximize revenues [29] or

support novel cloud-based environments (see, e.g., [30] for the

case of MapReduce). In general, the “quality” of the service

perceived by users of a cloud datacenter strictly depends on

the efficiency of sharing physical resources among different

VMs. To this aim, the placement strategy plays a major role,

as aggressive packings could lead to performance degradation.

In this vein, [31] investigates placement and consolidation

strategies considering cache contention, while [32] and [33]

define affinity metrics to avoid performance losses due to

competing VMs. Security is another important goal that has

to be considered when designing placement mechanisms for

real-world datacenters [34]. In more detail, some VMs should

be maintained separated to avoid information leakage [8] or

co-residence attacks [35].

Energy-awareness is the other major research trend. In this

case, placement aims at reducing the energetic cost of the

datacenter, including additional consumption due to thermal

dissipation [36]. The literature abounds of works mixing

green computing aspects with placement (see, e.g., [37] for

a recent survey on energy-aware placement and consolidation

techniques). Concerning possible examples, [38] showcases

how VMs can be efficiently deployed over PMs by means

of suitable predictions of the used CPU. Reference [39]

deals with an ant-colony optimization strategy to reduce the

energy impact of VMs, while [40] investigates geo-distributed

datacenters, possibly equipped with renewable power sources.

Other works dealing with ad-hoc placement strategies for

pursuing energy-awareness are [41] and [42].

In general, works mixing energetic aspects with specific

performance goals are only a fraction [37]. Moreover, when

energy is a performance indicator, the remaining constraints

are usually limited or treated as less important (see, e.g., [21],

[20]).

Concerning the use of MPC in the context of cloud com-

puting applications, it has been already employed for consoli-

dation [10], [43], but not for placement (apart our preliminary

work [12]). Rather, it has been used to solve specific problems,

such as to adjust the amount of resources allocated to each VM

to match the demand while minimizing the energy cost [44],

or to distribute computations in parallel computing systems

[45].

Therefore, at the best of our knowledge, this work is the

first one considering a holistic placement approach based

on MPC allowing to trade power consumption and other

performance criteria, such as the overall service level of the

cloud application, hardware or software failures including

rejuvenation issues, and security constraints.

III. PROBLEM STATEMENT

The Infrastructure as a Service (IaaS) is one of the most

popular paradigms at the basis of cloud applications [2], [10],

[37]. In this paper, we focus on an IaaS model delivered



3

Fig. 1. Different choices for the placement of a new VM.

through a datacenter composed of M PMs, each one able to

host up to N VMs. As it happens in Internet-scale scenarios,

we assume that the datacenter can always satisfy all the

incoming requests [46]. According to the IaaS paradigm, users

request a desired number of VMs for a specific timeframe.

Each VM is modeled as a bundle of three different resources,

i.e., CPU, disk, and network [10], [47], [48]. If successfully

created over a PM, the VM is said to be “deployed,” whereas

the term “undeployed” denotes that it has been removed.

To capture a realistic infrastructure, we assume that users

can select various classes of VMs reflecting specific service

plans [49]. Each plan is characterized by different levels of

utilization for the CPU, disk, and network [7]. Without loss

of generality, we assume that users do not change their plan

over time. In the case of upgrades, a VM is undeployed and

a new, compliant one is created [50]. As extensively done in

the literature (see, e.g., [7], [10], [50]), we consider S classes

of VMs, each one characterized by different utilization levels

for the CPU, disk, and network.

The map between PMs and VMs usually influences the

performances. For example, a PM running two CPU-bound

VMs performs better than one running two I/O-bound VMs

[51]. Therefore, VMs aggressively competing on the same PM

could reduce the amount of resources made available through

the cloud infrastructure. Another issue concerns the fraction of

resources needed by the virtualization layer to run VMs and

manage the underlying hardware. In the following, we will

take into account such aspects and refer to them as colocation

interference and overhead, respectively. Furthermore, VMs

could become temporarily unavailable due to hardware issues

(e.g., a PM is unreachable due to network or local outages) or

rejuvenation mechanisms (e.g., the virtualization layer needs a

reboot to face software glitches) [1], [5]. Lastly, applications

managing sensitive data or performing mission-critical tasks

may require to run VMs in a secure environment [8], [34],

which prevents a PM to host VMs with mixed security profiles.

As hinted, choosing the PM where to create VMs requested

by users is a challenging task. In fact, a successful placement

strategy should mitigate the impact of outages and interfer-

ences, ensure security, and reduce the energetic footprint of the

datacenter by turning off PMs without running VMs. Figure

1 depicts a toy example of an IaaS framework running on

TABLE I
NOTATION FOR THE DYNAMIC MODEL.

yij class of a VM

state xk
ij resource used by a VM

variables aij remaining lifetime of a VM

sij security requirement of a VM

control uij request for placing a new VM

inputs vij placing location of a new VM

ŷl class of a new VM

x̂k
l resource used by a new VM

input âl remaining lifetime of a new VM

variables ŝl security requirement of a new VM

gi availability of a PM

bki capacity of a PM

a datacenter characterized by M = 4 and N = 3, together

with the different alternatives that the placement strategy could

implement. For instance, deploying the new VM over PM1

favors power savings, as PM2 and PM3 could be put in sleep

since they do not host any VM. Unfortunately, this could

reduce the resources available to users, as the VM might expe-

rience colocation interference issues. To mitigate interferences,

the new VM could be deployed over PM2 or PM3, but a

the price of renouncing to pursue power efficiency. However,

the creation of the VM over PM3 could generate a service

interruption since PM3 requires a reboot for rejuvenating the

hosting platform. Finally, placing the new VM over PM4 could

be possible or not depending on security credentials.

IV. DYNAMIC MODEL AND CONSTRAINTS

To compute the optimal placement strategy, a dynamic

model describing the time evolution of VMs offered by the

IaaS framework is needed. Hence, in this section we present

proper dynamic equations and suitable constraints.

A. Dynamic Model

Let us consider discrete times t = 0, 1, . . . , T , where T is

a given horizon, and introduce proper state, control, and input

variables, partially borrowed from [10], [12] and summarized

in Table I.

State variables are needed to keep track of the map between

VMs and PMs at each time instant t. The following quantities

are defined for the j-th VM running on the i-th PM, where

i = 1, . . . ,M , j = 1, . . . , N , and t = 0, 1, . . . , T :

• yij(t) ∈ {1, . . . , S + 1} is the class of the VM. If the

machine is not deployed, yij(t) = S + 1. As it will be

detailed later on, S + 1 is a “dummy” class that avoids

burdening the notation;

• xk
ij(t) ∈ [0, 1] is the fraction of CPU (k = c), disk (k =

d), and network (k = n) used by the VM. For a non-

deployed VM, xk
ij(t) = 0;

• aij(t) ∈ N is the remaining lifetime of the VM. When it

is equal to 0, the VM has completed its life cycle or it is

not deployed;



4

• sij(t) ∈ {0, 1} indicates whether the VM has security

requirements. In this case, sij(t) = 1.

For the sake of brevity, let us define xt ,

col
[
yij(t), x

k
ij(t), aij(t), sij(t), i = 1, . . . ,M, j = 1, . . . , N,

k = c, d, n] ∈ R
6MN .

To account for the characteristics of new VMs requested

by users, we introduce “hat” versions of the state variables.

Specifically, at each time t = 0, 1, . . . , T − 1, users demand

for a given number of VMs. We denote such a number by

L(t). To characterize the l-th new VM requested at time t,

where l = 1, . . . , L(t), we consider the variables ŷl(t) ∈
{1, . . . , S}, x̂k

l (t), âl(t), and ŝl(t), grouped in the vector

rt , col
[
ŷl(t), x̂

k
l (t), âl(t), ŝl(t), l = 1, . . . , L(t)

]
∈ R

6L(t).

