
Public
© All Rights Reserved

HORIZON2020 FRAMEWORK PROGRAMME

TOPIC EUK-03-2016

“Federated Cloud resource brokerage for mobile
cloud services”

D2.3
Global Architecture Design

Project acronym: BASMATI

Project full title: Cloud Brokerage Across Borders for Mobile Users and Applications

Contract no.: 723131

Workpackage: 2
Editor: Emanuele Carlini CNR
Author(s): Emanuele Carlini, Massimo Coppola, Patrizio Dazzi, Vinicius M.De Lira CNR

Antonia Schwichtenberg, Richard Wacker, Corinna Lechler CAS
Myoungjin Kim, David Lee INNO
Jörn Altmann, Netsanet Haile, Baseem Al-athwari SNU
Konstantinos Tserpes, John Violos, Vaggelis Psomakelis ICCS
Jamie Marshall AMEN
Young-Woo Jung, DongJae Kang, Sunwook Kim, Ganis Zulfa Santoso ETRI
Enric Pages, Ana Juan Ferrer ATOS

Authorized by Konstantinos Tserpes ICCS
Doc Ref: D2.3
Reviewer Konstantinos Tserpes ICCS
Dissemination Level Public

BASMATI Deliverable D2.3 Page 1 of 46

Public
© All Rights Reserved

Document History

Version Date Changes Author/Affiliation
v.0.1 23-09-2016 Created ToC Patrizio Dazzi / CNR
v.0.2 27-09-2016 Added architecture component diagram Emanuele Carlini / CNR
v.0.3 08-10-2016 Added sections from the draft document

and some output of telcos.
Emanuele Carlini,
Massimo Coppola / CNR

v.0.4 06-12-2016 Modifed Acronyms, ToC, added
explanations of contents for some
sections

Massimo Coppola,
Emanuele Carlini / CNR

V0.5 01-01-2017 Add user modeling Antonia Schwichtenberg /
CAS

V0.6 23-01-2017 Reworked ToC. Updated with the last
description for each component.
Description of the logical diagram of the
architecture.

Emanuele Carlini,
Massimo Coppola, Patrizio
Dazzi / CNR

V0.7 25-01-2017 Monitoring, Integration Strategies,
Application and User data collector

/INNO

V0.8 25-01-2017 SLA Violation flow, other fixes /CNR
V0.9 26-01-2017 Decision Maker, Resources Broker &

Edge Execution
/SNU

V10 26-01-2017 Application Controller, resource
brokering, provider deployment

/ETRI

V11 26-01-2017 Federation Data Management /ICCS
V12 26-01-2017 BASMATI Applications /CNR
V13 31-01-2017 Knowledge Extractor

Monitoring
/ICCS
/INNO

V14 31-01-2017 Federation Data Management
Knowledge Extractor

/ICCS /CAS

V15 Application deploytment flow, Decision
Maker

/CNR
/SNU /CAS

V16 06-02-2017 Edge SLA Manager /ATOS
V17-18 01-03-2017 Document finalization /CNR
V21 28-11-2017 Compliance review K. Tserpes/ICCS
V22 27-11-2018 Revised version to address reviewers’

comments
K. Tserpes/ICCS, Patrizio
Dazzi, Emanuele
Carlini/CNR, Jamie
Marshall/AMEN

BASMATI Deliverable D2.3 Page 2 of 46

Public
© All Rights Reserved

BASMATI Glossary

Term/Acronym Definition
Mobile cloud
services

Online services offered by cloud resources to support mobile apps. The
backend of the mobile apps.

CP Cloud Provider. The actor that provides the cloud infrastructure/resources,
such as VMs.

CSP Cloud Service Provider. The actor that provides cloud services on top of a
rent infrastructure from a CP.

Cloudlet Limited capacity infrastructures with virtualization capabilities, often used to
support a limited amount of users or perform a limited set of operations on
behalf of the central cloud infrastructure that hosts the complete application

Edge resources Resources aimed to operate specialized functionality, located at the "edge"
of the network infrastructure, thus, closer to the end users. Examples are
(clusters of) RaspberryPis or cloudlets

BUDaMaF BASMATI Unified Data Management Framework
KE Knowledge Extractor
DM Decision Maker
RB Resource Broker
MVD Mobile Virtual Desktop
DASFEST An 3-day long music festival taking place in Karlsruhe, Germany every July
ACE Amenesik Cloud Engine. The cloud service deployment tool through which

actual federation is achieved
BEAM BASMATI Enhanced Application Model. An extension of the TOSCA

specification
ASP Application Service Provider. A Federation user that rents resource services

in order to provide an Application services to End-users
Brokering The matchmaking support provided by BASMATI platform to decide about

the best cloud resources to exploit for the execution of the back-end of
BASMATI applications. This activity regards the placement of the services or
data on computational resources and storages belonging to the cloud
datacentre and the cloudlets within the federation.

End user A user who benefits the various application and infrastructure services
provided by the Cloud. Within BASMATI, the most typical example is
exploiting the Cloud federation via a mobile device (possibly a laptop) using
specialized apps or a web browser.

Offloading The ability of BASMATI platform supporting the runtime placement of the
components composing the front-end of BASMATI applications on edge
resources available nearby the end user. This activity takes place both when
edge and mobiles exchange one each other their own workload or when
such devices transfer some workload to the clouds or cloudlets. In BASMATI
we often distinguish Front-end offloading, related to the mobile part of
application, from Back-end offloading, concerning the server side of

BASMATI Deliverable D2.3 Page 3 of 46

Public
© All Rights Reserved

applications. The latter roughly translates to the known concept of
Cloudbursting.

QoE Quality of experience. It is a measure of a customer's experiences with a
service. It may be related to some aspects of the QoS and QoP but can also
take into account other metrics.

Service
handover

Service handover refers to the activity of transferring an active service
between two computational resources (e.g. Cloudlets) with minimal or no
disruption on the availability of the service. Ideally, service handover is
transparent with respect to the user.

Situational
Awareness

The ability of the BASMATI platform to recognise the “situation”
characterising the actual combined status of users, applications and
resources, aimed at achieving an effective and efficient management of
applications and resources.

BASMATI Deliverable D2.3 Page 4 of 46

Public
© All Rights Reserved

Executive Summary
The ultimate goal of the architecture work package of BASMATI is to ensure that all consortium
members have a common vision of the global architecture of the system and that all developers
are aware of the interfaces exported by any architecture component to others. This deliverable
defines the architecture of the BASMATI platform.

Overall, the objective of the BASMATI project is to design, implement and evaluate a dynamic
and integrated brokerage platform targeting federated clouds that supports the dynamic needs
of mobile applications and users. To this end, the BASMATI architecture provides a common
ground to address key technological and research challenges in different research fields. These
challenges mainly focus on three core aspects: (i) User, application and situation modelling and
understanding to drive application placement; (ii) Runtime adaptivity and reconfiguration; (iii)
Brokering and Offloading of application and services.

The resulting architecture is divided into layers, which stem from several choices taken at design
time. The first choice is the separation in the management of those services that natively run on
the server side from those that run on a client device. The second choice is to separate the
computational plane (how computation is organized, what are the functional dependencies
from the services composing the application) from the data plane, in order to foster advanced
computation and data orchestration techniques. The last, and probably the most important
choice, is the definition of a specific application model (which we refer to as BEAM) that
encompasses all the many views of the application within the platform.

Finally, the architecture defined in this document has also been designed to support the
requirements identified at the beginning of the project, from the use cases, in accordance with
both the joint Korean and European use cases’ needs. A final version of this document was
created at M18.

BASMATI Deliverable D2.3 Page 5 of 46

Public
© All Rights Reserved

Table of Contents

Executive Summary..5

1 BASMATI concepts and positioning..7
1.1 BASMATI key entities...9

1.1.1 Cloud Resources...9
1.1.2 Applications..10
1.1.3 Users..11
1.1.4 Application Backend and Frontend..12

2 BASMATI and Cloud Resource Providers..13
2.1.1 BASMATI interaction with cloud providers..13
2.1.2 BASMATI enabling a Multi-cloud environment..14

3 BASMATI: Logical architecture...15
3.1 Requirements Coverage...17

4 Components and Interactions..18
4.1 Application Back-end Management..19

4.1.1 Decision Maker..19
4.1.2 Knowledge Extractor..20
4.1.3 Application Controller..27
4.1.4 Application Repository...28

4.2 Federation Management..30
4.2.1 Federation Business Logic..30
4.2.2 Resource Broker...32
4.2.3 Federation Data Management...33
4.2.4 Federation Monitoring...36

4.3 Application Frontend Management..38
4.3.1 Edge Execution...38
4.3.2 Edge SLA Manager...39

4.4 Adapters...39
4.4.1 Cloud Providers Management..39
4.4.2 Edge providers management...41

4.5 Security and Privacy...42

5 Sequence Diagrams...43
5.1 Application deployment...43
5.2 Application reconfiguration..44

6 Conclusions..46

BASMATI Deliverable D2.3 Page 6 of 46

Public
© All Rights Reserved

The aim of this document is to define the overall architecture of the BASMATI platform,
providing a general picture and framing the overall architectural model. This document
deliberately avoids deep technical details, aiming at being easy to read, comment and
understand each of its parts.

The document is structured as follows. In section 1 we summarize the core concepts in the
BASMATI ecosystem and the motivations for BASMATI; to this purpose we provide a description
of the basic concepts, a short definition of the terms which are core concepts for BASMATI, as
well as terms which have a specific meaning within the project, also putting them in context
with the main pillars of the BASMATI environment. In particular, Section 1.1.2, documents the
structure of BASMATI applications,

Section 3 reports about the positioning of BASMATI with respect to Cloud providers and the
cloud software stack.

In Section 4 we present the abstract, high-level view of the BASMATI platform. We provide a
preliminary view of the BASMATI architecture and its components as a component diagram, as
well as an analysis of how requirements from use cases are covered by the architecture. In
Section 4, we then provide a high-level description of all components of each architectural layer,
including their management of data, their interaction with other component interfaces, and
their deployment. Section 5 reports behavioral and sequence diagrams for core use cases of the
platform, such as application back-end deployment and runtime reconfiguration.

