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Abstract. Lithological maps contain information about the different lithotypes cropping out in an area. At
variance with geological maps, portraying geological formations, lithological maps may differ as a function of
their purpose. Here, we describe the preparation of a lithological map of Italy at the 1 : 100000 scale, obtained
from classification of a comprehensive digital database and aimed at describing geomechanical properties. We
first obtained the full database, containing about 300 000 georeferenced polygons, from the Italian Geological
Survey. We grouped polygons according to a lithological classification by expert analysis of the 5456 origi-
nal unique descriptions of polygons, following compositional and geomechanical criteria. The procedure re-
sulted in a lithological map with a legend including 19 classes, and it is linked to a database allowing ready
interpretation of the classes in geomechanical properties and is amenable to further improvement. The map is
mainly intended for statistical and physically based modelling of slope stability assessment and geomorpholog-
ical and geohydrological modelling. Other possible applications include geoenvironmental studies, evaluation
of river chemical composition, and estimation of raw material resources. The dataset is publicly available at
https://doi.org/10.1594/PANGAEA.935673 (Bucci et al., 2021).

1 Introduction

Lithology encodes information on the composition and phys-
ical properties of rocks and, therefore, it is a key variable in
the study of Earth surface and subsurface processes. As such,
lithological analysis is relevant to a large body of literature,
including landscape evolution (Coulthard, 2001), water flow
paths (Gleeson et al., 2011), landslides (Alvioli et al., 2021;
Sarro et al., 2020; Reichenbach et al., 2018), chemical com-
position of rivers or atmospheric CO2 consumption (Don-
nini et al., 2020; Gibbs and Kump, 1994; Hartmann et al.,
2010), soil classification (de Sousa et al., 2020), soil erosion
(Vanmaercke et al., 2021), seismic amplification (Mori et al.,
2020; Forte et al., 2019), groundwater-level variability (de
Graaf et al., 2017; Lorenzo-Lacruz et al., 2017), floods (Vo-

jtek and Vojteková, 2019), oil reservoirs (Han et al., 2018),
geothermal potential (Roche et al., 2019), and geomorpho-
logical classification (Alvioli et al., 2020). Lithological vari-
ability is often a measure of geological and landscape com-
plexity and provides important information on geological
evolution and heritage (Bucci et al., 2019; ISPRA and Parco
Nazionale del Cilento, Vallo di Diano e Alburni, 2013; San-
tangelo et al., 2013), georesource settings (Bucci et al., 2016b
; GEMINA, 1962; Corpo Reale delle Miniere, 1926), geoen-
vironmental risks (Giustini et al., 2019; Bentivenga et al.,
2004), and matter fluxes at the Earth’s surface (Brogi and
Liotta, 2011; Boni et al., 1982).

Lithological heterogeneity should therefore be sufficiently
represented in maps at the local, regional, and supra-regional
scales.
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Lithological information is commonly derived from geo-
logical maps. In recent years, much effort has been made to
make the geological data available around the world accessi-
ble at the best possible scales (Table 1, IDs 1 and 2). How-
ever, this still remains an open challenge because the quality,
scale, updating, and availability of geodata vary enormously
across the globe.

The situation is more homogeneous at the continental or
sub-continental level. For example, in 2017 the US Geo-
logical Survey published a compilation of the individual re-
leases of the Preliminary Integrated Geologic Map Databases
(SGMC) for the United States (Table 1, ID 3), which repre-
sents a seamless spatial database of 48 state geological maps
that range from the 1 : 50000 to 1 : 1000000 scales (Horton
et al., 2017). The SGMC is not a truly integrated geological
map database because geological units have not been recon-
ciled across state boundaries. However, the geological data
contained in maps for individual states have been standard-
ized to allow spatial analyses of lithology, age, and stratigra-
phy.

In Europe, in 2016 EuroGeoSurvey launched the Euro-
pean Geological Data Infrastructure (EGDI, Table 1, ID 4).
EGDI provides access to pan-European and national geolog-
ical datasets and services from the Geological Survey Orga-
nizations of Europe. Geological layers available include the
geological map of Europe, 1 : 5000000 scale, and the surface
lithology of Europe, 1 : 1000000 scale. More detailed geo-
logical or geologically derived maps are available at national
scale only (Table 1, IDs 5 and 6).

In Italy, the existing geological maps with national cover-
age (Console et al., 2017) are at the 1 : 1250000 (Bonomo
et al., 2005), 1 : 1 000000 (Pantaloni, 2011; Cipolloni et
al., 2009; Compagnoni, 2004), 1 : 500000 (Compagnoni et
al., 1976–1983), and 1 : 100000 scales (Servizio geologico
d’Italia, 2004) and are managed by ISPRA (Istituto Superi-
ore per la Protezione e la Ricerca Ambientale – Delogu et
al., 2012). The 1 : 50000 national geological map, coordi-
nated and published by ISPRA, has incomplete coverage of
the Italian territory (Table 1, IDs 7 and 8).

Some of the abovementioned maps are accessible, for dis-
play purposes only, via standard viewing services (WMS –
Web Map Service, Table 1, ID 5).

Amanti et al. (2007, 2008) described the first known at-
tempt by ISPRA to draft a lithological map of Italy at the
1 : 100000 scale. The published map covers 65 % of the na-
tional territory and does not include Sardinia, Sicily, and the
sheets 156 to 176, 183 to 187, and 196 to 199. This litholog-
ical map is not accessible in raster or vector format.

In 2018, ISPRA completed the work published in the 2007
and 2008 publications, and a lithological cartography of the
entire Italian territory at the 1 : 100000 scale was made ac-
cessible for visualization through the geoportal (Table 1, ID
5). The map was obtained by gathering information from the
277 sheets of the Carta Geologica d’Italia, adopting a unique

legend model to produce a homogeneous lithological map of
the entire country.

However, specific applications in different geoscience
fields require distinct criteria and methods to elaborate dif-
ferent lithological classifications. For example, starting from
the geological maps produced by ISPRA at the 1 : 100000
scale, a geolithological map of Italy was recently classified
according to the expected seismic behaviour of the material
(Forte et al., 2019), although the map is only represented as
a figure along the paper and is not available for download or
visualization.