To decide the mapping between the requested VMs and the

available PMs, at each time t = 0, 1, . . . , T − 1 we define

proper control inputs for i = 1, . . . ,M and j = 1, . . . , N :

• uij(t) ∈ {0, 1} is equal to 1 if the j-th VM on the i-th

PM is created at time t. Otherwise, it is equal to 0;

• vij(t) ∈ {1, . . . , L(t)} is the index of the new VM

created as the j-th VM on the i-th PM at time t.

Let us collect all the control inputs in the vector ut ,

col [uij(t), vij(t), i = 1, . . . ,M, j = 1, . . . , N ] ∈ R
2MN .

To model the reliability and the heterogeneity of PMs

available in the datacenter, the following additional variables

are introduced. For the i-th PM, i = 1, . . . ,M , we define the

following quantities at each time t = 0, 1, . . . , T − 1:

• gi(t) ∈ [0, 1] is the probability of having the PM correctly

running. To avoid burdening the notation, gi(t) considers

different types of outages (e.g., network or server failures

and software crashes), together with temporary unavail-

ability due to reboots for software rejuvenation;

• bki ∈ (0, 1] is the percentage of CPU (k = c), disk (k =
d), and network (k = n) capacity with respect to the most

powerful PM in the datacenter, for which bki = 1.

Let us gather all such additional quantities in the vector zt ,

col
[
gi(t), b

k
i , i = 1, . . . ,M, k = c, d, n

]
∈ R

4M .

The evolution of the state variables is governed by

the following discrete-time dynamic equations, where t =
0, 1, . . . , T − 1, i = 1, . . . ,M , j = 1, . . . , N , and k = c, d, n:

yij(t+ 1) = χ[aij(t)] yij(t) + uij(t) ŷvij(t)(t)

xk
ij(t+ 1) = χ[aij(t)] x

k
ij(t) + uij(t) x̂

k
vij(t)

(t)

aij(t+ 1) = max{0, aij(t)− 1 + uij(t) âvij(t)(t)}

sij(t+ 1) = χ[aij(t)] sij(t) + uij(t) ŝvij(t)(t) (1)

where the function χ(·) is such that χ(z) = 1 if z 6= 0 and

χ(z) = 0 otherwise.

As shown, the right-hand-side of each equation in (1)

describes the behavior at time t+1 of a given variable and is

composed of two terms. The first one is inherited from time t

and is a snapshot of the IaaS service, i.e., it tracks the current

map between VMs and PMs. In particular, for each VM, the

remaining lifetime is decreased of one unit until it reaches the

zero level. If the VM expires, we have χ(aij(t)) = 0, and

the contribution of time t is voided. Instead, the second term

accounts for new requests to be placed. In this case, the “hat”

variables update the corresponding portion of the state since

uij(t) = 1.

Using the vectors xt, ut, and rt defined above, (1) can be

rewritten in compact form for t = 0, 1, . . . , T − 1, as follows:

xt+1 = ft(xt, ut, rt) (2)

with the obvious definition of ft : R
6MN ×R

2MN ×R
6L(t) →

R
6MN . The subscript t suggests the time-varying length of the

vector rt.

B. Constraints

The model given by (1) is completed through suitable

constraints. To guarantee the placement of all the requested

VMs, we impose the following for t = 0, 1, . . . , T − 1:

M∑

i=1

N∑

j=1

uij(t) = L(t). (3)

Clearly, each new VM must be deployed only once. Thus,

for l = 1, . . . , L(t) and t = 0, 1, . . . , T − 1, the following

constraints hold:

M∑

i=1

N∑

j=1

uij(t) (vij(t)− l) = 1. (4)

We point out that the number of constraints in (4) is time-

variant and equal to L(t). Then, the placement procedure must

ensure that only one VM of index j exists on the i-th PM.

This is taken into account through the following constraints

for i = 1, . . . ,M , j = 1, . . . , N , and t = 0, 1, . . . , T − 1:

uij(t) ≥ −R(1− χ(aij(t)))

uij(t) ≤ R(1− χ(aij(t))) (5)

where R is a large positive constant. Constraints (5) are of

equality type if χ(aij(t)) = 1, i.e., if another VM with the

same pair i and j is deployed. Otherwise, they are trivially

satisfied.

Lastly, the outcome of the placement should not exceed the

amount of resources available for a given server. This limits

the number of VMs that can be hosted on a PM. Hence, for

i = 1, . . . ,M , k = c, d, n, and t = 0, 1, . . . , T , the following

constraint is entrusted:

N∑

j=1

xk
ij(t) ≤ bki . (6)

As done for the dynamic equations, it is also possible to

write the constraints in a compact form using the vectors xt,

ut, and zt. Specifically, (3) can be expressed as

d
′ut = L(t) (7)

where d ∈ R
2MN is a suitable 0-1 vector. Constraint (4) can

be written by means of a proper function h : R2MN → R
L(t)

and a vector 1L(t) ∈ R
L(t) with all the components equal to

1, i.e.,

h(ut) = 1L(t). (8)

Then, (5) becomes

Aut = p(xt) (9)



5

where A ∈ R
2MN×2MN is a 0-1 matrix and p : R6MN →

R
2MN is a suitably-defined function. Lastly, after introducing

a proper 0-1 matrix B ∈ R
4M×6MN , (6) becomes

Bxt ≤ zt. (10)

V. PLACEMENT USING MPC

In this section, we present the placement mechanism based

on MPC used to compute how the VMs requested by users

are deployed on the PMs available in the datacenter. To this

aim, an efficient VM-to-PM map should consider the following

goals:

1) reduce the effects of churn;

2) mitigate colocation interference;

3) minimize power consumption;

4) enforce security requirements.

As it will be detailed later on, goals 1), 2) and 3) are pursued

through proper penalization terms in a cost function to be

maximized, whereas 4) is enforced via a hard constraint.

1) Reduce the effects of churn: as said, machine or network

outages together with software rejuvenation may lead to churn,

i.e., servers enter and leave the pool of available PMs. There-

fore, the placement mechanism should prevent that a large

number of VMs is deployed on “unreliable” PMs, i.e., those

for which the probability gi(t) is low. In fact, when a PM

becomes unavailable, all the hosted VMs become unavailable

as well. In general, the recovery from such a situation is

nontrivial and requires proper fault-tolerance mechanisms,

such as checkpointing or replication (see, e.g., [52], [53], and

the references therein). However, the investigation of these

aspects is outside the scope of this paper. Clearly, the more

VMs are deployed on the same PM, the higher is the impact

of churn in terms of reduction of resources. For the i-th PM,

this is taken into account by the quantity ρi(t) ∈ [0, 1] defined

as follows for i = 1, . . . ,M and t = 0, 1, . . . , T :

ρi(t) ,

N∏

j=1

χ (aij(t)) gi(t) + (1− χ (aij(t))) .

In particular, the larger is the number of VMs deployed over

an unreliable PM, the lower is the value of ρi(t). Instead, if

the i-th PM is reliable (i.e., gi(t) = 1) or it has no running

VMs, we have ρi(t) = 1. To consider all the PMs composing

the datacenter, let ρ(t) ∈ [0, 1] be the average of ρi(t) over

M for t = 0, 1, . . . , T :

ρ(t) ,
1

M

M∑

i=1

ρi(t).