1 BASMATI concepts and positioning
The mobile apps market displays a staggering growth during the past few years. Whether it is
examined from the point of view of the number of applications developed, users, or revenue,
there is a market share for practically every involved stake-holders. But, in order for the
application developers to bite their share of this market, there is a catch: keep the end users
happy. The mobile app users essentially expect no less than top-notch quality no matter where
and when they decide to use the app. The mobile app developers need to cope with these
requirements otherwise they will get “punished” by the users with low rankings and bad
reputation; a nearly catastrophic event for a small mobile app developer.

The two main challenges for meeting those requirements are latency and load distribution. The
questions are “how can the application provider continue to meet the requirements when”: a)
the user is moving away from the mobile app infrastructure and b) when a large concentration
of users appears in a confined space one day and disappears the other.

These sorts of challenges were tackled by the big application and infrastructure providers such
as Facebook, Google, Amazon, etc. through redundancy and at a great infrastructure cost.
Currently, there is a datacenter proactively meeting the requirements of mobile end users in
most of the regions of the world. However, this approach is not viable for SMEs who cannot

BASMATI Deliverable D2.3 Page 7 of 46

Public
© All Rights Reserved

afford the costs of such infrastructure developments. As a result, the SMEs also turn to the big
infrastructure vendors and lease their operations in order to be able to provide their mobile
applications while meeting the end users’ requirements. Nearly 80% of the total effort in
developing a mobile app goes to the backend, which in turn is controlled almost invariably by
the infrastructure providers. This control is further enhanced with the advent of serverless
computing and functions as a service (FaaS). Inevitably, the small players in the mobile
development market become more or less dependent on the big service providers.

This fact fueled the motivation behind BASMATI. BASMATI sought to provide a financially viable
way for the SMEs to provide the infrastructure that will allow them to host their backend mobile
app services so as to meet the end user requirements. Considering the dependency of the EU
and Korean market on the SMEs, there is one more dimension added to this endeavor: BASMATI
can assist in securing the robustness of EU and Korean small mobile app developers (like INNO
and YellowMap) by intercepting the flow of revenue that is directed towards non-EU and non-
Korean companies.

Besides the optimistic nature of the vision, the BASMATI approach is realistic in the sense that it
does not seek to radically change the way things operate, but rather to intelligently utilize the
existing tools on behalf of the small mobile app developers. The key value proposition is to
intelligently leverage on the existing infrastructure and business models to allow mobile app
developers to use only what is needed, when it is needed and to benefit from the possible
combinations of cloud service providers’ offerings in situations where the competition between
them leads to new and unique opportunities.

As such, BASMATI set as its objectives to enable SMEs to predict resource demand and
proactively deploy application components to cloud-cloud and edge-cloud federations based on
cost-related utility functions. To deal with the interoperability issues, that rise as a result of the
dynamic selection from a pool of heterogeneous resources, but also ease-of-use, BASMATI
presented a federation mechanism as well as the application description model, entitled BEAM.

The last -and most visionary- objective of BASMATI, is to provide the necessary incentives to the
small mobile app developers to form coalitions through multi-cloud or edge-cloud federations,
alleviating each another from the extra costs and overheads imposed by the big cloud providers
when one is seeking to extend the leased infrastructures for the application purposes.

BASMATI aims at the development of an innovative brokerage platform targeting scalable
management of heterogeneous distributed and federated resources in order to support mobile
cloud applications in challenging scenarios, such as large entertainment events (e.g. concerts or
sport events) with a specific focus on nomadic users that interact with their applications when
travelling across regional borders.

BASMATI Deliverable D2.3 Page 8 of 46

Public
© All Rights Reserved

1.1 BASMATI key entities
The BASMATI platform revolves around three main kinds of concepts: Cloud Resources,
applications and users. It is necessary to provide a definition of such concepts in the context and
perspective of BASMATI.

1.1.1 Cloud Resources
A Cloud is a provider of services and resources large enough to support the illusion of infinite
resources (although the federation of Clouds is motivated by the fact that the illusion may not
be supported with a single datacenter). As we aim to avoid user lock-in, we place no strong
constraint on the technology used in specific Clouds that wish to merge with the BASMATI
federation. Hence the BASMATI platform needs to include protocol and API adapters in order to
interoperate with diverse Cloud provider technologies. Specific components in the platform
architecture are the place for such adapters. As a notable example, we explicitly mention that a
full SLA manager may need to be deployed in order to augment specific providers technologies
with full support of BASMATI SLAs, allowing integrating resources from that provider into the
SLA management hierarchy of BASMATI.

A Cloudlet is a smaller Cloud (possibly a single cluster) enrolled in the federation. A Cloudlet is
typically placed in the proximity of the end users (i.e. squares of smart cities, or inside shopping
malls), and is capable of running applications. Within BASMATI a Cloudlet may provide the full
set of services offered by a Cloud data center. However, as Cloudlets are small resource pools
typically managed by local entities, Cloudlet cannot be expected to provide the wide elastic
ranges of resources, as we can expect form a Cloud.

An Edge resource is a small computing device integrated within the network hierarchy. They are
simple and cheap computational resources, low-performance and IoT-like systems. Edge
resources can include e.g. small ARM servers, last-mile systems, routers, as well as laptops and
desktops. Edge devices do not support full Cloud features in BASMATI. Being the closest
resources to the end-user, edge units are ideal for offloading well-defined computational tasks
from mobile resources, for the sake of improved performance or reduced power consumption.
The management of the edge part of the platform needs to be decentralized as much as
possible, to (i) avoid centralization bottlenecks in resource management and (ii) allow full
exploitation of the low-latency, high bandwidth links available with both the end-user devices
and the Cloud.

Mobile devices are those typically owned and used by the end-users of Cloud services: laptops,
mobile phones, tablets or smart watches are all valid examples. They are all recent mobile
devices (GPS, touchscreen), with limited battery/computational power, storage space and
constrained connectivity. More powerful hardware items (i.e. laptops) may be considered
mobile devices depending on the specific use case.

BASMATI Deliverable D2.3 Page 9 of 46

Public
© All Rights Reserved

Resourc
e Type

Hard
Power
constr.

Wired
Network
Bandwidth
constr.

Typical
Network
Latency to
End-User

Provider SLA
manager.

Cloud No No High Yes

Cloudlet No No Medium-
High

May provide

Edge 1-10 GB/s Small Fixed SLA offers
(pre-
negotiated)

Mobile Yes N/A 0 Self-managed
QoE

Table 1. Comparison among Cloud, Cloudlets, edge and mobile resources, with specific constraints of each resource
kind outlined; possibly Cloudlet for Back end and Cloudlet for Front-end need to be distinguished.

1.1.2 Applications
The BASMATI platform is aimed at managing and provisioning cloud applications exploiting the
resources belonging to the BASMATI cloud federation. BASMATI applications are composed by a
set of interacting services, materialized either as VMs or containers.

Specifically, in BASMATI, we see the application as a collection of N components. A component
represents a part of a service, which realizes functionality within the workflow of the
application. In order to orchestrate the deployment, in BASMATI we perform an additional step
and organize the components into partitions. Each component belongs to only one partition,
and each partition can have 1 ≤ K ≤ N components. Ultimately, BASMATI will deal with the
deployment of the partitions.

The above representation provides a model of the application in terms of functional features of
the application. In addition, BASMATI extends such a model with other pieces of information
that drive the placement of the application on cloud resources. We call this extended model the
Basmati Enhance Application Model (BEAM). From a practical point of view, a BEAM is a
collection of information, materialized as documents, that describe the application as a
collection of services and defines rules concerning the selection of resources for deployment.

In particular, the deployment document can be seen as a “colored mask” overlaying the
application representation. These documents drive the allocation of the services composing the
application by specifying, for each cloud provider, which part(s) of the original application is/are

BASMATI Deliverable D2.3 Page 10 of 46

Public
© All Rights Reserved

expected to execute. These documents are also aimed at defining the contextual information
associated with the different modules composing the applications (i.e. partitions), to be
exploited during the deployment phase. These documents are stored and managed by the
Application Repository, which is described in Section 4.1.4.

Furthermore, BASMATI applications assume a clear decomposition of computational resources
and data items. Within BASMATI, application data is stored within the BASMATI data plane. The
BEAM data plane will need to support an abstraction of data sources that is similar to that of the
algorithmic skeletons, allowing the specification of the program semantics, concerning the data,
via common patterns of data access.

The Data Plane patterns shall: (i) represent common data access solutions employed within
Cloud applications and (ii) allow elastic and dynamic transformation of the application to be
performed, to modify resource allocation while preserving application semantics.

It is of paramount importance to assert the goal of providing a templated definition of both
computation and data: the deployment system shall have the tools to flexibly resize the
underlying resource set and application, as well as the knowledge needed to take into account
the effect of this resizing not only on the performance of each application part but also of the
application as a whole. Please note that in this context resizing means the activity devoted to
the modification of resource allocation with respect to the default one, either at initial
deployment time or dynamically at run-time, according to (and in order to improve) the forecast
on execution metrics that are computed by the BASMATI platform.

1.1.3 Users
When discussing about user classes and characteristics for the BASMATI federation, a first
definition to be made is that of Federated User.

 A Federated User is any user whose identity is granted and recognized by the BASMATI
identity services. These in turn may rely on identity providers federated within the
BASMATI platform, but technical implications are not pertinent here. For what concerns
BASMATI, a user whose identity is not tied to any BASMATI recognized identity service
can be regarded as an Anonymous user.

A common issue with Clouds is that service users are typically also service providers, typically for
services of a different level (e.g. IaaS users will often providers of PaaS or SaaS services). Within
this document and for most of the work done in project deliverables, we will need to consider
two classes of user as defined below:

 The End-user is the final user of a Cloud application or an Application service. Within
BASMATI the end-user is almost always accessing services via a mobile device, so they
are a mobile user both at the micro level (local mobility) and at a larger scale
(geographic mobility, nomadic behavior). We can assume one or more mobile devices
are owned by each end-user and will be used to access different kinds of services (e.g.

BASMATI Deliverable D2.3 Page 11 of 46

Public
© All Rights Reserved

Application, Storage, Social networks, Communications, Streamed media). End-users are
nevertheless not limited to mobile computing, they will also be able to exploit BASMATI
to access Cloud services that they own and control in full (the project use case on Virtual
Desktops is an example). An end-user may be a federated user.