Here, we describe a new lithological map of Italy (LMI),
entirely available for download, aimed at differentiating
lithotypes based on their expected geomechanical properties
in relation to slope stability and with the specific purpose of
being used in statistically based (Reichenbach et al., 2018;
Schlögel et al., 2018; Alvioli et al., 2016; Rossi and Re-
ichenbach, 2016) and physically based (Alvioli et al., 2021,
2016; Mergili et al., 2014; Raia et al., 2014) slope stabil-
ity models. Early versions of the map described in this work
were used for geomorphological analysis and terrain classi-
fication (Alvioli et al., 2020) and for rockfall susceptibility
assessment (Alvioli et al., 2021). The map and the associ-
ated database were designed in a versatile way. They can be
easily enhanced/reclassified using different or additional cri-
teria, e.g. considering age, tectonic, or geotechnical informa-
tion, and thus can be relevant to a wide range of studies.

2 Data

The LMI was prepared starting from the data of the 277
sheets of the geological map of Italy at the 1 : 100000 scale
(Table 1, ID 6) provided by the Italian Institute for Environ-
mental Protection and Research (ISPRA – Italian Geologi-
cal Survey; Servizio geologico d’Italia, 2004), available as a
digital database through the ISPRA website. The website ex-
hibits a representational state transfer (REST) service for the
publication of spatial data (Table 1, ID 9) and distributes the
geological map of Italy at the scale of 1 : 100000 in vector
format (Fig. 1). The map contains 294 266 topologically cor-
rect polygons and 5477 unique descriptions of the geological
formations. The scanned versions of the original geological
sheets are also available for consultation (Table 1, ID 6).

The attribute table associated with the polygons originally
contained a unique numerical identifier and the description
of the geological unit as specified in the original geological
maps (field: NAME). Comparison between the original leg-
end descriptions and the text reported in the description field
revealed that several simplifications were made. Such differ-
ences represented a major source of inhomogeneity within
the database, which limited the efficacy of using automated
database queries to apply the new lithological classification
scheme. Table 2 reports examples of such simplifications of
the original legend.
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Figure 1. (a) The 277 sheets of the geological map of Italy at the 1 : 100000 scale as visualized on the ISPRA website (Table 1, ID 6).
The location of (c) is indicated. (b) All 292 705 unclassified vector polygons available in the source dataset. The location of (d) is indicated.
(c) Published version of sheet no. 122 “Perugia” as visualized in raster form at the ISPRA website (Table 1, ID 6). (d) Randomly coloured
polygons within the area encompassing sheet no. 122. Polygons with the same geological description in the original attribute table (field:
NAME) provided by ISPRA (Table 1, ID 9) assume the same colour. The area also encompasses the straight boundaries with its surrounding
four geological sheets, clearly visible as sharp colour changes along NS- and WE-oriented straight lines.

In most cases, the text corresponds only to the first word
or lemma of the original description. In the case of forma-
tions made up of several members, the NAME field contains
a lemma indicating the main lithological members, but this
approach is not consistent for all records. In some cases, the
polygons correspond to empty records in the attribute table
(most of them refer to lakes or inland waters); in others, the
polygons are absent and were added in this work to fill in
empty areas according to the information checked in the orig-
inal geological sheets. Overall, the analysis of the database

revealed several types of errors affecting the source dataset,
which are summarized in Fig. 2a. We refer to errors in the
database as thematic errors, since the attribute assigned to a
polygon is incorrect or does not correspond to the ground
truth (assumed here to be the original geological sheets).
Thematic errors in the database can be grouped according
to two main categories: inconsistency between surveyors and
errors by the operators who compiled the database. We re-
fer to the first as data acquisition errors and to the second as
database compilation errors.

https://doi.org/10.5194/essd-14-4129-2022 Earth Syst. Sci. Data, 14, 4129–4151, 2022
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Data acquisition errors are related to individual mapping
errors (reconnaissance errors, in Fig. 2a) or to disused or
dialectal/jargon geological descriptions (semantic errors, in
Fig. 2a). Figure 3a and c show typical errors related to sub-
jectivity issues visible at the boundary between geological
sheets drafted by different working groups and published
many years apart from each other (Console et al., 2017). Fig-
ure 3c also contains references to local or dialectal terms that
may escape general lithological classification criteria. Sub-
jectivity errors related to disused, inadequate, or dialectal ge-
ological descriptions and terms were systematically resolved
(Fig. 3d) by using database queries. Despite our efforts, lit-
tle or nothing could be done for most of the errors due to
contrasting classifications of rock assemblages by individual
geologists or the working groups who compiled the original
geological sheets. Such problems still remain in our litholog-
ical map (Fig. 3b, d). A new national geological survey cur-
rently in progress (Carg project, Table 1, IDs 7 and 8) will
likely resolve critical information on geological interpreta-
tion, which is beyond the scope of this work.

Database compilation errors can be systematic (Fig. 3f)
and occasional. Figure 3f refers to a systematic thematic error
dealing with the compilation of the NAME column of some
landslide polygons with the description of a lithostratigraphic
unit clearly unrelated to landslides. As exemplified in Fig. 3f,
the compilation errors were identified and corrected during
the reclassification of the source dataset.

3 Methods

The procedure used to compile the new LMI is described in
Fig. 2b. Starting from the original data (top left in Fig. 2b),
we derived the LMI (bottom right in Fig. 2b) through the
following steps: (a) definition of a procedure including al-
phanumeric queries, geospatial analysis, and expert judge-
ments; (b) preparation of at least two intermediate products
and three versions of the LMI.

The Intermediate LIM – 3 classes product (Fig. 2b) fol-
lows a genetic criterion and describes (i) magmatic, (ii) meta-
morphic, and (iii) sedimentary rocks.

The Intermediate LIM – 6 classes product (Fig. 2b) distin-
guishes (i) older (typically pre-Neogene in age) and struc-
tured substratum-derived sedimentary rocks and (ii) mag-
matic intrusion from (iii) younger (Neogene and Quater-
nary in age) less to non-deformed sedimentary and magmatic
cover rocks. Sedimentary cover was further separated into
(iv) undifferentiated and (v) alluvial/marine rocks, while the
(vi) metamorphic rock class remains unchanged.