2) Mitigate colocation interference: the amount of re-

sources effectively available to VMs depends on how they

are placed on PMs. For instance, deploying too many VMs

on the same server may lead to contentions and race condi-

tions, typically defined as colocation interference. Hence, we

introduce an interference matrix Θ ∈ [0, 1]S+1×S+1, whose

elements θkl measure the interference between the classes of

the k-th and l-th VMs when they are deployed on the same

PM. Specifically, θkl ≃ 0 indicates that the classes of the k-

th and l-th VMs severely interfere, whereas θkl ≃ 1 states

that they can efficiently coexist on the same PM. For the j-

th VM deployed on the i-th PM, we introduce the variable

ζij(t) ∈ [0, 1] quantifying the contention of resources among

the VM and the other ones running on the same PM. Therefore,

for i = 1, . . . ,M , j = 1, . . . , N , and t = 0, 1, . . . , T , we

consider

ζij(t) ,

N∏

r=1,r 6=j

θyij(t)yir(t). (11)

Clearly, the lower is ζij(t), the larger are the interferences. As

hinted, the dummy class S + 1 denoting a non-deployed VM

has been introduced to write ζij(t) as a product in (11), and it

avoids burdening the notation. Then, we define a measure of

efficiency ηi(t) ∈ [0, 1] for the i-th PM equal to the average

of the interferences experienced by all the VMs deployed on

it, where i = 1, . . . ,M and t = 0, 1, . . . , T :

ηi(t) ,
1

N

N∑

j=1

ζij(t).

In other words, ηi(t) weights the amount of CPU, disk, and

network resources of the i-th PM made available to users. For

instance, a small value of ηi(t) indicates that the placement

of VMs on the i-th PM is causing severe contentions. As

a consequence, the efficiency η(t) ∈ [0, 1] of the entire

datacenter can be defined as follows for t = 0, 1, . . . , T :

η(t) ,
1

M

M∑

i=1

ηi(t).

3) Minimize power consumption: in general, the power

required by a datacenter is proportional to the number of active

PMs, i.e., servers with at least one running VM. In fact, a PM

not hosting any VMs can be put in a low-power mode. To this

aim, the placement mechanism should maximize the number

of PMs with no running VMs, denoted by ω(t) and defined

as follows for t = 0, 1, . . . , T :

ω(t) , M −

M∑

i=1

χ





N∑

j=1

aij(t)



 .

Specifically, large values of ω(t) reflect in a reduced power

consumption. Unfortunately, saving power by aggressively

packing VMs on PMs may conflict with the mitigation of the

effect of churn or exacerbate colocation interference, as they

could require a more “sparse” allocation.

4) Enforce security requirements: to avoid information

leakage or prevent attacks, VMs may need to run in a secured

or isolated environment. This prevents certain allocations, as

VMs with security requirements cannot be mixed on the same

PM. Since security is usually a non-negotiable parameter,

we introduce a hard constraint for i = 1, . . . ,M and t =
0, 1, . . . , T , as follows:

N∑

j=1

sij(t) ≤ 1. (12)

This constraint guarantees that only one VM with strict

security requirements (i.e., such that sij(t) = 1) can be placed



6

time t
 

t+t
h 0 1 

VM requests 

t+t
h
-1 t+1 

VM undeployments 

control horizon 

Fig. 2. Rolling horizon of the MPC for VM placement.

over a given PM. As done for the constraints introduced in

Section IV-B, also (12) can be rewritten in compact form after

introducing a proper 0-1 matrix C ∈ R
M×6MN and a vector

1M ∈ R
M whose components are all equal to 1, i.e.,

Cxt ≤ 1M . (13)

A. Definition of the Optimal Control Problem

As hinted, the previously-discussed goals 1)-4) are con-

flicting. Specifically, a user may desire that the owner of the

datacenter increases the “quality” characterizing the delivered

service. This is achieved through goals 1), 2), and 4). Typically,

this is also desirable from the perspective of the owner of

the datacenter. However, he/she may also want to minimize

operational costs by pursuing 3). Summarizing, 1)-4) concur

to define the global performances and need a proper tradeoff.

Recalling that 4) is a hard constraint enforced by (13), we

search for the tradeoff by defining a suitable cost function to

be maximized accounting for 1), 2), and 3).

According to the rolling horizon paradigm of MPC, the cost

function to be maximized for all t = 0, 1, . . . , T − 1 is the

following:

Jt ,

t+th−1∑

τ=t

et−τ
(

c1 ρ(τ)
︸ ︷︷ ︸

churn

+ c2 η(τ)
︸ ︷︷ ︸

interference

+ c3 ω(τ)
︸ ︷︷ ︸

power savings

)

(14)

where c1 > 0, c2 > 0, and c3 > 0 are weight constants, and

th is a given time horizon. The exponential term is a discount

factor penalizing instants that are far from the current time t.

The cost function (14) is composed of three different terms,

each one considering the goals 1), 2), and 3) described above.

In more detail, the first term accounts for the reduction of

the effect of churn by avoiding that VMs are deployed on

unreliable PMs. The second term mitigates the performance

losses due to colocation interferences caused by aggressive

packings. Lastly, the third term accounts for power savings

since it maximizes the number of PMs that can be put in

sleep. We point out that the cost function Jt spans over a

time window of length th starting from the current time t.

Within the time interval [t, t + th − 1], we suppose to have

suitable predictions of the workload offered to the datacenter in

terms of new VM requests. To this aim, several methods have

been proposed to forecast workloads, such as [54] and [55].

However, the detailed investigation of workload prediction is

outside the scope of this work.

Notice that, in real-world scenarios, reducing the effects of

churn and colocation interference could be more important

than power savings. In fact, they may heavily influence the

service level agreement subscribed by users. To avoid too

many violations causing reputation or revenue losses to the

service provider, a certain minimum “quality” should be

guaranteed. This can be done in a “soft” manner by suitable

choices of the coefficients c1, c2, and c3 in (14). However,

this may be insufficient, thus we introduce another “hard”

constraint to be considered along with (7)–(10) and (13) for

t = 0, 1, . . . , T :

ρ(t)η(t) ≥ Ξ (15)

where Ξ ∈ [0, 1] is the considered minimum quality level.

According to the MPC paradigm, at each time t =
0, 1, . . . , T we have to solve the following finite-horizon

optimal control problem:

max
u
t,t+th−1

Jt (16)

subject to the constraints (2), (7), (8), (9), (10), (13), and (15)

from time t to t+ th − 1. The unknowns are the components

of the vector ut,t+th−1 , col(ut, . . . , ut+th−1). Once their

optimal value u∗
t,t+th−1 has been computed, only the first

action u∗
t is applied. The procedure is iterated for the other

time steps, with a one-step-forward shift of the time window

[t, t+ th−1]. Figure 2 depicts a sketch of the MPC approach,

where the horizons of the optimal control problems at times t

and t+ 1 are reported.

Problem (16) is of nonlinear integer programming type

with non-smooth functions. The number of unknowns is given

by 2MNth, i.e., it is proportional to the dimension of the

datacenter and the length of the control horizon. Since finding

an exact solution is difficult, we exploit an approximate

solution method based on random sampling [56, chap. 3]. The

pseudo-code of the adopted optimization procedure is reported

in Algorithm 1. In particular, at each time t, Z different

placement strategies are evaluated, and the corresponding

values of the cost Jt are computed. The best placement is

the one maximizing the cost. The z-th placement strategy,

z = 1, . . . , Z , is computed as follows. For each new VM to

be deployed, different placement configurations are randomly

generated. The process is iterated until constraints are satisfied.