 The Cloud User is the owner of an application, that is, they control an application that
provides a service at the PaaS or SaaS level to a set of end-users. A Cloud user is a
federated user. A Cloud user exploits the BASMATI platform to run their application
service backend on IaaS resources from the federation. The service provider will use one
or more cloud providers within the BASMATI federation. The service provider submits a
description of its application (intended as a collection of services, with their functional
specification) and a QoS that elaborates the non-functional specifications of the
application.

We shall underline that we place no strict identity constraints on end-users, that is, an end-user
is not necessarily a Federated user. Such a constraint may be enforced when mandated by a
specific use case. Whenever such a constraint is needed (e.g. when an End-User is also a Cloud
User) we will underline the fact in the description of the application or use case.

1.1.4 Application Backend and Frontend
Within BASMATI we will distinguish applications in two parts:

 Application Front-End (FE), executing within a mobile device environment and
resources;

 Application Back-End (BE), which is a composition of services deployed in the Cloud
federation;

This distinction also applies for the offloading concept. Offloading means “moving part of the
service execution to a different resource”, in order to improve several (QoS and QoE) metrics of
the overall computation, like performance, latency, economic or power cost.

By FE offloading we will mean the delegation of some computational task from a mobile device
to a resource in the Federation. FE offloading target resources can belong to a Cloudlet (i.e. a
small nearby accessible Cloud, possibly with simplified SLA management) or an edge device.
Mobile devices are characterized by limited resources, energy and memory. The offloading
support will enable the transparent and efficient exploitation of the networked computational
and storage resources available nearby the users to relieve mobile devices from (part of) their
workloads. By BE offloading we will instead mean “the action of deploying, migrating and
elastically (up/down) scaling service instances across different Clouds”. Here the targets can be
fully-fledged Clouds within the BASMATI federation or Cloudlets that expose an SLA
management.

The BASMATI architecture provides specific support for both FE and BE offloading, but several
issues need to be addressed in order to effectively achieve offloading on very dispersed and

BASMATI Deliverable D2.3 Page 12 of 46

Public
© All Rights Reserved

heterogeneous resources. Thus, many components of the BASMATI architecture described in
the following, have to deal with one or both forms of offloading.

2 BASMATI and Cloud Resource Providers
The BASMATI brokerage platform is organized and provided as a collection of cooperating
services. Each service implements a specific feature, as presented in Section 4. Services, by
means of their cooperation, provide the scalable management of heterogeneous distributed and
federated resources, belonging to different cloud providers, in order to support mobile cloud
applications in challenging scenarios supporting nomadic users that interact with their
applications when travelling across regional borders.

These services, realizing the BASMATI platform, can be deployed independently; Services use
different programming languages and different technologies, their interaction happens by
means of well-defined RESTful APIs, enabling their interplay, both when deployed within the
same cloud provider and when running in different providers. Each service can be either
deployed on a cloud or on private, ad-hoc resources as on-premises software.

In fact, BASMATI platform does not pose any specific requirement to cloud providers beyond the
ability of providing resources at IaaS level that may be accessed and used programmatically
(e.g., via RESTful interfaces or other means supporting machine-to-machine interactions).
Indeed, all the services realizing the BASMATI platform can be run by using off-the-shelf existing
IaaS cloud technologies.

As will be described later in this document, the BASMATI platform embeds adapters specifically
devoted to the enablement of interactions with cloud providers for the deployment and
execution of BASMATI applications that are structured according to the BASMATI Enhanced
Application Model (BEAM) format. Such a format encompasses both the IaaS-level description of
the application, the SLA agreements and a few additional documents supporting the
deployment and enhancement of the application.

To ensure a proper level of scalability, one or more services contributing to the BASMATI
platform can be deployed as multiple instances. Potential issues related to data synchronization
and coherence, as well as the management of race conditions, in private service data are
implementation dependent and are the responsibility of the service developers. Instead, the
management of synchronization related issues are managed by leveraging the application
repository, a service of the BASMATI platform acting as centralized storage to support the
storing and tracking of BASMATI applications.

2.1.1 BASMATI interaction with cloud providers
To realize a cloud federation, the BASMATI Platform has been carefully instrumented with
solutions that are able to interact with several different cloud provider interfaces, by means of a
flexible and generic provisioning and management sub-system, that is accessible for use by

BASMATI Deliverable D2.3 Page 13 of 46

Public
© All Rights Reserved

other services composing the BASMATI platform. Each aspect, that characterizes a cloud
provider, is represented by a specific OCCI category allowing discrete and standardized access
for use by all higher-level components of the system.

Each BASMATI application is instantiated on cloud providers as a composition of cloud service
instances by leveraging OCCI interfaces. These interfaces allow the instantiation of service
instances on the different types of providers managed by the BASMATI platform. In the
remaining of this section is described the instantiation process.

Cloud service instances are managed by leveraging a combination of information about the
service, contract, provision. Such information results from the processing of a customer facing
service level agreements that describes the technical, commercial and operational details of the
required service. The technical details of the service are provided by the technical manifest and
its collection of nodes and configuration actions.

The service level agreement and manifests structures result from the processing of the BASMATI
Enhanced Application Model (BEAM) document that was initiated for the construction of an
instance of service. The provider information, taken from the service level agreement will be
used for the placement of the resources required for the delivery of the final service. A contract
instance will be negotiated, for each of the nodes in the manifest, as described by the provider
and region terms, and combined with the service instance. The configuration actions will be
processed to create installation instructions that will be fused with the corresponding contract.

Using this information, the BASMATI sub-system aimed at interacting with cloud providers, can
initiate and manage the complete deployment process.

2.1.2 BASMATI enabling a Multi-cloud environment
By means of the afore mentioned OCCI interfaces, BASMATI is able to support the instantiation
of different cloud services on multiple cloud providers, even when are part of the same
application.

Currently, the list of the supported providers is the following: Amazon EC2, Amazon ECS,
Amazon RDS, Amazon Elastic Beanstalk, Amazon R53, Amazon S3, Google Compute Engine,
Google Container Engine, OpenStack NOVA, OpenStack Neutron, OpenStack Glance, Windows
Azure, Cloud Sigma, IBM SoftLayer, OpenNebula, SCALR, Compute Next, On APP, Cloud Foundry,
Open Shift and Eucalyptus.

As matter of fact, the key core of BASMATI is the union of the brokering and selection subsystem
with the provisioning-and-deployment one. Once the brokering subsystem provides the results
of the matchmaking process, involving cloud resources and application instances, the
deployment and provisioning subsystem is informed via BEAM. Cloud Provider information
taken from the deployment service level agreement will be used to drive the placement and
subsequent provisioning of the required resources unless overloaded by cloud provider specific

BASMATI Deliverable D2.3 Page 14 of 46

Public
© All Rights Reserved

information. In this way the BASMATI platform is able to run applications on multiple clouds
enacting the decisions taken by the brokering subsystem.

The provisioning and deployment layer takes on input the deployment documents, as specified
in the previous section, and actually performs the deployment process relying on the specific
technologies available at each provider. At runtime, the BASMATI platform then keeps track of
all the deployments performed, manages and monitors all the cloud services instances deployed
on the different providers to take decisions about migration, replication and all the operations
that could be requested to be performed in support of compliancy with the terms of the SLAs.
All the details about this process will be described later in this document.

The flexible and generic nature of the management structures of the BASMATI platform is
perfectly suited to the management not only of multi-cloud provisioning but also multi-
paradigm provisioning.

The generic nature of the service provisioning management structure allows resource
provisioning to be described and performed, other than the standard Infrastructure as a Service
most frequently associated with cloud provisioning. Platform as a Service and Software as a
Service provisioning interfaces can be used and selected in this way allowing not only for multi
cloud provisioning but also for the provisioning of heterogeneous resource types.

3 BASMATI: Logical architecture
The architecture of the BASMATI platform is organized into four main layers (see Figure 1 as
reference) that are here presented from top to bottom.

BASMATI Deliverable D2.3 Page 15 of 46

Public
© All Rights Reserved

C l o u d P r o v i d e r s M a n a g e m e n t

 A c c o u n 5 n g I d e n 5 t y M o n i t o r i n g D e p l o y m e n t S L A M a n a g e r

E d g e P r o v i d e r s M a n a g e m e n t

A c c o u n 5 n g I d e n 5 t y D e p l o y m e n t

A p p l i c a ' o n F r o n t - e n d M a n a g e m e n t

E d g e S L A
M a n a g e r

E d g e E x e c u 0 o n

O f f l o a d i n g M a n a g e r

D e v i c e S e l e c t o r

Fe
d
e
ra
0
o
n
la
ye

r
M
o
b
ile

la
ye

r
A
d
ap

te
rs

R
e
so

u
rc
es

E d g e R e s o u r c e sC l o u d C l o u d l e t s

A p p l i c a ' o n B a c k - e n d M a n a g e m e n t

A p p l i c a 0 o n C o n t r o l l e r

K n o w l e d g e E x t r a c t o r

U s e r M o d e l A p p l i c a 5 o n M o d e l

S i t u a 5 o n a l K n o w l e d g e

D e c i s i o n
M a k e r

P l a c e m e n t

A d a p 5 v i t y
A p p l i c a 0 o n
R e p o s i t o r y

B . E . A . M

F e d e r a 0 o n B u s i n e s s L o g i c

F e d e r a 0 o n
M o n i t o r i n g

R e v e n u e S h a r i n g S c h e m e

C l o u d - a c r o s s
I n t e r o p e r a b i l i t y

F e d e r a 5 o n S L A M a n a g e r

F e d e r a 0 o n D a t a
M a n a g e m e n t

R e s o u r c e B r o k e r

R e s o u r c e S e l e c t o r

B r o k e r i n g L o g i c

O p 5 m i z a 5 o n
M e c h a n i s m s

F e d e r a ' o n M a n a g e m e n t

Figure 1. BASMATI high level logical architecture

Mobile layer. It contains components and functionalities that are expected to run on the end-
user mobile devices. They interface with the lower layers of the BASMATI platform. It shall be
explicitly noted that the mobile layer modules can directly interact with local edge resources.