LMI – Version 1 (Fig. 2b) is based on a predominantly
lithological criterion and contains the 19 classes defined in
our legend.

To translate different rock-type information into litholog-
ical classes, the dominant rock types were emphasized as-
suming that the rocks mentioned foremost are more abundant

than those mentioned later in the descriptions. This classifi-
cation strategy is consistent with many mapping guidelines
(Cohen et al., 2013; Hartmann et al., 2012; Asch, 2005) and
is based on the classification system by Dürr et al. (2005)
with modifications. Determining the dominant rock types
within a unit was not always straightforward though. Cases
of uncertainty about the dominant rock type were found and
were resolved by considering specific lithological classes de-
fined by the combination of the most representative rock
types. For example, the rock unit named “clays and lime-
stones”, composed in equal parts of both lithotypes, was as-
signed to the “mixed sedimentary rocks” class, which also
contains other sediments where carbonates are mentioned but
are not dominant.

Each classification step (“1st, 2nd, and 3rd level” in
Fig. 2b) used the result of the former step (where appli-
cable) and the original data to build complex alphanumeri-
cal database queries. No spatial queries were involved. Fur-
thermore, the first two (coarser) levels of classification (in-
termediate products) helped underline systematic semantic
and compilation errors throughout the database. For exam-
ple, rock units containing the word “schist” were consistently
classified as “metamorphic rocks” in the first-level classifi-
cation, which led to classification of sedimentary rocks with
a strong pelitic component as metamorphic rocks. This hap-
pened since such sedimentary rocks were commonly improp-
erly indicated as “schists” in geological descriptions dating
over 50 years. Similarly, the words “clays” and “claystones”
or “sands” and “sandstones” were sometimes used as syn-
onyms in the original geological legend, with consequent un-
certainty between the sedimentary cover or the sedimentary
substratum.

Inconsistencies in the source dataset mainly derive from
the large variability in the level of detail of the original
geological descriptions between different geological sheets.
Compilation of the 277 geological sheets of the entire
national territory required 92 years, from 1884 to 1976
(Fig. 4a), which inevitably led to differences in the geologi-
cal descriptions (and interpretations) between old and recent
sheets.

A similar issue was introduced between sheets or regions
mapped by different authors and working groups (Fig. 3a, c).
As a consequence, problems of inhomogeneity were found in
the descriptions of lithostratigraphic units, which in turn gen-
erated problems of harmonization at the boundaries between
different geological sheets. To mitigate inhomogeneity prob-
lems, we decided to adopt broad categories in the classifica-
tion of the third level as a function of similar lithologies, ge-
netic processes, and expected geotechnical behaviour. With
this aim, rock descriptions were generalized into 19 lithologi-
cal classes. However, harmonizing the 5477 original univocal
descriptions of the geological units into 19 simplified litho-
logical classes was often tricky and required expert judge-
ment supported by the consultation of regional and supra-
regional geolithological maps (Conti et al., 2020; Piana et al.,
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Figure 2. (a) Scheme of the main thematic errors identified in the source dataset. Errors can be related to (i) uncorrected or incomplete
database compilation or (ii) data acquisition as a consequence of individual errors or inhomogeneity in the use of geological nomenclature,
description, and interpretation. (b) Flowchart of the classification process of the lithological map of Italy.

2017; Lentini and Carbone, 2014; Carmignani et al., 2013;
Vezzani et al., 2010; Celico et al., 2007; Carmignani, 2001;
Boni et al., 1982; Bigi et al., 1993; Amodio-Morelli et al.,
1976). We used a very long and complex set of database
queries to classify and harmonize the data. For example, to
correctly classify glacial drift, avoiding possible overlapping
with alluvial deposits, we requested the NAME field to con-
tain strings with the words “wurm”, “würm”, “glacial”, and
“moraine” and at the same time without any of the words
“alluvial”, “fluvial”, and “terrace”. Due to their specificity,
queries were generally longer and more complex when used
to classify widespread lithological classes containing a large
number of unique descriptions. LMI_Version 2 is the product
of this harmonization phase where “wide-area errors” were
corrected (Fig. 2b), resulting in a lower number of discon-
tinuities at the boundaries of regions or individual geologi-
cal sheets compared with those contained in LMI_Version 1
(Fig. 4b, c).

To identify discontinuities between contiguous geological
sheets (Fig. 2b), we developed an automatic procedure based
on the analysis of the lithological classes located to the right

and left of each lithological boundary. We selected all EW-
and NS-oriented straight boundaries longer than 1 km and re-
solved classification inconsistencies across such boundaries
through expert advice. Discontinuities between contiguous
geological sheets are due to inconsistencies between survey-
ors. Since we assumed that the ground truths are the orig-
inal geological sheets, our approach consisted in assuming
only one of the two contiguous polygons was to be corrected.
If available ancillary data allowed us to confirm one of the
two bounding polygon attributes, classification of the second
polygon was amended accordingly. Otherwise, the disconti-
nuity was solved by assigning the class that minimized dis-
continuities and inconsistencies.

To reduce the number of discontinuities between contigu-
ous sheets, we consulted geological maps available at the
1 : 100000 scale (Servizio geologico d’Italia, 1970a, b, e,
d, c, 1969, 1968a, b, 1965, 1955; Regio Ufficio Geologico,
1884a, b, c, d, e; Servizio geologico d’Italia, 1964; Ministero
dei Lavori Pubblici, Ufficio Idrografico, Sezione Geologica,
1948) and at the 1 : 50000 scale (Servizio geologico d’Italia,
2016, 2015b, c, a, 2014, 2012c, a, b, 2011c, b, d, a, 2010b,
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Figure 3. The main problems of the source dataset highlighted through the comparison of representative areas as they appear in the published
raster version of the geological sheets (a, c, e) and in our reclassified vector map (LMI) (b, d, f). Vector map legend – Ir (intrusive rocks), Ucr
(unconsolidated clastic rocks), Ccr (consolidated clastic rocks), Sr (schistose rocks), Pr (pyroclastic rocks), Cr (carbonatic rocks), Mw (mass
wasting). Examples of errors related to locally wrong rock classification and inhomogeneity problems at the boundary between geological
sheets of different years are shown in panel (a) (year 1969 – N sheet no. 220 vs year 1890 – S sheet no. 228) and in panel (c) (year 1948
– W sheet no. 35 vs year 1966 – E sheet no. 36). Examples of local/dialectal terms in the geological description are shown in panel (c)
(“Marocche” and “Slavini di Marco” for mass wasting). Examples of errors related to incorrect database compilation are shown comparing
panels (e) and (f). Panels (a), (c), and (e) include sheet nos. 220, 228, 35, 36, and 163 as visualized in raster form at the ISPRA website
(Table 1, ID 6).