To avoid the generation of too many tentative placements, if

constraints are not yet satisfied after K trials, a “fallback”

placement is performed by using suitable heuristics that allows

to obtain a placement satisfying constraints without further

random trials. Clearly, the results provided by the optimization

procedure reported in Algorithm 1 may be rough, especially

for small values of Z and K . However, it enables to compute

optimal placement strategies in a reduced amount of time. This

allows to satisfy real-time requirements also for large-scale

datacenters and to implement our holistic placement approach

by using commodity hardware.

VI. PERFORMANCE METRICS

In this section, we define the indexes used to evaluate the

effectiveness of the proposed placement mechanism. First, we

need to quantify how the churn of PMs and the colocation

interference caused by competing VMs impact on the quality

perceived by users. Unfortunately, quantifying the expectations



7

Algorithm 1 Solution of the MPC placement problem

1: // Inputs:

2: t← current time instant

3: th ← control horizon

4: L(τ)← number of new VMs for τ= t, . . . , t+th−1
5: Z ← number of cost evaluations

6: K ← number of placement configurations

7: // Main loops:

8: for z from 1 to Z do

9: // Loop over the time horizon:

10: for τ from t to t+ th − 1 do

11: // Loop over the VMs to be placed:

12: for l from 1 to L(τ) do

13: p← 0
14: k ← 0
15: while p = 0 and k ≤ K do

16: k ← k + 1
17: perform a random placement

18: if constraints are satisfied then

19: p← 1
20: end if

21: if k = K and p = 0 then

22: perform a fallback placement

23: end if

24: end while

25: end for

26: end for

27: compute the z-th cost J (z)

28: end for

29: u(z)∗ ← argmin J (z)

30:
(
u∗
t , . . . , u

∗
t+th−1

)
← u(z)∗

31: // Outputs:

32: return u∗
t

of users strongly depends on the specific application. As

an example, a cloud offering multimedia streaming services

should be able to sustain real-time data delivery, whereas

for computation-intensive applications it should guarantee a

steady processing flow. For the case of the IaaS services con-

sidered in this paper, defining specific Quality of Experience

(QoE) metrics is still an open research problem [57]. Among

others, an interesting approach is based on the adherence

to the service level agreement [58]. Hence, we define for

t = 0, 1, . . . , T a measure of QoE as follows:

QoE(t) ,

∑M

i=1

[
∑N

j=1

∑

k=c,d,n x
k
ij(t)ζij(t)

]

ρi(t)
∑M

i=1

∑N

j=1

∑

k=c,d,n x
k
ij(t)

. (17)

In essence, the QoE is defined as the ratio between the amount

of resources made available to users and the overall number

of resources that are requested. In fact, the numerator in

(17) represents the reduction of resources due to churn and

colocation interference. This is taken into account by the terms

ρi(t) and ζij(t), respectively.

To condense the temporal evolution of the datacenter, we

consider the average over time of the QoE in (17), i.e.,

QoE =
1

T

T∑

t=0

QoE(t)

which indicates that the expectation of the user is maximized

if the datacenter provides the requested amount of resources

for the longest timeframe.

The power used by the datacenter is another important

metric. Along the lines of [10], [43], [59], and [60], we assume

that the power required by a PM is given by the superposition

of a constant contribution and a term that is proportional to

the number of deployed VMs. As a consequence, the power

required by the i-th PM running ni(t) ,
∑M

i=1 χ (aij(t)) VMs

at time t, i = 1, . . . ,M , t = 0, 1, . . . , T , is given by:

pi(t) , Pmax

(

0.7 +
0.3

N
ni(t)

)

where Pmax is the power when the server is loaded at its

full capacity, i.e., N VMs are deployed. Without loss of

generality, we also assume that a server in sleep consumes

a negligible amount of power, i.e., pi(t) = 0 [10], [43], [59],

[60]. Therefore, the overall consumption of the datacenter at

time t is:

P (t) ,
M∑

i=1

pi(t). (18)

Also in this case, to condense the temporal evolution of

(18), we consider the average over time:

P ,
1

T

T∑

t=0

P (t)

which represents the mean power used by the datacenter to

provide the IaaS cloud service.

As said, the MPC approach should also be able to provide a

proper tradeoff between the delivered QoE and the power con-

sumption. This is an indicator of the QoE-cost relation useful

for engineering successful cloud applications and datacenters

[61]. To this aim, a possible metric to be considered is how

a variation of the QoE impacts on the power required by the

datacenter and viceversa (see [62] for a use case addressing

wireless networks). Hence, the metrics defined in (17) and (18)

can be merged in a unique indicator:

D(t) ,
QoE(t)

P (t)
.

In more detail, D(t) measures the “density” of quality in

terms of required power, and it allows to estimate the tradeoff

between the conflicting objectives of users and owners of the

datacenter. To assess the impact on the overall time horizon,

we consider the average over time as follows:

D ,
QoE

P
.

Lastly, let us introduce a Key Performance Index (KPI),

which assess how the proposed MPC placement technique

addresses the performance goals 1), 2), and 3) as a whole.

To this aim, the KPI considers each component of the cost



8

function (14) from t = 0 to t = T , i.e.,

KPI ,

T∑

t=0

c1ρ(t) + c2η(t) + c3ω(t) (19)

where c1, c2, and c3 are the same coefficients of (14).

VII. SIMULATION RESULTS

In this section, we evaluate the performances of our holistic

placement technique by means of numerical simulations, per-

formed in Matlab1 on a 2.5 GHz Intel Xeon PC with 16 GB

of RAM.

We focused on the same setting considered in [10], com-

posed of M = 500 PMs, each one able to host up to

N = 5 VMs. Considering 500 servers does not represent a

limitation since large infrastructures are usually partitioned

into smaller subsets. This limits the burden needed to manage

the datacenter and simplifies the computation of the VM-to-

PM map. Besides, such design choice enforces fault tolerance,

scalability, and locality of network traffic [7], [10], [49]. There-

fore, our setting can be considered either a small computing

infrastructure or a portion of a larger datacenter.

As usually done in the literature, the different classes of

VMs offered by the cloud infrastructure were modeled by

considering the following aspects [10], [43], [48], [50], [59]:

(i) VMs primarily use only one type of resource among CPU,

disk, and network; (ii) VMs are often available according to

two different usage plans, i.e., small and large. Therefore, we

considered an IaaS cloud with 7 classes of VMs, i.e., S = 6.

We recall that the dummy class 7 has been introduced to

model non-deployed VMs, thus the percentages of resource

utilization of this class are equal to 0. Table II reports the

usages of resources for each class of VMs considered in our

simulations.

To account for colocation interference, we used the in-

terference matrix Θ defined in Section V. In particular, by

using measurements provided by [6], we modeled the follow-

ing aspects characterizing virtualization technologies: (i) the

degradation of the performances of the CPU are mitigated by

efficient scheduling disciplines, (ii) aggressive contentions on

the I/O (e.g., to access disk or network resources) cause major

performance degradations, (iii) the more a given resource

is used by different VMs, the larger is the interference. To

this end, Table II also reports the classes of VMs with the

components of the considered interference matrix Θ. Clearly,

the dummy class 7 does not account for any interference (i.e.,

θk7 = 1 for all k). We point out that the quantities provided in

Table II also consider the impact of the virtualization on the

available resources in terms of overhead. Besides, instead of

quantizing the CPU in execution cores we used a “continuous”

representation to avoid burdening the model [10], [43], [50].

The simulation horizon T was chosen equal to 168 steps,

equivalent to 1 week with a sampling time of 1 hour. As a

consequence, we considered as negligible all the behaviors

characterizing IaaS applications evolving in the range between

1The code used for the simulations is available online at
www.diptem.unige.it/gaggero/software.html.