Federation Layer. Represents the main part concerned with federation support, its modules are
expected to run on federation resources. It is further decomposed in the two following logical
layers:

Application Back-End Management. These modules manage the back end of a BASMATI
application; the services provided are used to support application management directly. It uses
the underlying sub-layer as a support for common functionalities.

Federation Management. Provides the specific features of BASMATI federations by building on
top of standard Cloud features.

Adapter layer. Software modules here are designed to interface a BASMATI federation with
different Cloud providers. They may run on federation resources or in those of the Providers.

Federation Resources layer. Groups together actual resources and services from different Cloud
providers, Cloudlets and edge resources. While different resources are grouped here and we
attempt to provide a homogeneous abstraction towards the upper layers, not all resources will
provide all the features.

BASMATI Deliverable D2.3 Page 16 of 46

Public
© All Rights Reserved

3.1 Requirements Coverage
The architecture of BASMATI, and its technologies, have been designed and chosen to cover the
requirements identified in the state of the art and use case analysis. In the next tables, we
present the list of identified requirements and, for each requirement, the associated
components and technologies of the architecture that satisfy it. For a complete description of
the requirements, please refer to the Deliverable D2.1 «State of the art and Requirements
Analysis».

Module name Requirements ID

Federated Data Management [TB.SR.4,5,1]; [LE.BPR.3]; [MVD.SR.OMR.3]

Application Controller [TB.SR.4]; [MVD.SR.SSR.6]; [MVD.SR.OMR.1,2]

Decision Maker [TB.SR.2,3]; [TB.UR.3]; [LE.BPR.3,6]; [MVD.SR.SSR.3]; [MVD.UR.1]

Resource Broker [TB.UR.3]; [LE.BPR.5]; [MVD.SR.SSR.3]; [MVD.SR.OMR.10]; [MVD.UR.1];

SLA Manager [TB.UR.3]; [LE.BPR.3,6]; [MVD.SR.SSR.2,3,4]; [MVD.SR.OMR.2,10];
[MVD.UR.1,3]

Federation Monitoring [TB.UR.2] [LE.BPR.8] [LE.BPR.2] [MVD.SR.OMR.4,5,7,9] [MVD.SR.OMR.3]

Knowledge Extractor [TB.UR.1,2]; [LE.UR.1]

User Identity [MVD.SR.SSR.1]; [MVD.UR.4]

Edge Providers Management
(includes monitoring)

[TB.UR.2]; [LE.UR.2];

Front-end Management [TB.BPR.1]; [LE.BPR.6]
Table 2: Requirements Coverage: components

Technology name Requirements ID

TOSCA [TB.SR.2,3,4,5]; [LE.BPR.4,6,7]; [MVD.SR.SSR.5]; [MVD.SR.OMR.6,8];
[MVD.UR.2]

BASMATI Deliverable D2.3 Page 17 of 46

Public
© All Rights Reserved

Amenesik Cloud Engine [TB.SR.1,2,3]; [TB.UR.3]; [LE.BPR.2,5,7]; [MVD.SR.SSR.1,2,4,6];
[MVD.SR.OMR.1,3];

Adaptivity Mechanisms [TB.SR.2,3]

BEAM [LE.BPR.3]; [MVD.UR.2,3]

OCCI [MVD.SR.OMR.6]
Table 3: Requirements Coverage: technologies

4 Components and Interactions
This section provides an overview of the components comprising the BASMATI architecture. For
each component, the following set of information is provided:

- A general description of the actions/tasks carried out by the component; Brief
description of internal sub components (if applicable);

- The Deployment of the component (distributed, centralized), and possible specific
hardware requested by the component;

- What kind of information the component is expected to access, manipulate in terms of
size and frequency.

- Specific technologies, solutions, software, that will be used in the component.

The structure of the description is focused both on the description of the internal operations of
the components, as well as the interactions between them. A high-level snapshot of the
interactions can be seen in Figure 2. Details and specification for each interaction are illustrated
in the next sections.

BASMATI Deliverable D2.3 Page 18 of 46

Public
© All Rights Reserved

Figure 2. Component interactions overview

4.1 Application Back-end Management

4.1.1 Decision Maker
The aim of BASMATI is to provide a
complete eco-system able to efficiently
deploy and manage cloud applications,
especially ones serving requests mainly
originated from mobile devices.
Consequently, the cloud platform should be
able to react to events related to user
mobility, such as users crossing national
borders. To this end it is of paramount
importance to exploit information about
previsions on user mobility, as well as
pertaining to application nature and
structure, to be able to define and enact
optimal application deployment. The
Decision Maker module is responsible for
taking decisions about application placement, taking into account requirements, previsions as
well as all the available information on the footprint generated by applications on resources
during their past executions. It is also in charge of making major adaptive offloading decisions at
runtime that were not resolved at provider level.

The Decision Maker (DM) is organized as a centralized module. The majority of the data
exploited by the DM is retrieved from other sources that are the ones in charge of maintaining
and managing such information, such the Application Repository (AR).

The DM takes the application submitted by the cloud user, from the AR, and then in cooperation
with other modules prepares the BEAM structure. The BEAM is realized by coordinating and
consuming the input from the Knowledge Extractor and the Resource Broker. Once the
deployment plans have been derived, the Decision Maker communicates with the Application
Controller for enacting the actual deployment plans. The interaction between the decision
maker and these components of BASMATI can be summarized in the following Table.

Component Description Data Comm.

Technology

BASMATI Deliverable D2.3 Page 19 of 46

Public
© All Rights Reserved

Application & Qos
Representation

The Application & QoS Representation
module provides the application
according to the Basmati Enhanced
Application Model (B.E.A.M).

TOSCA REST

Knowledge
Extractor

The Knowledge Extractor feeds the
Decision maker with previsions about
users’ mobility and application
footprints.

JSON REST

Resource Broker

The Decision Maker connects with the
Broker to retrieve information about the
potential resources that are available for
hosting the application. The Broker
returns a ranked list of resources able to
satisfy the Decision Maker request,
indicating all the information
characterizing the resource, such as
price, resource availability, reliability.

JSON REST

Application
Controller

The Application Controller receives
deployment plans and application
description from the Decision Maker to
take care of all the actions required for
the actual deployment of the application.

JSON REST

Table 4: interaction between the decision maker and components of BASMATI

As aforementioned, the amount of data effectively stored and managed by the Decision Maker
is very limited. Basically, it consists of the information associated with the application it manages
and is currently in execution on the cloud federation, possibly annotated with user preferences
and requirements. Keeping such information is fundamental to be able to properly react to
performance issues and violation, either for providing alternative deployment scenarios or for
restructuring the application.

The Decision maker will use a multi-objective optimization algorithm, in which more than one
objective function will be minimized or maximized at the same time. An economic-based
approach with various cost functions (Time, Energy and Monetary Cost) will be used to provide a
set of optimal trade-off solutions. Also, the machine learning approach can be used for the
learning feature of the Decision maker from the Past offloading decision.

4.1.2 Knowledge Extractor
Description. The Knowledge Extractor (KE) provides two key features in the BASMATI approach.
The first one is the prediction of resource demands based on the user mobility modelling and
the application analysis. The second one is the evaluation of a proposed deployment document.
Each feature constitutes two separate subcomponents in the KE as depicted in the figure 3. In
addition, there are three auxiliary subcomponents for synchronization and support of the main

BASMATI Deliverable D2.3 Page 20 of 46

Public
© All Rights Reserved

subcomponents, providing the supervised machine learning models, the compatible knowledge
base and the techniques that can represent the incoming data using cohesive and coherent
structures.

The predictive and evaluation models built by KE are triggered and exploited by the decision
maker in order to drive the mapping of the sessions between users and applications onto
resources and evaluate the deployment documents in an efficient way. In order to provide such
analysis, it is expected to process a large amount of data and perform scalable data processing
functions, both for training (i.e. for machine learning) and prediction purposes.

Figure 3: Knowledge Extractor component and its subcomponents

Interaction. For easier access and inter-operability in the Basmati architecture, the
intercommunication of the KE with the Decision Maker and the Application Monitoring will be
deployed as a RESTful service. A global addressing space is provided by a URI to retrieve and
push the corresponding information via JSON files using the PUT, GET operations. The table X
describes how the KE communicates with the other Basmati components and the data that are
exchanged while the following paragraphs describe the intercommunication of the KE as
depicted in the figure 3.

Configuration File

BASMATI Deliverable D2.3 Page 21 of 46

Public
© All Rights Reserved

The configuration file is passed to the KE Controller as a header of the input data or training data
and specifies:

 The mode in which the KE will work namely Prediction Producer, Deployment Resolver,
or Knowledge Base Update

 Input data
 Parameters of interests
 Prediction techniques

Some of these fields can have predefined values. For instance, the prediction producer may use
a predefined classification technique that will be used instead of an explicitly specified
alternatively available prediction technique.

Training Data

The predictor Producer and Deployment Resolver may use supervised machine learning
techniques in which case a training dataset should be provided in order to build their internal
knowledge base representation.

Input/Output

The input/output communication, in JSON format, the data to be processed and the output
values resulting from predictions. Specifically, this data include the following:

Input data:
 Context_info
 deployment_document

Output data:

 user&app_behaviour_prediction
 plan_acceptance

The REST interface will offer the standard CRUD (Create, Retrieve, Update, Delete) functionality.
Data streams can then be sent via PUSH requests through the REST interface. The data will be

BASMATI Deliverable D2.3 Page 22 of 46

Public
© All Rights Reserved

analyzed in near-real-time using e.g. Clustering methods. The REST interface of the analyzer will
offer adequate methods for the mobile applications, and other services within the BASMATI
framework, to pull the results of the analysis via HTTP GET requests. A dedicated interface can
be provided for general validation of the data, e.g. consistency and coherence checking.

Component Description Data Comm.Techn
ology

Application Monitoring An interface of KE with the
Application Monitoring in
order to take as input the
datasets that will be
represented and stored in the
knowledge base.

Training Data to update the
Knowledge Base

REST

Application Monitoring An interface of KE with the
Application Monitoring in
order to take as input the
observations of users,
applications, infrastructures,
and environment.