c, a, 2009a, b, 2008, 2006, 2005c, b, a, d, 2002, 1972, 1977)
where available. Where information on rock types was un-
available from the national maps, we obtained the descrip-
tions of the named stratigraphic units from regional and lo-
cal geological maps and from the scientific literature (Nov-
ellino et al., 2021; Bucci et al., 2020, 2016b, 2014, 2012;
Vignaroli et al., 2019; Mirabella et al., 2018; Ronchi et al.,
2011; D’Ambrogi et al., 2010; Brozzetti, 2007; Chiarini et

al., 2008; Giannandrea et al., 2006; Schiattarella et al., 2005;
De Rita et al., 2004; Girotti and Mancini, 2003; Catanzariti et
al., 2002; Bortolotti et al., 2001; Prosser, 2000; Giardino and
Fioraso, 1998; Tavarnelli, 1997; Campobasso et al., 1994;
Centamore et al., 1991; Patacca et al., 1991; Calamita et al.,
2009; Centamore et al., 2009; Gueguen et al., 2010; Tavar-
nelli et al., 2003b, a). The quality of the literature was vari-
able and may have introduced some uncertainty. In some
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Figure 4. (a) The 277 sheets of the geological map of Italy at the 1 : 100000 scale classified according to the years of publication, as
visualized in Console et al. (2017), Fig. 3. (b) The 12 711 NS–EW-oriented segments (red lines) with different lithotypes in the two sides
and sinuosity equal to 1. (c) The 405 red lines longer than 1000 m left after semi-automatic classification. The 294 266 unclassified vector
polygons of the source dataset are shown as background in panels (b) and (c). (d) The 58 red lines longer than 1000 m left after the expert
analysis of the semi-automatic output. The 100 705 unclassified vector polygons derived from the dissolve GIS operation performed after
the classification phase are shown as background. Insets in panels (a), (b), and (c) indicate the classification stage to which each map refers,
according to the scheme in Fig. 2b.

rare locations, the rock-type information of digital geologi-
cal map vector datasets was derived from paper maps, which
were georeferenced and visually assigned to the units of the
digital maps. In specific and rare cases, it was necessary to
use geographic visualization software, such as Google Earth
and Google Street View, to study and display images of out-

crops for a local visual analysis. After this finer phase of
correction, a total of 58 segments longer than 1000 m re-
mained unsolved since they would require the geometry of
the original polygons to be modified (Fig. 4d). The problem
greatly increases for the classification inconsistencies along

https://doi.org/10.5194/essd-14-4129-2022 Earth Syst. Sci. Data, 14, 4129–4151, 2022



4138 F. Bucci et al.: A new digital lithological map of Italy

segments shorter than 1000 m, for which a systematic correc-
tion was beyond the scope of this work.

After the classification phase, boundaries were dissolved
to merge adjacent polygons sharing the same lithology. With
this streamlining operation, the number of polygons dropped
from 294 266 to 180 503. The result of the correction of
discontinuities between contiguous sheets is LMI_Version 3
(Fig. 2b).

Eventually, we performed a validation of the map of
LMI_Version 3 (Fig. 2b). First, the area percentages of all
the unique descriptions within each class were computed and
sorted in descending order. Then, within each lithological
class, all the unique descriptions summing to a total area of
90 % of that class were inspected for possible inconsisten-
cies by comparing and verifying the assigned lithology with
the original description in the NAME field. The total area
validated corresponds to 271 651.56 km2, which represents
∼ 90 % of the Italian territory and includes 1702 different ge-
ological descriptions. For each lithological class, polygons
of a very small size, between 0.05 % and 0.8 % of the area
of the lithological class itself, were validated (Table 3). The
remaining 10 % of the total area of each lithological class,
which consists of 4632 records associated with negligible
percentage values of the area (on average 0.06 % of the total
area of each class), was not checked. It is worth noting (Ta-
ble 3) that the carbonate rock class (Cr) accounts for most of
the descriptions (1155), followed by unconsolidated clastic
rocks (Ucr), alluvial and marine deposits (Al), and siliciclas-
tic sedimentary rocks (Ssr), which include 856, 583, and 560
descriptions, respectively. However, the areal extent of these
four classes (the most represented in the territory) does not
reflect the number of descriptions, as the most extensive class
is Al (75 424.36 km2), followed by Ucr (45 764.12 km2) and
then Cr and Ssr (45 329.81 and 34 099.68 km2, respectively).

We checked all of the records classified as anthropogenic
deposits (12 records), landslides (26 records), and lakes and
glaciers (10 records) (Table 3). Some errors inherited from
compilation errors of the source dataset also emerge from
the validation as classification inconsistencies. To give an ex-
ample of this kind of error, we report a case from the land-
slide class in which the most representative (21 % of the area,
with respect to the total landslide class) unique descriptions
are defined as “clayey and calcareous turbidites of Paleogene
age”. These same polygons were, instead, correctly repre-
sented as landslides in the original geological sheet in raster
format (Fig. 3e). Wherever possible, polygons classified as
landslides were manually corrected by looking at the orig-
inal raster map. Similar errors concerning other geological
descriptions were treated using the same approach. After val-
idation, the final LMI was produced (Fig. 2b).