TABLE II
INTERFERENCE MATRIX Θ AND RESOURCE USAGES OF THE VM CLASSES.

class 1 2 3 4 5 6 7 CPU disk net

1 0.9 0.8 1.0 1.0 1.0 1.0 1.0 0.23 0.05 0.05

2 0.8 0.7 1.0 1.0 1.0 1.0 1.0 0.46 0.05 0.05

3 1.0 1.0 0.7 0.6 1.0 1.0 1.0 0.05 0.20 0.05

4 1.0 1.0 0.6 0.5 1.0 1.0 1.0 0.05 0.40 0.05

5 1.0 1.0 1.0 1.0 0.7 0.6 1.0 0.05 0.05 0.17

6 1.0 1.0 1.0 1.0 0.6 0.5 1.0 0.05 0.05 0.34

7 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0 0 0

few seconds to minutes. For instance, this is the case of the

time needed by a VM to start or a PM to reboot [10], [63].

The power Pmax consumed by a PM when loaded at full

capacity was chosen equal to 250 W [10], [59], [60]. As

regards the probability gi(t) of having a PM correctly running,

to the best of our knowledge, the literature lacks of a common,

“one-fits-all” model to holistically consider the different tech-

nological and physical causes of outages (e.g., RAM issues,

disk malfunctions, overheats, human or configuration errors) as

well as rejuvenation and other software issues [64]. Therefore,

without loss of generality, we considered servers having a gi(t)
drawn from a uniform distribution in the range [0.8, 1].

Concerning the workload, we considered three different

scenarios, each one capturing a specific behavior of IaaS

frameworks. In more detail, Scenarios A and B use synthetic

workloads built to reflect realistic use cases, whereas Scenario

C uses traces captured in a real datacenter. Along the lines of

[10], we considered:

1) Scenario A: it represents a datacenter receiving a

“steady” flow of VM requests with a nearly constant mean

over time. At each time t, the number of requested VMs for a

given class was taken from uniform distributions. Specifically,

we considered the ranges [0,12] for type-1 and type-2 VMs,

[0, 20] for type-3 and type-4 VMs, and [0, 25] for type-5

and type-6 VMs. The portion of VMs characterized by strict

security requirements was taken equal to 15%.

2) Scenario B: it considers a peak of VM requests triggered

by certain events (e.g., the release of a software update). At

each time t, the number of requested VMs for a given class

was taken from uniform distributions in the ranges [0, 19] for

type-1 and type-2 VMs, [0, 22] for type-3 and type-4 VMs,

and [0, 24] for type-5 and type-6 VMs, with a positive peak

from t = 40 to t = 120. The portion of VMs characterized by

strict security requirements was taken equal to 15%.

3) Scenario C: it is based on the workload of a real

datacenter properly scaled to match the size of our simulated

environment. It spans over a week of usage to capture oscilla-

tions occurring within the single day (e.g., due to work shifts).

The requests of the various types of VMs as well as those with

specific security criteria were obtained by using several slices

of the available traces.

For each VM, we considered a lifespan (i.e., the time for

which it is requested) in the range [5, 20] hours. Moreover,

all the random numbers characterizing the workload were



9

352 354 356 358 360 362
0.912

0.914

0.916

0.918

0.92

0.922

0.924

chosen point

η

ω

Fig. 3. Pareto frontier for the terms η and ω of the cost obtained in Scenario
A with th = 3.

rounded to the nearest integer value. Figure 4 depicts the VM

workloads at the various time instants in the three scenarios.

To assess a variety of realistic use cases, we considered

datacenters having different hardware equipment. Specifically,

Scenario A is composed of identical PMs, i.e., bki = 1.0 for

all i = 1, . . . ,M and k = c, d, n. Instead, Scenarios B and C

account for a heterogeneous deployment characterized by PMs

with different computing capabilities, but similar storage and

networking capacities, as also done in [10]. In more detail,

we fixed bci = 0.8 for i = 1, . . . , 166, bci = 0.9 for i =
167, . . . , 333, bci = 1.0 for i = 334, . . . , 500, bdi = 1.0 for

i = 1, . . . , 500, and bni = 1.0 for i = 1, . . . , 500.

Recalling that the QoE is important to qualify a datacenter

in terms of user satisfaction, the minimum quality level Ξ
in constraint (15) was chosen equal to 0.5. This has not to

be regarded as an absolute value. Rather, it indicates how the

datacenter is near to a “production quality” threshold, e.g., the

five nines. The coefficients c1, c2, and c3 of the cost function

(14) were chosen equal to 10, 750, and 0.5, respectively. Figure

3 depicts the results of the Pareto analysis used to select the

coefficients c2 and c3 in Scenario A. Similar plots could be

displayed for the other combinations of weights and scenarios,

but they are omitted for the sake of brevity.

To evaluate the performances of the MPC approach, we

considered different values for the control horizon th, i.e.,

we chose 1, 3, and 5. To have a vis-à-vis comparison, we

considered the first fit, dotproduct, and norm2 placement poli-

cies based on bin packing, widely discussed in the literature

and used to manage real-world datacenters [65] and suitably

adapted to our purposes. The first fit method places VMs in

the first available PMs. This can happen if and only if the PM

has sufficient free resources to satisfy the new requests. Owing

to its simplicity and computational efficiency, the first fit was

chosen also to implement the fallback placement procedure for

the MPC approach (see line 22 of Algorithm 1). The first fit

allows to pack VMs in a reduced set of PMs, but at the price of

possible wastage of resources due to colocation interference.

For this reason, the dotproduct and norm2 can be considered

a sort of refinements, as they provide more “resource-aware”

placement mechanisms. Indeed, in both cases the packing of

VMs is reduced since the number of VMs of the same class

TABLE III
AVERAGE NUMBER DISCARDED PLACEMENT CONFIGURATIONS PER NEW

VM TO BE DEPLOYED.

th=1 th=3 th=5

Scenario A 0.017 0.052 0.090

Scenario B 0.017 0.052 0.089

Scenario C 0.016 0.051 0.088

TABLE IV
AVERAGE NUMBER OF FALLBACK PLACEMENTS PER NEW VM TO BE

DEPLOYED.

th=1 th=3 th=5

Scenario A 0.000082 0.00025 0.00044

Scenario B 0.000084 0.00025 0.00044

Scenario C 0.000078 0.00024 0.00042

placed over a PM is limited to mitigate colocation interference.

The optimization method described in Algorithm 1 to solve

the MPC placement problem (16) was applied with Z = 100
and K = 10. These values were selected through a trial

and error procedure, with the goal of reducing the number of

placement attempts and the need of resorting to the fallback

procedure. To this end, Table III reports the average number

of “discarded” placement configurations per new VM to be

deployed. In other words, it contains how many configurations

did not satisfy the constraints. This corresponds to the number

of iterations (apart from the first one) of the while loop

at line 15 of Algorithm 1. Table IV showcases the average

number of fallback placements per new VM to be deployed.

It turns out that the numbers of “discarded” configurations and

fallback placements are minimal and almost insensitive to the

scenario. Their slight increase with the control horizon th is

due to the need of satisfying a larger number of constraints as

th grows, which requires more attempts on the average.

A. Numerical Results

Table V reports the numerical results for the performance

indexes considering average values as described in Section VI.

Specifically, it contains the values provided by the MPC, first

fit, dotproduct, and norm2 approaches for all the considered

scenarios. For the MPC, the results corresponding to the

three chosen control horizons are showcased. To quantify the

computational requirements of the various placement strate-

gies, Table V also contains the index T , which is the mean

time required to compute a single VM-to-PM map. Figure 5

sketches the temporal evolutions of QoE, power consumption,

and their relation in terms of density. The considered horizon

for the MPC is th = 5.