Context Info: user,
application, environment,
infrastructure data

REST

Decision Maker Request resource predictions
for a user-application-session

The user-application-session
Identifier

REST

Decision Maker An interface of KE with the
Decision Maker in order to
provide the resource
predictions in terms of

CPU resource usage, Memory
resource needs and
Bandwidth.

Resources Predictions
Response

REST

Decision Maker An interface of KE with the
Decision Maker in order to
take as input a deployment
plan.

Deployment Document REST

Decision Maker An interface of KE with the
Decision Maker in order to

Plan Acceptance REST

BASMATI Deliverable D2.3 Page 23 of 46

Public
© All Rights Reserved

provide the evaluation of the
deployment plan.

Table 5: Knowledge Extractor interaction with other BASMATI components

Deployment. The knowledge extractor component will be implemented in the java language and
it will run as a hosted service in a common computer server. The subcomponents can be hosted
in the same Server or in different servers using RESTful services. In any case the prediction
results will be produced selecting dynamically a different predictive model each time based on
the configuration file in a seamless plug and play way.

Data. The Knowledge Extractor component is capable to process any kind of textual, graph and
vector data using the unified representation subcomponent that is described in the deliverable
D3.1. The input data of Knowledge Extractor will be provided by the Application Monitoring,
while the prediction requests and the deployment documents by the Decision Maker. The
output predictions will be provided to the Decision Maker. Some of the prediction methods are
based on supervised machine learning techniques so a training dataset is used to construct an
internal knowledge representation. The training datasets will also be provided by the
Application monitoring and stored in compatible files in the same server that hosts the
knowledge extractor component.

Technologies. The Knowledge Extractor will use the Weka library1 and the Scikit-learn library2,
each of which provides a set of feature engineering, classifying, clustering and regression
methods. The Weka library is developed in Java language and the Scikit-learn in python. The
Python scripts will be embedded in the Java code using a wrapper such as p2j3 .

Prediction Producer subcomponent
Description. The general task of the subcomponent “Prediction Producer” that is part of the
knowledge extractor is to perform analysis of the contextual info that contains data about the
users, the applications, the environment and the infrastructure in order to produce predictions
that concern the CPU resource usage, the memory resource needs and the bandwidth. This
subcomponent, as depicted in Figure 4, will be implemented as a set of several predictors, which
use machine learning techniques such as SVM, Bayes Classifiers and decision trees onto vectors
that represent the observations of users, applications, environmental and infrastructure info.
Based on the input data and the prediction needs, each time the corresponding predictor will be
activated.

1 http://www.cs.waikato.ac.nz/ml/weka/
2 http :// scikit - learn . org / stable /

3 https :// github . com / chrishumphreys / p 2 j

BASMATI Deliverable D2.3 Page 24 of 46

https://github.com/chrishumphreys/p2j
http://scikit-learn.org/stable/
http://www.cs.waikato.ac.nz/ml/weka/

Public
© All Rights Reserved

Figure 4: Subcomponents of Prediction Producer

Interface. As described, the subcomponent “Prediction Producer” will be composed by several
predictors that will be orchestrated by the KE controller in a unified way, based on the
configuration file. The predictors can be hosted in the same or different servers using the Rest
interface.

Data. In order to perform the analysis task in an efficient and stable way, the data that is
collected needs partly to be stored and buffered on the mobile device because periods with no
internet connection or bad connections are assumed – especially in the “Das Fest” use case
where several thousands of people will use the same infrastructure. Mobility data will be fed
into the “Mobility Understanding and Modelling” component in form of a discrete data stream.
For example, GPS coordinates might be tracked and collected every second and then send to the
server every 5 seconds – the actual time intervals can be configured and adapted according to
the specific needs.

Additionally, statistical data from previous years can be used for predicting user behavior and
submitting proposals. Historical data will be pre-structured and pre-analyzed and processed in a
slightly different way. The result of the analysis and the data itself will be stored in a NoSQL
database like Elasticsearch4 or MongoDB5 to ensure stable processing in near-real-time and can
be used as training data.

4

5

BASMATI Deliverable D2.3 Page 25 of 46

Knowledge Extractor

Prediction Producer

Analyser: Classification

Analyser: Clustering

Analyser: Regression

Additional Analysers

Validation

Indexing

Encryption

Deployment Resolver

Public
© All Rights Reserved

In order to enhance the accuracy of the geo locations, it is envisaged to additionally use
Beacons6 in some of the BASMATI use cases. Based on a pre-analysis of the accuracy of the geo
positions and data, it will be decided if the use of Beacons is useful to enhance the quality and
accuracy of the mobility data.

Depending on the use case, additional data can be used within the analysis. In the Das Fest use
case for example, geo meta information about POI (points of interest) can be used to optimize
the analysis and to set concrete analysis targets. This information is available in json analogue to
the format specified by geojson7.

Deployment Resolver Subcomponent
Description. The Decision Maker will provide a deployment plan that describes how each
session, between users and applications, is to be allocated. The KE takes as input the
deployment plan and responds if it is found to be feasible. So KE acts as a feedback to the
Decision Maker about the execution plans that has been produced. The figure 5 depicts the
parts of the Deployment Resolver.

Figure 5: Subcomponents of Deployment Resolver

Data. The Deployment Resolver takes the deployment document through the Knowledge
Extractor Controller and the compatible data structures from the Knowledge Base for the needs
of the supervised techniques. The deployment document is provided in a JSON file.

6

7

BASMATI Deliverable D2.3 Page 26 of 46

Knowledge Extractor

Prediction Producer

Deployment Resolver

Deployment plan
Analysis

Deployment plan
comparison

Deployment plan
Validation

Indexing

Encryption

Public
© All Rights Reserved

Interface. The Deployment Resolver does not have a separate interface. It is activated directly by
the Knowledge Extractor Controller (KEC) based on the provided configuration file.

Auxiliary Subcomponents
Prediction Producer and Deployment Resolver, developed as separate subcomponents inside in
the KE architecture as depicted in the figure 3. KE, also include some auxiliary subcomponents
that make auxiliary functionalities in order to orchestrate the input data, the parameters of
interest, the training data, and the knowledge base using a unified representation according to
the configuration file. In the following paragraphs the intercommunication of KE with the other
Basmati components and the KE auxiliary subcomponents will be described.

Knowledge Extractor Controller
The Knowledge Extractor Controller (KEC) is the subcomponent of KE that receives the
Configuration file and orchestrates all the subcomponents that will be enabled and the actions
that will be carried out. Specifically, the KEC is the first subcomponent that receives the input or
the training data and determines the data flow and processing through the other KE
subcomponents.

Data Unified Representation
The Data Unified Representation (DUR) subcomponent transforms the training data in a form
that is compatible with and readable from the predictive models contained in the Prediction
Producer and Deployment Resolver. In a similar way the DUR processes the training data in
order to be stored in the Knowledge Base. The DUR contains the actions of Data Fusion, Feature
Engineering, and Data Normalization producing the Unified Data Structures that represent the
data observations in a flexible and unified way.

Knowledge Base
The internal Knowledge Base of KE is a subcomponent that is responsible for the storage and
loading of the knowledge representation data that will be used by the Prediction Producer and
the Deployment Resolver.

4.1.3 Application Controller
Description. The Application Controller takes care of all the actions required for the coordination
of the deployment of the application. The Application controller receives deployment plans from
the Decision Maker and processes actions to deploy the applications. To do that, at first the
Application Controller generates Action Plans from deployment plans. After that, it
communicates with the Cloud Providers Management to deliver the action plans. Then, it
notifies the federation SLA Manager for the monitoring of the SLA status of allocated resources
and services of the applications. Finally, it stores deployment status.

Component Description Data Comm.

BASMATI Deliverable D2.3 Page 27 of 46

Public
© All Rights Reserved

Technology

Decision Maker To deploy applications, Decision Maker
sends deployment plans to Application
Controller

Application
description
(B.E.A.M.),
deployment plan
(created by Decision
Maker) and initial
scripts (supplied by
the ASP)

RESTful

Cloud Providers
Management

Application Controller converts
deployment plans to Action Plans which
can be accepted by the Cloud Provider
Management.

Then Application Controller delivers the
action plans to the Cloud Provider
Management.

One or more Action
Plans

(Target Providers and
resource types list,
SLA information of
target resources)

RESTful

Federation SLA
Manager

Application Controller notifies information
about actual allocated resources and
services of the applications to the
Federation SLA Manager.

The federation SLA manager will use the
information to monitor SLA violation.

Target resources list.

SLA information of
target resources.

RESTful

Application
Repository

Application Controller stores deployment
status of the applications after deployment
of it.

Deployment status of
application.

TBD

Table 6: Application Controller interaction with other BASMATI components

Deployment. In general, there is a single instance of the Application Controller for each BASMATI
platform, running on the federated cloud infrastructure. The Application Controller acts in a
stateless manner. It means that the Application Controller doesn’t keep state data. All
information about applications, including the deployment status of applications, are stored in
the Application Repository.

4.1.4 Application Repository
The Application Repository (AR) stores the high-level information relative to applications, and
provides the interfaces to access them (write, read, delete). By its role, the design of the AR is

BASMATI Deliverable D2.3 Page 28 of 46

Public
© All Rights Reserved

strongly interfaces with the concepts expressed by the BEAM representation of the application
(described in Section 1.1.2).

From a functional point of view, the AR is a passive component, in the sense that little
intelligence is required for its operation. Indeed, most of the operations in which the AR is
involved concern the access to data of applications by other components. BASMATI applications
are indeed represented by means of the TOSCA standard, a dialect (thanks to TOSCA
extensibility), defined during the BASMATI project and called BASMATI Enhanced Application
Model (BEAM).

In particular, the BEAM is defined as a set of heterogeneous documents that participate towards
a comprehensive description of an application, such that it can be operated by the BASMATI
platform for deployment and lifecycle management. Some of these documents are provided by
the cloud users (e.g. the application topology), others are constructed by the components of the
platform is an additive fashion (e.g. Knowledge Extractor, Decision Maker). A summary of these
documents is described in the following Table.