4 Results

The main results of this work are (i) the translation of the
rock-type information extracted from the stratigraphic units
of the geological maps of Italy at the 1 : 100000 scale into
lithological classes and (ii) the development of a data archi-
tecture open to further improvement, aimed in particular at
linking the lithological classes to their expected geotechnical
behaviour.

The new LMI (this work) represents the first freely down-
loadable national distribution of the different lithological
classes at a high resolution. The dataset is publicly avail-
able at https://doi.org/10.1594/PANGAEA.935673 (Bucci et
al., 2021). The map scale is 1 : 100000. The assembled map
consists of a total of 180 503 polygons distributed in 19 litho-
logical classes (Fig. 5).

The percentage distribution of each lithological class over
the Italian territory is indicated and visualized in a bar chart.

The Italian surface is covered by 82.47 % sediments (a
third of which are alluvial deposits), 8.84 % metamorphics,
3.58 % plutonics, and 5.11 % volcanics (Table 4). A specific
class was assigned to areas of ice and inland water bodies,
which cover 0.49 % of the map area.

Below, the lithological classification describes the general
rock types in each unit in alphabetic order.

– Alluvial deposits (Al): alluvial, lacustrine, swamp, and
marine deposits. Eluvial and colluvial deposits.

– Anthropogenic deposits (Ad): include Roman and mod-
ern landfills, drainage channel excavations, and archae-
ological remains.

– Beaches and coastal deposits (B): include beaches and
coastal deposits.

– Carbonate rocks (Cr): carbonate-dominant sedimentary
rocks. Examples of Cr units are limestone, dolomite,
and marl (but only where associated and in a clear mi-
nority with respect to limestone; otherwise, they are in-
cluded in class M). As usual, the rock descriptions of the
mapped units do not give the relative abundances of the
rock types which they encompass: units were classed as
Cr if the first named rock type was a carbonate rock,
if the majority of rock types were carbonates, or if the
named order otherwise led to the impression of a domi-
nation by carbonates.

– Chaotic – mélange (Cm): includes chaotic terrains with
a predominantly clay matrix and olistostromes com-
posed of mixed sedimentary rocks (SM class). Frag-
ments of ophiolite structures were locally included in
the Cm class.

– Consolidated clastic rocks (Ccr): clay, sand, debris, and
conglomerates of a varied origin, usually of Neogene
and Quaternary age, which have undergone consolida-
tion or secondary cementation phenomena.
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Table 3. Descriptive statistics of the 19 lithological classes. In the left half of the table, the number of polygons and their minimum, maximum,
average, and total area for each lithological class are shown. The right half of the table shows the number of total unique descriptions and
those checked during the technical validation in relation to the percentage of the area covered by the validation (% of the total area) and the
detail of the validation (minimum area checked).

Lithological No. of objects A. min A. max A. med A. tot No. of descriptions No. of descriptions A. description A. min
class (m2) (km2) (km2) (km2) checked checked (%) checked (%)

Sr 13 040 50 1909.83 1.32 17 296.50 436 93 90 0.18
Nsr 14 595 263 994.09 0.64 9351.25 382 100 90 0.17
Ir 11 074 56 4238.05 0.97 10 778.27 363 55 90 0.22
Pr 5508 239 2447.07 1.66 9121.65 360 112 90 0.18
Lb 7735 259 1227.15 0.81 6256.87 336 85 90 0.21
Cr 21 070 16 4836.92 2.15 45 329.81 1155 304 90 0.05
M 8541 23 243.65 0.70 5964.80 235 78 90 0.21
SM 5382 216 921.16 1.57 8455.40 181 66 90 0.35
Cm 4167 58 911.52 1.62 6752.96 114 25 90 0.67
Ssr 11 930 24 3924.31 2.86 34 099.68 560 145 90 0.12
E 2634 989 238.72 0.70 1839.48 87 22 90 0.72
Ucr 37 641 32 1260.33 1.22 45 764.12 856 229 90 0.08
Ccr 8391 39 1392.17 1.66 13 915.05 397 112 90 0.16
Gd 11 337 2145 318.28 0.74 8406.20 107 16 90 0.63
Mw 1231 33 9.18 0.26 315.72 26 26 100 0.02
Ad 125 1573 25.31 0.71 88.72 12 12 100 0.03
Li 329 1252 367.79 4.52 1485.44 10 10 100 0.01
B 968 136 105.96 1.01 978.80 79 35 90 0.60
Al 14 804 66 46 634.58 5.09 75 424.36 583 177 90 0.10

Figure 5. Map of Italy showing the 19 lithological classes identified with both the short ID and the extended name.
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– Evaporite (E): contains substantial amounts of evapor-
itic rocks. The typically and most frequently encoun-
tered evaporite rock is gypsum, but anhydrite and halite
are also present. If a map unit was interpreted as dom-
inated by evaporites, it was classified as E, regardless
of other mentioned rocks. This implies that the E class
may additionally contain e.g. carbonates.

– Glacial drift (Gd): includes moraines and other related
deposits.

– Intrusive rocks (Ir): acid (granites, quartz diorites,
quartz monzonites), intermediate (diorite, monzonite,
syenite), and basic (gabbro and peridotite) plutonics.
Ophiolite structures are included in the basic plutonic
except for basalt (Lb class) and serpentinite (Sr class).

– Lakes and ice (Li): lakes, rivers, ice, and glaciers on
some Alpine mountains. However, the coverage is not
representative of lake or ice extent, as the priority of
this map is lithology.

– Lavas and basalts (Lb): volcanic rocks including
acid (rhyolites, trachytes, or dacites), intermediate
(andesites), and basic (basalt-type rocks, tephrites,
tholeites, and lamprophyres) volcanics.

– Marlstone (M): includes mostly marly rocks with a
composition ranging from calcareous marls to clayey
limestones. Typically, it contains marly sediments of
cartographic importance associated with carbonatic
rocks (Cr) or siliciclastic sedimentary rocks (Ssr).

– Mass wasting material (Mw): includes landslides.

– Mixed sedimentary rocks (SM): sediments where car-
bonate is mentioned but is not dominant. The class en-
compasses mixed sedimentary rocks that are usually a
combination of different rock types (e.g. interlayered
sandstone and limestone or shaley marl with interlay-
ered subordinated calcilutite beds or radiolarite). Mixed
pelagic sediments as well as calcareous turbidites are
included in the SM class.