As shown, the proposed MPC approach always outperforms

the first fit, dotproduct, and norm2 heuristics in the considered

scenarios for all the performance indexes. Concerning the

QoE, the extreme packings enforced by the first fit do not

correspond to better performances, as it ignores how the VMs

are mixed on the single PM. Instead, the dotproduct, norm2,



10

0 24 48 72 96 120 144 168

0

20

40

60

80

100
 requested VMs
 secure VMs

t [h]

Scenario A

0 24 48 72 96 120 144 168

0

20

40

60

80

100

120
 requested VMs
 secure VMs

t [h]

Scenario B

0 24 48 72 96 120 144 168

0

50

100

150
 requested VMs
 secure VMs

t [h]

Scenario C

Fig. 4. Number of new requested VMs: the blue line is the overall workload, while the red one is the fraction of VMs with security requirements.

TABLE V
SUMMARY OF THE NUMERICAL RESULTS.

MPC first fit dotproduct norm2

th=1 th=3 th=5

Scenario A

QoE 0.67 0.67 0.67 0.58 0.65 0.66

P [kW] 34.6 34.6 34.3 39.2 34.7 34.6

D [kW−1] 194.1 194.4 195.4 149.7 189.2 191.1

KPI
(
×102

)
1471.3 1472.1 1473.5 1418.1 1456.4 1458.2

T [s] 0.75 0.86 0.96 0.01 0.06 0.06

Scenario B

QoE 0.69 0.69 0.69 0.63 0.67 0.69

P [kW] 32.5 32.5 32.2 37.2 35.0 35.1

D [kW−1] 213.9 214.0 215.4 171.0 192.9 192.4

KPI
(
×102

)
1497.0 1497.3 1498.1 1450.0 1469.8 1469.6

T [s] 0.71 0.86 0.99 0.01 0.06 0.06

Scenario C

QoE 0.67 0.67 0.67 0.61 0.64 0.64

P [kW] 32.5 32.3 32.2 36.4 34.4 34.5

D [kW−1] 208.7 209.5 210.2 168.3 187.6 187.5

KPI
(
×102

)
1491.0 1492.0 1492.5 1444.7 1463.5 1463.2

T [s] 0.72 0.86 0.97 0.01 0.06 0.06

and MPC exploit a “multidimensional” information, i.e., they

account for the interference among the different VM classes,

thus providing higher values for the QoE. As regards the

overall power consumed by the datacenter, it is worth noting

that the MPC allows greater savings if compared with the

other approaches. However, the energetic footprint should not

be considered decoupled from the quality delivered to users. To

this end, the behavior of the “density” of quality with respect

to the required power confirms the superiority of the MPC to

provide the best tradeoff. This is also evident from the values

of the KPI. In fact, the behaviors of the KPI for the MPC

with all the considered prediction horizons th are better than

those obtained by using the first fit, dotproduct, and norm2.

In general, the performance indicators slightly improve with

the growth of th, as a greater amount of future information is

taken into account.

Concerning the computational burden, the MPC is more

demanding than the considered bin packing heuristics since it

requires the solution of an optimization problem. However, the

values of T required by the MPC for computing the optimal

placement strategies are always less than 1 second (i.e., up

to 0.99 s for Scenario B and th = 5, as shown in Table V).

Such a timeframe is negligible compared to the dynamic of

an IaaS application, which often evolves in hours or days. As

a consequence, it turns out that the MPC approach is well-

suited to being used as an effective placement mechanism for

frameworks operating on line.

VIII. CONCLUSIONS

In this paper, we have presented a holistic approach for

the placement of VMs in cloud datacenters. In more detail,

we have proposed a framework to choose how to deploy

VMs on PMs by pursuing conflicting performance goals, such

as counteract to hardware outages or software aging issues,

ensure proper security policies, maintain a suitable service

level, and reduce power requirements. To compute the optimal

strategies, we have developed a method based on MPC, which

has allowed to take into account constraints while exploiting

future information. Results have indicated that our method

outperforms classic heuristics used in real-world datacenters

in all the considered scenarios.



11

0 24 48 72 96 120 144 168
0.4

0.5

0.6

0.7

0.8

0.9

1
 MPC
 first fit
 dotproduct
norm2

QoE

t [h]

0 24 48 72 96 120 144 168
0

2

4

6

8
×104

 MPC
 first fit
 dotproduct
norm2

P [W]

t [h]

0 24 48 72 96 120 144 168
0

0.2

0.4

0.6

0.8

1
×10-4

 MPC
 first fit
 dotproduct
norm2

D

t [h]

0 24 48 72 96 120 144 168
0.4

0.5

0.6

0.7

0.8

0.9

1
 MPC
 first fit
 dotproduct
norm2

QoE

t [h]

0 24 48 72 96 120 144 168
0

2

4

6

8
×104

 MPC
 first fit
 dotproduct
norm2

P [W]

t [h]

0 24 48 72 96 120 144 168
0

0.2

0.4

0.6

0.8

1
×10-4

 MPC
 first fit
 dotproduct
norm2

D

t [h]

0 24 48 72 96 120 144 168
0.4

0.5

0.6

0.7

0.8

0.9

1
 MPC
 first fit
 dotproduct
norm2

QoE

t [h]

0 24 48 72 96 120 144 168
0

2

4

6

8
×104

 MPC
 first fit
 dotproduct
norm2

P [W]

t [h]

0 24 48 72 96 120 144 168
0

0.2

0.4

0.6

0.8

1
×10-4

 MPC
 first fit
 dotproduct
norm2

D

t [h]

Scenario A

Scenario B

Scenario C

Fig. 5. QoE, power consumption, and QoE-power density provided by the first fit, dotproduct, norm2, and MPC with th = 5.

Part of ongoing research aims at merging the MPC place-

ment framework with other tools for managing resources in

cloud datacenters. Specifically, we are working towards its in-

tegration with consolidation techniques. Future works will fo-

cus on the evaluation of alternative, faster optimization meth-

ods for solving the MPC placement problem. Other subjects

of future investigations are the creation of more fine-grained

models, for instance to consider the RAM used by VMs, as

well as how the MPC approach can be “ported” on emerging

scenarios considering user mobility or geographically-sparse

infrastructures.

ACKNOWLEDGMENTS

This work has been partially supported by the research

project “GESTEC - Tecnologie orientate ai servizi per lo

sviluppo e per l’integrazione di piattaforme ICT”, funded by

the Italian Ministry of University and Research.

Many thanks also to Netalia (http://www.netalia.it) for the

access to its cloud for the generation of the workload used in

the simulations.

REFERENCES

[1] M. Pearce, S. Zeadally, and R. Hunt, “Virtualization: Issues, security
threats, and solutions,” ACM Comput. Surveys, vol. 45, no. 2, pp. 1–39,
2013.

[2] R. W. Ahmad, A. Gani, S. H. A. Hamid, M. Shiraz, A. Yousafzai, and
F. Xia, “A survey on virtual machine migration and server consolidation
frameworks for cloud data centers,” J. Network and Computer Applica-

tions, vol. 52, pp. 11–25, 2015.
[3] H. Liu, H. Jin, C. Xu, and X. Liao, “Performance and energy modeling

for live migration of virtual machines,” Cluster Computing, vol. 16,
no. 2, pp. 249–264, 2013.

[4] D. Cotroneo, R. Natella, R. Pietrantuono, and S. Russo, “A survey of
software aging and rejuvenation studies,” ACM J. Emerging Technol. in

Comput. Systems, vol. 10, no. 1, p. 8, 2014.
[5] F. Machida, J. Xiang, K. Tadano, and Y. Maeno, “Combined server

rejuvenation in a virtualized data center,” in Int. Conf. Ubiquitous Intell.