Name Format Purpose

ID 128-bit UUID Identifies the instance of an application within the BASMATI
environment

Application
Topology

TOSCA Describes the application in terms of components and
connection among them

Functional
Requirements

TOSCA Describes the functional requirements of each component of
the application

Template
Agreement

WS-agreement Describes the definition of the QoS terms

Decomposition
Document

XML/TOSCA Defines the partitions of the applications and the degree of
replication of each partition

Selection
Document

XML/TOSCA Provides a ranking of cloud resources for each partition
identified in the decomposition document

Deployment
Document

XML/TOSCA Identifies the mapping between application partition and
resources of the federated environment

Table 7: Documents comprising BEAM

BASMATI Deliverable D2.3 Page 29 of 46

Public
© All Rights Reserved

A direct consequence of its central role, the AR has connections with many components of the
BASMATI platform. A summary of AR interactions can be found in the following table. Finally,
the deployment of this component is centralized and will be containerized using Docker.

Component Description Data Comm.

Technology

Knowledge
Extractor (i.e.,
Application
Profile)

The knowledge extractor takes the
application description and updates it
with empirical performance data.

Graph
representation
with TOSCA

REST

Knowledge
Extractor (i.e.,
Application
Profile)

The knowledge extractor provides the
updated application description with
the performance data to the decision
maker.

Graph
representation
with TOSCA

REST

Application
Vendor

The cloud user submits the application
description (including the SLA
templates, application topology and
functional requirements) to the AR

Graph
representation
with TOSCA

REST

Resource Broker The resource broker stores the
selection document and retrieves
application information.

TOSCA/XML REST

Decision Maker The DM stores the decomposition and
the deployment documents and
retrieves application information.

TOSCA/XML REST

Table 8: Application repository interaction with other BASMATI components

4.2 Federation Management

4.2.1 Federation Business Logic

Description. This module embodies the logic and mechanisms required to perform three key
tasks: (i) keeping track of the interoperability level between resources of the federation (ii)
orchestrating and managing the SLAs of applications and of the members of the federation by
driving and configuring the setup of the different SLA managers located inside the providers
belonging to the federation. (iii) Enforcing a proper revenue sharing scheme, defined within the
federation and implemented by conditioning of the resource selection process.

BASMATI Deliverable D2.3 Page 30 of 46

Public
© All Rights Reserved

Component Description Data Comm.

Technology

Resource Broker
(i.e., Resource
Repository)

The resource broker (i.e., resource
repository) gets input from the
federation logic about the available
resources at the participating
members of the federation.

Resource
description,
performance,
availability, price

REST

Resource Broker
(i.e., Optimal
Resource
Selection)

The resource broker (i.e., optimal
resource selection) gets input about
the interoperability and portability of
the resources of the cloud providers.
This could be realized as a repository
as well.

Network of
resources, where
the nodes are
resources and the
links represent the
parameters that
are similar.

Not
specified
yet

Resource Broker
(i.e., Brokering
Logic)

The resource broker (i.e., brokering
logic) gets input about the revenue
sharing plan that applied to different
federations.

The data is
provided by the
SLA repository in
JSON/XML format

REST

Federation
Monitoring

The federation monitoring provides
input to the federation SLA manager,
which analyzes this data by comparing
it with the input received from the
federation agreement.

JSON / XML REST

Application
Controller

The application controller provides
information on the state of
applications to the cloud provider
accounting and invoicing.

REST

User Accounting
& Invoicing

User accounting & invoicing data is
provided to the cloud provider
accounting and invoicing.

SLA Manager The SLA managers of each member of
the cloud federation reports on the
available resources in their clouds.

JSON / XML REST

Table 9: FBL interaction with other BASMATI components

BASMATI Deliverable D2.3 Page 31 of 46

Public
© All Rights Reserved

Deployment. The deployment of the federation logic can be centralized for a single federation. It
creates and maintains a database of federation level SLA, including the revenue sharing scheme
implemented by the federation members.

Data. The federation logic needs write access to the SLA repository.

4.2.2 Resource Broker

Description. The resource broker role in the BASMATI architecture is twofold. On one side the
broker provides tools and mechanisms for the decision about the placement of (part of)
application on federated resources. To this end, it exploits optimization mechanisms to perform
resource classification that considers feedback on past allocations, cost model objectives and
legal aspects. On the other side, the brokering logic organizes the indexing and retrieval of the
list of cloud resources available for placement and offloading. These list of cloud resources has
been generated by considering the different limitations (such as capacity constraints, availability
of resources, and federation agreements between providers) affecting federated heterogeneous
resources (including public cloud, cloudlet and edge resources).

Component Description Data Comm.

Technolog
y

Decision Maker The Decision maker sends the request for
the application, and the broker returns a
possible ranking for allocation

The application topology
and requirements
contained in the BEAM and
taken from Application
Repository. The ranking list
of resources (Selection
Document)

REST

Federation
Monitoring

Federation Monitoring sends the state of
the available resources along with their
metrics

The data can be given in an
XML or JSON format.

REST

SLA Manager The SLA manager feeds the broker with
feedback about allocations (e.g.
violations)

Violation data: date, time,
duration, affected
resources, affected
applications, etc.

REST

Federation
Business Logic

Federation Business Logic sends an input
about pricing scheme to the Resource
Broker so that it can give more precise
ranking lists to Decision Maker.

Pricing scheme for each
CSP/resources in format of
XML or JSON.

REST

Table 10: Resource Broker interaction with other BASMATI components

BASMATI Deliverable D2.3 Page 32 of 46

Public
© All Rights Reserved

Deployment. Ideally, there is an instance of this component in execution on each cloud
federation member. Each broker works as an access point toward the brokering interfaces, so
the brokers communicate to each other keeping data structures consistent.

Data. The broker component stores different kind of data structure: (i) resources exposed by the
provider. This information is relatively dynamic and small, can be kept in a distributed index
(such as Distributed Hash T); (ii) feedback on past allocations. This data is used to computed
proper prediction models about the quality of resources for a given application. It is expected to
accumulate over time and be of considerable size. A centralized federation-level storage is used
to keep this data. (iii) pricing scheme for each CSP. This data is used by the Resource Broker, so
that it can give better recommendations of resource lists.

Technologies. We plan to evaluate the exploitation of machine learning mechanisms and
algorithm to periodically refresh the prediction models.

4.2.3 Federation Data Management

4.2.3.1 Description of General Components

Description. The Federation Data Management component is aiming to unify the data flow
inside the BASMATI multi-cloud. Each application based on the BASMATI platform will be using a
set of data, which is clearly separated from the application’s business logic and processing tasks.
That separation provides us with a scalable architecture, providing the data requested by an
application when it needs them.

Naturally, in a multi-cloud architecture the problem of polyglot data stores arises. Each
application, and the system in which it is deployed, be it a cloud or a single machine, uses a
different data store. One application may be using an SQL-based database, another MongoDB
and a third HBase. These data stores that are inherently different need to communicate and
exchange data with the same data management platform in order to coordinate the applications
that are using them or even create new applications that use data from some of them.

The BASMATI Unified Data Management Framework (BUDaMaF) is a service facilitating this
process. It unifies the local data stores that each application is using and provide a way for more
general application or system administrators to perform some data related tasks that affect the
entirety of the BASMATI platform. This unification will also enable us to apply analytics on the
data created and used by the applications with no regard to the specific data store they are
using. It creates a common database that BASMATI components will use to store commonly
used data.

To perform these tasks, BUDaMaF comprises five basic components; the common data store,
the core service, the wrappers, the security add-on and the analytics service. The work

BASMATI Deliverable D2.3 Page 33 of 46

Public
© All Rights Reserved

contributed by the analytics service is related to the analytical tools that will be applied to the
data passing through this unified data framework. The wrappers will handle the communication
with each specific data store in the BASMATI environment, translating the queries (and their
results) to and from the native languages to the common language. Wrappers are particularly
important for application data in order to perform data replication and migration tasks in their
local data store structure.

The core service will coordinate all the components, ensuring that they are working in unison.
The common data store will keep useful data created and used inside the framework, such as
analytics results. Finally, the security add-on will handle data security and privacy protection
throughout the BUDaMaF.

Interactions. The BUDaMaF will employ a set of different connection methods with other
components of the BASMATI framework. This variance in connection methods is created due to
the inherently general purpose and great reach of a data management framework. Also, this
variance necessitates the classification of relevant data into three categories:

1. Application Data: The data used and produced by applications during the normal
operations of their services. For example, in the TripBuilder use case, this would be the
user location or their selected points of interest.

2. Monitoring Data: The data collected by monitoring processes. This data concerns the
function of the applications, but they do not use them. For example, they may contain
information about CPU usage, response time, Disk usage and others.

3. Federation Data: The data created and used by the BASMATI framework. This data
contains information extracted by the components of the framework and used by other
internal components, such as the knowledge extractor output.

These categories will ease the process of handling the vast amount of data, by providing greater
freedom in two aspects; separating the data into different data stores and creating separate
encryption or anonymization tasks for each category.

Component Description Data Categories Comm.

Technology

Offloading
APIs

An interface that each Wrapper
module can implement for each
data store supported by the
platform.

1 and 2 Restful Web
Services

Wrapper Mediator between the framework 1 and 2 Data store APIs

BASMATI Deliverable D2.3 Page 34 of 46

Public
© All Rights Reserved

Module and each specific data store used
by the applications

and Restful Web
Services

Core The core component of the
framework

1, 2 and 3 Java method
calls and Restful
Web Services

Analytics
Engine

A component facilitating the
communication between the
analytics modules and the
BUDaMaF core

3 Data store APIs
and Restful Web
Services

Analytics
Module

The basic platform for analytical
plugins, that will perform data
analysis using the framework.

3 Restful Web
Services

Security and
Privacy

Encryption and anonymization
engine that will care for the
protection of all sensitive data
moving through the framework

1 Java API, Restful
Web Services

Table 11: BUDaMaF interaction with other BASMATI components

Offloading APIs: This component serves as an interface that each wrapper module can
implement in order to facilitate the connections to and from each supported data store. The
role of this component is to enforce a degree of uniformity in the implementation of each
wrapper module, which can be created by different developers over a large time span.

Wrapper Modules: The wrapper modules, which are in the lower levels of the BUDaMaF’s
architecture, will connect to the data stores remotely, as dedicated users in order to access the
data. This connection will be facilitated through java libraries or online APIs, depending on the
type of each data store. They will be connected with the core platform using java methods since
they will be running on the same machine or cluster of machines.