– Non-schistose metamorphic rocks (Nsr): metamorphics
where the schistose fabric can be present but not dom-
inant. It contains gneiss, amphibolite, quartzite, meta-
conglomerate, and marble.

– Pyroclastic rocks (Pr): sediments of volcanic origin.
Typical pyroclastics are tuff, volcanic breccias, ash,
slag, pozzolan, and pumice.

– Schistose metamorphic rocks (Sr): a “broad” lithologi-
cal class that encompasses a wide variety of rocks from
phyllite to schist, including association of schist and
paragneiss. Ophiolite-derived rocks that show a certain
degree of metamorphism and schistosity (e.g. serpenti-
nite) are included in this class.

– Siliciclastic sedimentary rocks (Ssr): sandstone, mud-
stone, and greywacke. Where carbonate was named in
the rock description of the mapped unit, the lithological
classes Cr or SM were used, so siliciclastic sedimentary
rocks are without a mapped carbonate influence. Note
that in some cases the carbonate presence (e.g. as a ma-
trix) may not be named in the rock description and silici-
clastic sediments may still contain carbonates in nature.

– Unconsolidated clastic rock (Ucr): young, not yet con-
solidated, and/or weathered sediments, usually of Neo-
gene and Quaternary age. It comprises all grain sizes
with a heterogeneous origin loosely arranged and not
cemented together. Examples of unconsolidated sedi-
ments are clay soil, sand, non-cemented breccia, loose
debris, and conglomerate.

Significant regional differences in the distributions of
lithologies exist (Fig. 6a, b, c, Table 4).

With the exception of flat and low-lying areas of Italy,
where alluvial deposits and loose clastic deposits dominate
(e.g. PP), the map shows a high regional lithological vari-
ability. In WAL, metamorphic rocks dominate, while in the
eastern Alps (EAL), carbonate rocks prevail. Intermediate
percentages are recorded in CAL, where the metamorphic
rocks to the N–NW and the sedimentary rocks S–SE are
separated by an important tectonic lineament. The northern
Apennines (NAP) are mainly composed of siliciclastic rocks
and subordinately of chaotic and mixed sedimentary rocks,
while the central Apennines (CAP) mainly consist of car-
bonate rocks. Intermediate percentages of carbonate rocks,
mixed and chaotic sedimentary rocks, and siliciclastic de-
posits are found in the northern–internal Apennines (NIAP),
in the southern Apennines (SEAP), and in western Sicily
(WS). In WS significant percentages of evaporites are also
recorded. In the central and south-eastern Apennines (CEAP
and SEAP), high percentages of unconsolidated and consol-
idated clastic rocks are present, while carbonate rocks dom-
inate the lithology of the Gargano Foreland and the Murge
Foreland (GF and MF). The similarity between the most rep-
resented lithological classes in the Calabro-Peloritano Arc
(CPA) and Sardinian Block (SB) is evident, although schis-
tose rocks prevail in the CPA, while intrusive rocks pre-
vail in the SB. Volcanic rocks are extensively represented
in the Central Magmatic Province and Southern Magmatic
Province (CMP and SMP), in eastern Sicily (ES), in the SB,
and subordinately in the EAL.

Significant regional differences in the representation of
lithologies also exist (Fig. 6d). In the original geological
dataset, the number of polygons per square kilometre (black
points in Fig. 6d) used to represent the lithological variability
is strongly heterogeneous across Italy and is proportional to
the geolithological complexity of each physiographic region.
For instance, the Alpine regions (EAL, CAL, WA), which are
characterized by a complex geological architecture and by a
very high lithological variability, display the higher polygon
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Figure 6. (a) Physical map of Italy subdivided into 18 physiographic regions. (b) Geographical distribution of the 19 identified lithological
classes in the 18 physiographic regions of Italy (see Table 4 for spelling out of the acronyms). (c) Percentage distribution of the 19 litholog-
ical classes in each physiographic region. (d) Polygon density (black symbols) and number of unique descriptions (blue symbols) in each
physiographic region considering the original data (points) and the LMI (arrow tips) and taking into account the years of publication of the
geological sheets. (e) Legend. See Fig. 5 for the extended lithological legend.

density, with values between 1.7 and 2.4 polygons per square
kilometre. On the other hand, the Po Plain (PP) records the
lowest polygon density, with 0.2 polygons per square kilome-
tre being characterized by a quite monotonous surface geol-
ogy almost totally represented by alluvial deposits. Accord-
ingly, in the Apennine regions, which are (in general) ge-
ologically less complex than the Alpine regions, the average
polygon density is just over 1 (NAP, NIAP, CAP, SMP, SAP),
with a maximum of 1.7 in the CMP and a minimum of 0.3 in
the south-eastern regions of the foredeep (SEAP) and fore-
land (MF) domains.

The reclassification of the original geological dataset in the
LMI classes determined the merging of adjacent polygons
exposing rock units included in the same lithological class.
The process resulted in a drop in the number of polygons in
each physiographic region passing from the original dataset
to the LMI, which is indicated by the length of the black ar-

rows in Fig. 6d. Importantly, the reduction in the number of
polygons does not change the relative regional variability of
the polygon density. This means that the simplification in-
troduced by our reclassification does not impact the regional
difference in the representation of the lithology.