& Comput. and Int. Conf. Autonomic & Trusted Comput., 2012, pp.
486–493.



12

[6] F. Xu, F. Liu, L. Liu, H. Jin, B. Li, and B. Li, “iAware: Making live
migration of virtual machines interference-aware in the cloud,” IEEE
Trans. Comput., vol. 63, no. 12, pp. 3012–3025, 2014.

[7] J. Sugerman, G. Venkitachalam, and B. Lim, “Virtualizing I/O devices
on VMware workstation’s hosted virtual machine monitor,” in Proc.

USENIX Annual Technical Conf., 2001, pp. 1–14.
[8] E. Caron and J. R. Cornabas, “Improving users’ isolation in IaaS:

Virtual machine placement with security constraints,” in Int. Conf. Cloud

Comput., 2014, pp. 64–71.
[9] Z. Qi, C. Lu, and B. Raouf, “Cloud computing: state-of-the-art and

research challenges,” J. Internet Services and Applications, vol. 1, no. 1,
pp. 7–18, 2010.

[10] M. Gaggero and L. Caviglione, “Predictive control for energy-aware
consolidation in cloud datacenters,” IEEE Trans. Contr. Syst. Technol.,
vol. 24, no. 2, pp. 461–474, 2016.

[11] Y. Xia, M. Zhou, X. Luo, Q. Zhu, J. Li, and Y. Huang, “Stochastic
modeling and quality evaluation of infrastructure-as-a-service clouds,”
IEEE Trans. Autom. Science Eng., vol. 12, no. 1, pp. 162–170, 2015.

[12] M. Gaggero and L. Caviglione, “Model predictive control for the
placement of virtual machines in cloud computing applications,” in Proc.
American Control Conf., 2016, pp. 1987–1992.

[13] D. Mayne, J. Rawlings, C. Rao, and P. Scokaert, “Constrained model
predictive control: stability and optimality,” Automatica, vol. 36, no. 6,
pp. 789–814, 2000.

[14] P. Cortes, J. Rodriguez, P. Antoniewicz, and M. Kazmierkowski, “Direct
power control of an AFE using predictive control,” IEEE Trans. Power

Electronics, vol. 23, no. 5, pp. 2516–2523, 2008.
[15] A. Alessandri, M. Gaggero, and F. Tonelli, “Min-max and predictive

control for the management of distribution in supply chains,” IEEE

Trans. Contr. Syst. Technol., vol. 19, no. 5, pp. 1075–1089, 2011.
[16] M. Masdari, S. S. Nabavi, and V. Ahmadi, “An overview of virtual

machine placement schemes in cloud computing,” J. Network and

Computer Applications, vol. 66, pp. 106–127, 2016.
[17] M. Xu, W. Tian, and R. Buyya, “A survey on load balancing algorithms

for virtual machines placement in cloud computing,” Concurrency and

Computation: Practice and Experience, vol. 29, no. 12, 2017.
[18] T. Kaur and I. Chana, “Energy efficiency techniques in cloud computing:

A survey and taxonomy,” ACM Comput. Surveys, vol. 48, no. 2, p. 22,
2015.

[19] D. Jayasinghe, C. Pu, T. Eilam, M. Steinder, I. Whally, and E. Snible,
“Improving performance and availability of services hosted on iaas
clouds with structural constraint-aware virtual machine placement,” in
Int. Conf. Services Comput., 2011, pp. 72–79.

[20] Y. Wang and Y. Xia, “Energy optimal vm placement in the cloud,” in
Int. Conf. Cloud Comput., 2016, pp. 84–91.

[21] L. A. Rocha and E. Cardozo, “A hybrid optimization model for green
cloud computing,” in Int. Conf. Utility and Cloud Comput., 2014, pp.
11–20.

[22] Y. Gao, H. Guan, Z. Qi, Y. Hou, and L. Liu, “A multi-objective
ant colony system algorithm for virtual machine placement in cloud
computing,” J. Computer and System Sciences, vol. 79, no. 8, pp. 1230–
1242, 2013.

[23] J.-k. Dong, H.-b. Wang, Y.-y. Li, and S.-d. Cheng, “Virtual machine
placement optimizing to improve network performance in cloud data
centers,” The J. China Universities of Posts and Telecommunications,
vol. 21, no. 3, pp. 62–70, 2014.

[24] K. Su, L. Xu, C. Chen, W. Chen, and Z. Wang, “Affinity and conflict-
aware placement of virtual machines in heterogeneous data centers,” in
Int. Symp. Autonomous Decentralized Systems, 2015, pp. 289–294.

[25] M. Mishra and U. Bellur, “Whither tightness of packing? the case for
stable vm placement,” IEEE Trans. Cloud Comput., vol. 4, no. 4, pp.
481–494, 2016.

[26] F. Machida, M. Kawato, and Y. Maeno, “Redundant virtual machine
placement for fault-tolerant consolidated server clusters,” in Network

Operations and Management Symposium, 2010, pp. 32–39.
[27] A. Zhou, S. Wang, B. Cheng, Z. Zheng, F. Yang, R. Chang, M. Lyu, and

R. Buyya, “Cloud service reliability enhancement via virtual machine
placement optimization,” IEEE Trans. Services Comput., 2016.

[28] D. Espling, L. Larsson, W. Li, J. Tordsson, and E. Elmroth, “Modeling
and placement of cloud services with internal structure,” IEEE Trans.
Cloud Comput., vol. 4, no. 4, pp. 429–439, 2016.

[29] L. Zhao, L. Lu, Z. Jin, and C. Yu, “Online virtual machine placement
for increasing cloud provider?s revenue,” IEEE Trans. Services Comput.,
vol. 10, no. 2, pp. 273–285, 2017.

[30] X. Xu and M. Tang, “A new approach to the cloud-based heterogeneous
mapreduce placement problem,” IEEE Trans. Services Comput., vol. 9,
no. 6, pp. 862–871, 2016.

[31] L. Chen, H. Shen, and S. Platt, “Cache contention aware virtual machine
placement and migration in cloud datacenters,” in Int. Conf. Network
Protocols, 2016, pp. 1–10.

[32] J. Chen, Q. He, D. Ye, W. Chen, Y. Xiang, K. Chiew, and L. Zhu, “Joint
affinity aware grouping and virtual machine placement,” Microproces-

sors and Microsystems, vol. 52, pp. 365–380, 2017.
[33] M. Rahman and P. Graham, “Compatibility-based static vm place-

ment minimizing interference,” J. Network and Computer Applications,
vol. 84, pp. 68–81, 2017.

[34] R. Jhawar, V. Piuri, and P. Samarati, “Supporting security requirements
for resource management in cloud computing,” in Int. Conf. Computa-

tional Science and Engineering, 2012, pp. 170–177.
[35] Y. Han, J. Chan, T. Alpcan, and C. Leckie, “Using virtual machine allo-

cation policies to defend against co-resident attacks in cloud computing,”
IEEE Trans. Dependable Secure Comput., vol. 14, no. 1, pp. 95–108,
2017.

[36] J. Xu and J. A. Fortes, “Multi-objective virtual machine placement in
virtualized data center environments,” in Proc. Int. Conf. Green Comput.

and Communications & Int. Conf. Cyber, Physical and Social Comput.,
2010, pp. 179–188.

[37] Z. Usmani and S. Singh, “A survey of virtual machine placement
techniques in a cloud data center,” Procedia Computer Science, vol. 78,
pp. 491–498, 2016.

[38] F. Caglar, S. Shekhar, and A. Gokhale, “iplace: An intelligent
and tunable power-and performance-aware virtual machine place-
ment technique for cloud-based real-time applications,” in Int. Symp.