Core: The core component, in turn, will be exposing an API in the form of a set of restful web
services, giving access to all the applications running on the BASMATI platform.

Analytics Engine: This component will facilitate the uniform communication between the
BUDaMaF and each analytics module attached to it.

Analytics Module: The analytics module will be interfacing with the analytics engine component
in order to perform analysis tasks on the monitoring data gathered in the BASMATI
environment. The modules will be loosely coupled to the engine (using Restful web services),
easing the addition of modules created using different technologies.

BASMATI Deliverable D2.3 Page 35 of 46

Public
© All Rights Reserved

Common Data Store: Finally, the common data store will connect to the core component
through a wrapper, just like any other data store, allowing the other components to access it
through the API provided by the core component. Its function will be storage of federation data
and facilitation of inter-component communication.

The main bulk of the component (core, wrappers, analytics and common data store) will be
deployed locally in ICCS machines or in ICCS controlled cloud infrastructure. This will foster the
minimization of communication overhead and delays between them, creating a more efficient
service. These three basic sub-components will be written in java, using the Weka open source
library for data analysis and machine learning. The common data store will be deployed using a
scalable DBMS like MongoDB or HDFS.

4.2.4 Federation Monitoring
Description. The Federation Monitoring is a component for integrated monitoring, which collects
the monitoring data collected from the Cloud Provider Layer and the monitoring elements
generated at the Federation Layer. The BASMATI platform integrates multiple cloud
infrastructures to provide cloud broker services or to provide cloud offloading. Therefore, the
Federation Monitoring Component collects data from several Application Service Provider (ASP).
In order to determine cloud broker or cloud off-loading through Decision Maker or Resource
Broker, various analysis’ are needed to select SLA or other providers for various Cloud Service
Provider (CSP). The Provider Resource Monitoring component collects the SLA data used by the
CSP.

Data and Deployment. Monitoring data is collecting by default from the Cloud Service Provider
(CSP). The key data provided by the CSP is about the usage of VM in cloud. VM performance
metrics collect information such as CPU, memory, and disk usage of VM Instance. Monitoring
data consists of the VM performance metrics where the application service is running, and the
service process state defined by the ASP.

The type of monitoring data and the collection method are different for each CSP. Therefore,
Federation Monitoring defines common items and collects them. The collection method collects
data through a separate monitoring agent in the VM Instance used in the CSP. Monitoring agent
is distributed together with the resource deployment and resource brokering by the provider
deployment in the Federation Layer. Monitoring data collected by the monitoring agent
distributed in VM Instance is collected separately from the Provider Resource Monitoring item.
Data collected through the Provider Resource Monitoring Component and the Federation
Monitoring Component passes the resource state information to the Federation SLA Manager.

Data collected through the monitoring agent provides a platform-integrated monitoring
environment for the BASMATI platform administrator through the integrated dashboard. ASP
providing mobile service using BASMATI platform provides monitoring information of VM
installs used by ASP.

BASMATI Deliverable D2.3 Page 36 of 46

Public
© All Rights Reserved

The BASMATI platform administrator manages ASPs that are users. Resource usage of the VM
used by the user can be classified according to the user, and service can be classified according
to the service provided by ASP. CSP are managed by the BASMATI platform administrator.
Important information such as SLA information and SLA compliance provided by CSP are
needed. Therefore, administrator should be able to monitor not only the resource usage of the
VM but also the information about the CSP.

ASP are users of the BASMATI platform and are not interested in which CSP VMs are provided.
Therefore, VM resource usage and service status information are the main concern, monitored,
and do not provide information on the CSP.

Figure 6 Monitoring Data Collection Process

Interactions. The VM Monitoring Agent collects performance metrics information of the VMs in
real time to deliver monitoring data to Federation Monitoring. Federation Monitoring has
Monitoring Data Collector that is responsible for each CSP and collects VM information for each
CSP and stores it in Time Series Database, in real time. Data stored in the Time Series Database
is transferred to Federation SLA Manager, Knowledge Extractor, and Web Environment.

The Web Environment is a web environment for BASMATI platform managers and ASPs that
provide services using BASMATI. The Real-Time Analysis Module analyzes real-time data
received from Federation Monitoring and provides it to the Dash Board. The Dash Board
provides visualization of data analyzed by Real-Time Analysis Module according to the needs of
BASMATI manager and ASP.

Component Description Data Comm.

BASMATI Deliverable D2.3 Page 37 of 46

Public
© All Rights Reserved

Technolog
y

Knowledge
Extractor

Application and
user usage data

REST

Cloud Provider
Management

Monitoring components on provider
send data to the federation monitoring

To be
decided

Table 12: Federation Monitoring interaction with other BASMATI components

4.3 Application Frontend Management

4.3.1 Edge Execution

Description. This is the module driving application offloading from smart-phones and tablets to
the devices located at the edge of federation, and to the other federation resources.
Operatively, it is aimed at determining when and what part of the mobile application to offload.

Component Description Data Comm.

Technology

Device Selector Responsible for finding a nearby computing
device at the edge of the federation as well
as other federation resources

To be
decided

Offloading Manager Responsible for handling the offloading
the computation between the mobile
device and the edge computing device

JSON REST

Edge SLA Manger This sub-component runs on mobile device
to determine and define the service level
agreement with edge devices to ensure
that offloading would not worsen the
Quality of Experience (QoE)

JSON REST

Table 13: Edge Execution interaction with other BASMATI components

Deployment. In terms of deployment, we can expect a single Edge Execution for mobile devices,
which can serve for all the instances of BASMATI applications on the same device.

Technologies. In order to determine which part to run locally on the mobile device and which
parts to be offloaded from the mobile device to the edge computing device, this component

BASMATI Deliverable D2.3 Page 38 of 46

Public
© All Rights Reserved

aims to perform application partitioning. Based on the application modelling, there three
possible application partitioning approaches: graph-based, LP-based, or hybrid.

4.3.2 Edge SLA Manager
Description. The Edge SLA Manager is the component, running on mobile devices, aimed at
determining and defining service level agreements with offloading targets to ensure that
offloading would not worsen the QoE. The Edge SLA manger orchestrates specific QoS aspects
associated with the mobile application (e.g. a nano-service for the processing of an image
executed within 1 second) which is defined statically by the mobile application developer.

The core of the SLA Manager is flexible enough to work with different monitoring approaches
such as simple monitoring systems that must be polled to retrieve the metrics, monitoring
systems that are able to push the metrics once available or smart monitoring systems that are
able to evaluate the constraints and raise the appropriate violations.

Component Description Data Comm.

Technolog
y

Edge SLA Manger This sub-component runs on mobile device
to determine and define the service level
agreement with edge devices to ensure
that offloading would not worsen the
Quality of Experience (QoE)

JSON REST

Table 14: Edge SLA Manager interaction with other BASMATI components

Technologies. The SLA core is required to be compliant. WS-Agreement specifies an XML
structure to define agreements and templates, and two layers interface of web services for
operation. This implementation is focused on the xml structure and defines simpler REST
interfaces for operations abstracting the complexity of interacting with the xml specification of
the WS-Agreement. The afore mentioned API accepts requests in both XML and JSON formats.

4.4 Adapters

4.4.1 Cloud Providers Management
The Cloud Provider Management includes all those mechanisms and components aimed at
easing the exploitation of distinct Cloud providers by the federation. Adapters, stubs or partial
reimplementation of common services will depend on the API provided by the underlying Cloud
providers.

Identity and Accounting. Each provider member of the federation exposes the identity API,
which allows other members of the Federation to make use of their offered services so long as

BASMATI Deliverable D2.3 Page 39 of 46

Public
© All Rights Reserved

the terms of the agreement governing their offer are respected. This is an essential part of the
federation, as it is the backbone for the resource and service pricing schemes which will be used
for the identification of the financial transactions required for the invoicing of customers and
federation members and for revenue and cost sharing across the Federation.

Deployment. In order to join a federation, cloud providers expose a federated deployment API
for use by other members of the Federation, a federation service level agreement SLA as
required by the selected topology of the federation and an API for monitoring deployed
services. From an operative point of view, the federated deployment provides an encapsulation
for the transport and integration of disparate cloud service components irrespective of their
source or type of provisioning. The internal sub-components of Provider Deployment are the
Generic Deployment Interface, Generic Deployment Description, Deployment Logic, and
Deployment Specialization.

The Generic Deployment Interface is the interface through which requests from Federation
Logic will be forwarded to Provider Deployment. A RESTful OCCI web service interface is
provided to this effect for use in through the Generic Deployment Interface. Authorization of
federation member requests is required using the authentication credentials provided in the
corresponding service level agreements. Generic Deployment Description provides suitable
input from Federation Logic. is based on terms described by the specification of WS-Agreement.
Deployment Logic processes elements of the TOSCA/BEAM service template provided on the
input. The template defines the topology, node types, relationships between nodes, first-boot
scripts, and workflow of the deployments. The Deployment Logic coordinates requests for the
resources described in the service template through the Specialized Deployment interfaces
which requests provisioning through to corresponding Cloud Service Provider (CSP). This may
result in sending multiple Cloud Provider specific requests being sent to the Cloud Provider to
ensure the correct deployment and execution of the resources described in service template. All
interacts with the different CSPs will be performed through the Specialized Deployment
interfaces subsequently protecting the Caller for the different levels of granularity and
functionality that they expose.

Monitoring. Basic monitoring items provided by the CSP are limited, and the Monitoring Items
provided by each CSP are different. In addition, the type of the Monitoring Component provided
by each CSP is also different. For additional monitoring, it provides extensibility by adding ad-on
of 3rd-party program (OpenStack), or provides detailed monitoring information at an additional
charge in addition to items provided for free by default (Amazon Web Service). Provider
Resource Monitoring Component defines the monitoring elements that are shared by CSP.
Monitoring data is collected using the Monitoring API provided by the CSP, or the data collected
by a separate monitoring agent is transmitted to the Monitoring Collector to collect and store
the data. Monitoring elements collected from CSP are collected through Federation Monitoring
and used for integrated monitoring. Monitoring items are distributed to the CSP and collect
only the resources for the resources of the VM instance in use. In the case of Private Cloud

BASMATI Deliverable D2.3 Page 40 of 46

Public
© All Rights Reserved

Solution, the monitoring item and data collection can also be used for the usage of physical infra
resources. However, BASMATI platform is not only a Private Cloud Solution but also a Public
Cloud Service (ie. AWS ...). Detailed monitoring of the CSP is limited to the level provided by the
CSP, and the BASMATI platform does not consider monitoring the CSP infrastructure. Therefore,
the BASMATI platform's monitoring focuses on the resources of the VM instance, not the
physical assets. In addition, SLA items of virtual resources provided by CSP are solved through
Provider SLA Manager.