In Fig. 6d, the indicator of polygon density (in black) is
flanked by an analogue indicator (in blue) displaying the
count of the unique descriptions used within each physio-
graphic region, both in the original dataset (blue points) and
in the reclassified LMI (blue arrow tips). The number of
unique descriptions is generally proportional to the polygon
density, but cases of exceptionally high numbers of unique
descriptions (e.g. PP, NAP, NIAP, SAP) are common. Pri-
marily, this is the effect of individual geologists or working
groups using several local names to define the same rock unit,
thus increasing the number of unique descriptions.
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Finally, Fig. 6d shows that regional differences in the rep-
resentation of lithologies may also be related to the different
years of publication of the geological sheets encompassed in
each region. Figure 6d shows that (i) the geological sheets
encompassed in the Alpine region have been surveyed in the
1901–1940 (EAL, WAL) and 1961–1989 (CAL) time inter-
vals, (ii) almost all the geological sheets encompassed in the
regions of the Italian Peninsula (PP, NAP, NIAP, CEAP, CAP,
CMP, SMP, SAP, SEAP, GF, MF) have been surveyed in the
1961–1989 time interval, such as those of the SB, and (iii)
the geological sheets of WS, ES, and the CPA have been sur-
veyed in the 1884–1900 time interval. While it is not clear
whether the publication years of the geological sheets play a
role or not in controlling the polygon density in the Alpine re-
gions, the impact of the different years of publications on the
representation of the regional lithological variability is dra-
matic when comparing CPA and SB. In fact, despite a simi-
lar lithological composition (Fig. 6c) and a pre-Alpine com-
mon geological history (Alvarez and Shimabukuro, 2009),
CPA and SB are characterized by a very different density of
polygons (0.3 polygons per squared kilometre for CPA and
1.3 for SB) due to strong differences in drafting geological
sheets published almost 100 years apart from each other.

5 Discussions

The main challenge in developing a categorized lithological
map lies in balancing accuracy and complexity and still prop-
erly representing the diversity of lithological variables using
a limited yet reasonable number of classes to ensure ready
interpretation and applicability of the map. We maintain that
the 19 classes defined here allow us to optimize the use of the
map for several applications, with a focus on landslide mod-
elling. Despite the specific goals of this work, we applied a
classification that can be reconciled with the ones adopted in
global lithological databases (Table 1; Hartmann et al., 2012;
Geological Survey of Canada, 1995) emphasizing the dom-
inant rock types. Furthermore, information on the physical
characteristics of the dominant rock types available in the
original geological legend were used to define specific litho-
logical classes.

For example, metamorphic rocks were split into two broad
classes considering the dominant presence of schistose or
non-schistose rocks, i.e. according to expected – or unex-
pected – pervasive planar anisotropies within the rock bod-
ies. Similarly, the classes of consolidated and unconsoli-
dated clastic sediments, in our map, consist of two sepa-
rate classes according to their expected different geotech-
nical behaviour. In both cases, differences in physical fea-
tures (e.g. schistose/non-schistose, consolidated/unconsoli-
dated) may impact the landslide susceptibility of genetically
similar rocks (Bucci et al., 2016a), hence justifying the need
for these lithological classes for our scope.

We also included the marlstone class, quite unusual for
generalized lithological characterization at the national scale.
The need for this class arises from the systematic occurrence
of significant marl interbeds within carbonate or siliciclastic
rocks, whose representation highlights the cartographic de-
tail of the map. Moreover, it is widely recognized that marl
intercalations represent important geohydrological and me-
chanical discontinuities within rock bodies (e.g. see Peacock
et al., 2017) often promoting landslide phenomena (Guzzetti
et al., 1996), which is a relevant issue for our purpose. Since
our map is designed to be used for landslide studies and mod-
elling, we also decided to maintain the “landslides” class, al-
though it covers only 0.1 % of the Italian territory. We are
aware that this percentage value is strongly underestimated.
The Inventory of Italian Landslides (Trigila et al., 2010), still
incomplete, counts over 620 000 landslides covering a total
area equal to 7.9 % of the Italian territory, and the occurrence
of the different types of landslides gives rise to very differ-
ent patterns of landslide susceptibility, consistent with the di-
verse lithological formations (Loche et al., 2022). However,
we acknowledge that the large difference in percentage val-
ues stems from the fact that many efforts in landslide map-
ping have been made in recent decades, when the 277 sheets
of the geological map of Italy at the 1 : 100000 scale were
already published.

Despite the usage of very specific lithological classes help-
ing reliable classification of the rock types, the map is still
subject to uncertainty considering rock properties of some
broad lithological classes. This is highlighted, for instance,
by the considerable amount of mixed limestone, marls, and
shale sediments (5 %), including the chaotic (2.2 %) and
mixed sedimentary (2.8 %) classes. Despite carbonate rocks
and siliciclastic rocks behaving differently for a large range
of physical or chemical properties (e.g. weathering pro-
cesses, dissolution rates, or aquifer characteristics), they of-
ten occur “mixed” in these two geolithological classes, fur-
ther indistinguishable at the scale of the used maps here.

An additional source of uncertainty remains at the bound-
aries of the geological sheets, where only discontinuities be-
tween contiguous sheets longer than 1 km were resolved,
with the exception of 58 segments over the entire national
territory. Table 5 represents a contiguity matrix for these 58
segments. Table 5 reveals that 19 segments, 33 % of the total,
bound polygons pertaining to the Al (alluvial and marine de-
posits) class, which is the most represented lithological class
at the national scale, covering 25 % of the entire national ter-
ritory. The segments that bound lithological classes belong-
ing to the same genetic groups (metamorphic, magmatic, sed-
imentary) total 24, 10 of which separate lithological classes
of the sedimentary substratum from others belonging to sedi-
mentary covers. Only 15 segments bound lithological classes
belonging to different genetic groups. Despite all these seg-
ments representing identical inconsistencies from a graphical
point of view, their potential negative local effects on the map
reliability may be different from a lithological point of view.
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For instance, for landslide studies, we can consider negligible
the potential negative effects of unrealistic, linear lithological
boundaries of polygons pertaining to the Al class since they
cover (almost) only flat areas of fluvial, alluvial, and coastal
plains, where landslides are unexpected.

On the other hand, critical differences remain between
rocks pertaining to the same genetic group but character-
ized by different physical properties (schistose/non-schistose
metamorphic rocks, consolidated/unconsolidated sedimen-
tary clastic rocks). Overall, we consider to be resolved the
inhomogeneity problems at the boundaries between adja-
cent geological sheets for segments equal to or greater than
1000 m, hence considering the remaining 58 segments longer
than 1000 m listed in Table 1 to be acceptable and/or neg-
ligible exceptions. Since in cartography the admissible er-
ror is traditionally assumed to be 1 mm, we maintain that,
only along the boundaries of the geological sheets, our map
is formally correct at the 1 : 1000000 scale, while else-
where the cartographic detail remains compatible with the
1 : 100000 scale. Pushing harmonization operation into more
detail would require altering the original data, which is be-
yond the scope of this work.