Object/Component/Service-Oriented Real-Time Distributed Comput.
IEEE, 2014, pp. 48–55.

[39] C. Gao, H. Wang, L. Zhai, Y. Gao, and S. Yi, “An energy-aware ant
colony algorithm for network-aware virtual machine placement in cloud
computing,” in Int. Conf. Parallel and Distributed Systems, 2016, pp.
669–676.

[40] A. Pahlevan, P. G. Del Valle, and D. Atienza, “Exploiting cpu-load and
data correlations in multi-objective vm placement for geo-distributed
data centers,” in Design, Automation & Test in Europe Conf. & Exhibi-

tion, 2016, pp. 1333–1338.
[41] F. Alharbi, Y. C. Tain, M. Tang, and T. K. Sarker, “Profile-based static

virtual machine placement for energy-efficient data center,” in Int. Conf.
High Performance Comput. and Communications; Int. Conf. Smart City;

Int. Conf. Data Science and Systems, 2016, pp. 1045–1052.
[42] X. Li, Z. Qian, S. Lu, and J. Wu, “Energy efficient virtual machine

placement algorithm with balanced and improved resource utilization in
a data center,” Mathematical and Computer Modelling, vol. 58, no. 5,
pp. 1222–1235, 2013.

[43] M. Gaggero and L. Caviglione, “A predictive control approach for
energy-aware consolidation of virtual machines in cloud computing,”
in Proc. Conf. Decision and Control, 2014, pp. 5308–5313.

[44] Q. Zhang, Q. Zhu, and R. Boutaba, “Dynamic resource allocation for
spot markets in cloud computing environments,” in Int. Conf. Utility and
Cloud Comput., 2011, pp. 178–185.

[45] G. Mencagli, “Adaptive model predictive control of autonomic dis-
tributed parallel computations with variable horizons and switching
costs,” Concurrency and Computation: Practice and Experience, vol. 28,
no. 7, pp. 2187–2212, 2016.

[46] J. Lango, “Toward software-defined SLAs,” Communications of the

ACM, vol. 57, no. 1, pp. 54–60, 2014.
[47] F. Ma, F. Liu, and Z. Liu, “Multi-objective optimization for initial

virtual machine placement in cloud data center,” J. Information and

Computational Science, vol. 9, no. 16, 2012.
[48] N. Bobroff, A. Kochut, and K. Beaty, “Dynamic placement of virtual

machines for managing SLA violations,” in Int. Symp. Integrated Net-

work Management, 2007, pp. 119–128.
[49] K. Mills, J. Filliben, and C. Dabrowski, “Comparing VM-placement

algorithms for on-demand clouds,” in Proc. Int. Conf. Cloud Comput.

Technol. and Science, 2011, pp. 91–98.
[50] A. V. Papadopoulos and M. Maggio, “Virtual machine migration in cloud

infrastructures: Problem formalization and policies proposal,” in Proc.

Conf. Decision and Control, 2015, pp. 6698–6705.
[51] S. Srikantaiah, A. Kansal, and F. Zhao, “Energy aware consolidation for

cloud computing,” in Proc. Conf. Power Aware Comput. and Systems,
2008.

[52] B. Egger, Y. Cho, C. Jo, E. Park, and J. Lee, “Efficient checkpointing
of live virtual machines,” IEEE Trans Computers, vol. 65, no. 10, pp.
3041–3054, 2016.

[53] Y. Dong, W. Ye, Y. Jiang, I. Pratt, S. Ma, J. Li, , and H. Guan, “COLO:
Coarse-grained lock-stepping virtual machines for non-stop service,” in
Proc. Symposium Cloud Comput., 2013, pp. 1–16.



13

[54] A. Khan, X. Yan, S. Tao, and N. Anerousis, “Workload characterization
and prediction in the cloud: A multiple time series approach,” in Proc.
Workshop Cloud Management, 2012, pp. 1287–1294.

[55] I. Moreno, P. Garraghan, P. Townend, and J. Xu, “Analysis, modeling
and simulation of workload patterns in a large-scale utility cloud,” IEEE

Trans. Cloud Comput., vol. 2, no. 2, pp. 208–221, 2014.
[56] K. T. Fang and Y. Wang, Number-theoretic Methods in Statistics.

London: Chapman & Hall, 1994.
[57] T. Hobfeld, R. Schatz, M. Varela, and C. Timmerer, “Challenges of QoE

management for cloud applications,” IEEE Comm. Mag., vol. 50, no. 4,
2012.

[58] S. Al-Shammari and A. Al-Yasiri, “Defining a metric for measuring QoE
of SaaS cloud computing,” Proceedings of PGNET, pp. 251–256, 2014.

[59] D. Kusic, J. Kephart, J. Hanson, N. Kandasamy, and G. Jiang, “Power
and performance management of virtualized computing environments
via lookahead control,” Cluster Comput., vol. 12, no. 1, pp. 1–15, 2009.

[60] A. Beloglazov and R. Buyya, “Adaptive threshold-based approach for
energy-efficient consolidation of virtual machines in cloud data centers,”
in Proc. Int. Workshop on Middleware for Grids, Clouds and e-Science,
2010, pp. 1–4.

[61] J. He, Y. Wen, J. Huang, and D. Wu, “On the cost-QoE tradeoff for
cloud-based video streaming under amazon EC2’s pricing models,” IEEE

Trans. Circuits and Systems for Video Technology, vol. 24, no. 4, pp.
669–680, 2014.

[62] X. Zhang, J. Zhang, Y. Huang, and W. Wang, “On the study of
fundamental trade-offs between QoE and energy efficiency in wireless
networks,” Trans. Emerging Telecommunications Technol., vol. 24, no. 3,
pp. 259–265, 2013.

[63] A. V. Papadopoulos, A. Ali-Eldin, K.-E. Arzen, J. Tordsson, and
E. Elmroth, “PEAS: A performance evaluation framework for auto-
scaling strategies in cloud applications,” ACM Trans. Model. Perform.
Eval. Comput. Syst, vol. 1, no. 4, pp. 1–31, 2016.

[64] L. A. Barroso, J. Clidaras, and U. Hölzle, The datacenter as a computer:

An introduction to the design of warehouse-scale machines. Morgan
& Claypool Publishers, 2013.

[65] R. Panigrahy, K. Talwar, L. Uyeda, and U. Wieder, “Heuristics for
vector bin packing.” Microsoft Research, 2011. [Online]. Available:
http://research.microsoft.com/apps/pubs/default.aspx?id=147927

Mauro Gaggero received the M.Sc. degree in elec-
tronics engineering and the Ph.D. degree in mathe-
matical engineering from the University of Genoa,
Genoa, Italy, in 2005 and 2010, respectively. Since
2011, he has been a Research Scientist with the Na-
tional Research Council of Italy, Genoa. His current
research interests include control and optimization
of nonlinear systems, distributed parameter systems,
neural networks, and learning from data. Dr. Gag-
gero is an Associate Editor of the European Control
Association Conference Editorial Board and of the

IEEE Control Systems Society Conference Editorial Board.

Luca Caviglione received the Ph.D. degree in elec-
tronics and computer engineering from the Univer-
sity of Genoa, Genoa, Italy. He is currently a Re-
search Scientist with the National Research Council
of Italy, Genoa. He has been involved in research
projects funded by ESA, EU, and MIUR. He is a
work group leader of the Italian IPv6 Task Force,
a contract professor, and a professional engineer.
His current research interests include P2P systems,
wireless communications, cloud architectures, and
network security. Dr. Caviglione is involved in the

technical program committee of international conferences and serves as
reviewer for international journals.