SLA Manager. When the resources required to satisfy requests for Service, received from
customers of a Federation member, are found to be insufficient, unsatisfactory or otherwise
unavailable, delegation of provisioning, where permitted in the SLA, will be performed by other
suitable members of the BASMATI federation.

Component Description Data Comm.

Technolog
y

Federation
Deployment

Federation Deployment sends a
deployment plan to deploy a service

XML data in the
specification of
WS-Agreement

REST

Cloud Service
Provider/Cloud
Management
Platform

CSP or CMP receives a service
template to deploy resources for a
service

XML data int the
specification of
TOSCA/BEAM

REST

Table 15: SLA Manager interaction with other BASMATI components

4.4.2 Edge providers management

Description. The sparsity of edge resources, as well as the constraints of reduced memory
footprint, code complexity and overhead, mandate a different, possibly decentralized
implementation of the essential Identity and Accounting services. The Deployment service will
support FE-offloading, which is a restricted case of computation offloading, requiring different
protocols from those of CPM Deployment.

Component Description Data Comm.

Technology

BASMATI Deliverable D2.3 Page 41 of 46

Public
© All Rights Reserved

Resource
Selector

The Edge Providers Management
provides the Resource Selector
available edge resources supporting
the user’s mobility.

Resource
description

N/A

Edge SLA
Manager

The Edge SLA manager running on the
user’s mobile device defines and
determines the SLA agreements with
the edge devices to ensure that
offloading would not worsen the QoE

QoS requirements/
Edge SLA

N/A

Table 16: Edge Provider interaction with other BASMATI components

4.5 Security and Privacy
A full and detailed description of the security mechanism put in place by the BASMATI
consortium is presented in Deliverable 5.5 “Service, security and privacy quality enforcement:
Design and specification”. Here we provide a summary of such mechanisms in relation to
security and privacy of data and communication within the components of the architecture.

Application and user data: Applications using the Basmati framework and components for
analysis task and cloud resource management will need to ensure by themselves that data that
is send to Basmati framework in accordance to general data protection regulations. This means
e.g. that data sets are referenced by arbitrary IDs instead of concrete IP addresses (associated to
the device that sends the data) and that the data that is to be analyzed is not mixed up with
additional data like login information or other user specific data.

For the use cases within Basmati, the client applications like the “Das Fest” app will gather an
explicit agreement from the user to ensure that he commits to the transport of his data in a
pseudonymized form which means in this concrete use case that all unique identifiers like IP
address or names are replaced by arbitrary IDs. The explicit confirmation by the user is
necessary since geo trajectories are so diverse that nearly each data set will at the end be
unique which in principal makes it possible to infer the actual sender - at least given some
additional information.

Data storage: As mentioned in chapter 4.2.3.1, the actual data store used by the application
that consumes the Basmati framework, can differ. Here also, adequate data protection
strategies and mechanisms need to be implemented by the application developer and provider
himself. From Basmati perspective, the main aim is to ensure that the same data protection is
still valid from the moment where Basmati gets access to the data.

Communication: Transport of data from an application client to the server should be done with
HTTP over TLS8. For the Basmati server we will create a CSR and the according certificate will be
installed in the web server for secured communication with the basmati server.

8 https://en.wikipedia.org/wiki/HTTPS

BASMATI Deliverable D2.3 Page 42 of 46

Public
© All Rights Reserved

Data access: In order to access data for analysis task, the data needs to be accessed. Basmati
will offer simple but secure access right and permission system to

(a) Define roles and permissions for data stores. It should be possible to define that a
dedicated data stored can be accessed by a user or application with role X

(b) Let either a user or an application be assigned with role X
(c) Define read/write/execute(delete) permissions on data stores
(d) Delete roles/users/permissions.

5 Sequence Diagrams

5.1 Application deployment
This section illustrates the interactions among the components when an application is submitted
to the BASMATI federation. In the next figure, we assume the cloud user already provided the
application description (topology and functional requirements), as well as service level
requirements. This information has been stored in the Application repository.

Once the Decision Maker (DM) is informed about a new application, the DM contacts the
application repository to gather the information submitted by the cloud user. It then integrates
the application with the input from the Knowledge Extractor with information about user,
application modelling and situational awareness to derive a way to decompose the application
in partitions. The result of this activity, the decomposition document, is stored in the
Application Repository (AR).

Subsequently, the DM triggers the Resource Broker to retrieve, for each module composing the
application, a ranked list of potential candidates. The Resource Broker considers actual
information about cloud provider resources and feedback on past allocations, which are
provided by the SLA manager. The result of this activity is the selection document, which is also
stored in the AR.

Once the selection document is ready, the control goes back to the DM that prepares a series of
deployment plans. These plans are then inserted into the AR, upon a verification of their
correctness by the Knowledge Extractor. Once the plans are ready and verified, the application
partitions are deployed into the selected resources by means of the Application Controller,
which contacts the ACE engine to proceed with the actual deployment that involves the
monitoring and the SLA components.

BASMATI Deliverable D2.3 Page 43 of 46

Public
© All Rights Reserved

:User Interface :Decision Maker :Knowledge Extractor :Resource Broker :Applicat ion Repository

app id
app id
app info

app info
Γ: user and

app. behaviour
predict ion

Γ and app info

decomposit ion documentdecomposit ion document

app id

app id
app info

app info

select ion document

select ion document

Brokering act ivit iesBrokering act ivit ies

200 OK
app id
app info

do

app info

deployment document

deployment document
plan acceptance

while plan is accepted action plan
basmatize OK

(app id)

Basmat izeBasmat ize

Figure 7. Application Deployment information flow

5.2 Application reconfiguration
Violations occur when an SLA Managers (either the Federation SLA Manager or one of the SLA
Managers within the providers) notice a behavior of (a part of) the application that does not
comply with the service level agreed with the cloud user. A sequence diagram of the
interactions among the BASMATI components in case of violations is given in Figure 8. In terms
of scope, we consider two types of violations, local and global.

BASMATI Deliverable D2.3 Page 44 of 46

Public
© All Rights Reserved

Local violation. This violation is discovered and managed locally by an SLA Manager within a
cloud provider (PSLAM). In this case, when the PSLAM detects a violation that can be addressed
locally it contacts the provider's deployment module to perform the necessary adjustments.

Global violation. This violation is discovered and managed by the Federation SLA Manager,
either via communication from the PSLAM or by analyzing data from the Federation Monitoring.
The FSLAM raises up the violation to the Application Controller, which checks whether one of
the alternative plans can fit to restore the application behavior in accordance with the SLA. If no
backup plan is acceptable, the Application Controller contacts the Decision Maker and the
Resource Broker asking for a new set of plans (interaction 4). Subsequently, the Application
Controller sends the plan to the ACE Manager, which realizes it by contacting the necessary
cloud providers.

Figure 8. Violation management information flow

BASMATI Deliverable D2.3 Page 45 of 46

Public
© All Rights Reserved

6 Conclusions
This deliverable presents the architecture of the BASMATI platform. In addition to a description
of each of the components of the architecture, the deliverable provides sequence diagrams that
highlight the interactions between the components in the context of application placement and
runtime configuration. The deliverable also introduces the main concepts behind the BASMATI
platforms as well as a mapping that connects the requirements to the mechanisms of the
architecture that satisfy them. In terms of design, the presented architecture functions as a
“container” that has paved the way for the implementation specific solutions and technologies
towards applications. Several of these solutions are already presented in the current version of
the deliverable. In particular, the sequence of actions for application deployment and the
runtime reconfiguration of applications have already been defined.

This deliverable outlines the state of work of the various components at the moment of its
planned release in November 2017 (M18). The deliverable has been subsequently updated one
year later, in November 2018. During this time, although the general schema of the architecture
remained substantially the same, the interaction between components and the application
workflows had been subject to improvements and fine-tuning. Specifically, a proper integration
of edge resources has been performed by bringing part of the ACE platform to the edge devices,
such as to make them part of the federation. This aspect has been tested in the DAS FEST event
in July 2018, where around 25 edge devices were working as part of a heterogeneous pool of
resources. Further, the flows for the application submission and runtime control has been
finalized. To this regard, different proofs of concept have been created for each of the use cases.

BASMATI Deliverable D2.3 Page 46 of 46

	Executive Summary
	1 BASMATI concepts and positioning
	1.1 BASMATI key entities
	1.1.1 Cloud Resources
	1.1.2 Applications
	1.1.3 Users
	1.1.4 Application Backend and Frontend

	2 BASMATI and Cloud Resource Providers
	2.1.1 BASMATI interaction with cloud providers
	2.1.2 BASMATI enabling a Multi-cloud environment

	3 BASMATI: Logical architecture
	3.1 Requirements Coverage

	4 Components and Interactions
	4.1 Application Back-end Management
	4.1.1 Decision Maker
	4.1.2 Knowledge Extractor
	Prediction Producer subcomponent
	Deployment Resolver Subcomponent
	Auxiliary Subcomponents
	Knowledge Extractor Controller
	Data Unified Representation
	Knowledge Base

	4.1.3 Application Controller
	4.1.4 Application Repository

	4.2 Federation Management
	4.2.1 Federation Business Logic
	4.2.2 Resource Broker
	4.2.3 Federation Data Management
	4.2.3.1 Description of General Components

	4.2.4 Federation Monitoring

	4.3 Application Frontend Management
	4.3.1 Edge Execution
	4.3.2 Edge SLA Manager

	4.4 Adapters
	4.4.1 Cloud Providers Management
	4.4.2 Edge providers management

	4.5 Security and Privacy

	5 Sequence Diagrams
	5.1 Application deployment
	5.2 Application reconfiguration

	6 Conclusions