The design of the LMI allows for further corrections and
inclusion of additional information (e.g. age information,
tectonic history, geotechnical properties, fine–coarse grain
size ratio) in future versions, customizable for different us-
ages, with an expected reduction in general and/or specific
uncertainties. Additional information may be organized into
more detailed classification levels, although their compila-
tion will require further efforts to collect data from local ge-
olithological literature and site-specific investigations.

Since different purposes impose different generalization
strategies, other lithological classifications of the Italian
rocks are possible, starting from the same source dataset.
For instance, aiming at a seismic soil classification of Italy,
Forte et al. (2019) generalized the lithology of Italy using 20
classes, a number comparable with the 19 classes presented
here. In the Forte et al. (2019) classification, a relevant dis-
tinction was based on the identification of geolithological
complexes such as geological bedrock versus those repre-
sentative of cover deposits, being the last category directly
related to defined values of VS (average speed of propaga-
tion of shear waves) and hence particularly relevant for their
purpose. On the other hand, the most recent lithological map
of Italy provided by ISPRA as a web service is accompanied
by a complex legend articulated in 48 classes aimed at de-
scribing the age, genesis, and chemical–physical characteris-
tics of rocks, focusing on a comprehensive geological rock
characterization without a specific applicative purpose. It is
evident that different classifications allow different possible
usages of the same original dataset; hence, at the same rep-
resentation scale, different lithological characterizations can
be more or less suitable, depending on the intended purpose.

Although the general rock composition of the Italian sur-
face is remarkably similar between the existing digital litho-

logical maps (Table 1, ID 5), the representation of the rock
distribution varies largely between them and has been greatly
improved in the present map, especially across geological
sheets. Compared with smaller-scale maps (Compagnoni et
al., 1976–1983), the main improvements lie in a better repre-
sentation of complex geological settings. Moreover, a better
lithological harmonization along the borders of the original
geological sheets distinguishes our map from other maps at
the same scale (Servizio geologico d’Italia, 2004). Figure 7
shows examples for the Sicily, Campania, and Lombardy re-
gions, highlighting the general improvement of the map re-
gardless of the geographical location and geological and geo-
morphological settings. However, a direct comparison of the
maps is difficult due to the different legends (e.g. based on
geological processes or lithology or mixing-up processes and
lithology).

Early versions of the LMI presented here were already
used to validate the terrain classification of Italy (Alvioli
et al., 2020) and to estimate soil parameters for physically
based rockfall modelling along the Italian railways (Alvioli
et al., 2021). Such versions of the map included a few of the
inconsistencies resolved in this work. We expect that a sim-
ilar use of the map could be extended to study and model
other types of landslides in different lithological settings,
both widespread in the landscape and along specific infras-
tructure networks.

6 Data availability

The digital lithological map of Italy at 1 : 100000
is provided in the PANGAEA database. It is
publicly available at the following web address:
https://doi.org/10.1594/PANGAEA.935673 (Bucci et
al., 2021).

7 Conclusions

This paper described the first freely downloadable lithologi-
cal map of Italy at the 1 : 100000 scale, providing the distri-
bution of rock attributes and rock types of the Italian territory
in digital format.

The LMI was assembled from 277 sheets of the geological
map of Italy at the 1 : 100000 scale and distributed in digital
vector format through a REST service on the ISPRA web-
site. For this purpose, the rock types associated with the 5456
unique geological descriptions in the source dataset were
identified and translated into the 19 general classes defined
here. Adjacent polygons grouped within the same class were
dissolved, reducing their number from the original 292 705
to the 180 503 in the final product. Most of the work con-
sisted of database queries coupled with expert analysis of
the location of the polygons using the sheets available at the
1 : 50000 scale (where present) and with any potentially use-
ful information sought in the regional and local literature.
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Figure 7. Comparison of two different classifications of the same source dataset for selected areas of the Sicily (a, b, c), Campania (d, e,
f), and Lombardy (g, h, i) regions. Examples from the lithological map of Italy according to the ISPRA classification as visualized in vector
form at the ISPRA website (Table 1, ID 5) are shown in panels (a), (d), and (g). For the same areas, the lithological map of Italy according
to our own preliminary semi-automatic classification partially resolved the major inconsistencies along the boundaries of the geological
sheets already present in panels (a), (d), and (g), even if critical boundaries still remain; see the black arrows as a reference. Most of the
inconsistencies were resolved manually by expert analysis in the final version of our map (c, f, i), leading to a substantial improvement of the
lithological harmonization along the borders of the original geological sheets.

Particular attention was paid to harmonizing the lithologi-
cal information at the boundaries of the original geological
sheets. A final technical validation allowed us to detect and
resolve residual problems also related to inconsistencies in-
herited from the source dataset and guaranteed the overall
quality of the work.

The LMI allows the assessment of national-scale research
questions at high resolution and thus helps to advance our
knowledge about the relationships between lithology and sur-
face processes, including multiple geomorphological, geohy-
drological, and environmental issues. In addition, the resolu-
tion of the LMI highlights the differences in the lithological
cover of the different regions and sub-regions, hence facili-
tating the comparison of results of different regional studies
(e.g. susceptibility to landslides and floods).

The map has limits and can be enhanced, in particular in
local areas where geolithological descriptions in the source
dataset were not exhaustive and our knowledge is limited. In-
clusion of more detailed regional maps or other relevant ad-
ditional information, e.g. age, tectonic history, geotechnical
properties, or fine–coarse grain size ratio, is beyond the aim

of this work but may be included in future versions. Aware
of these and other potential and desirable future upgrades,
we provided the LMI with a very simple and open architec-
ture, which allows more details or levels of information to
be added and could thus be developed further in accordance
with specific scientific questions.

Appendix A: Data acquisition procedure

ISPRA exhibits a REST service for the publication of spatial
data (Table 1, ID 9). The acronym REST stands for “rep-
resentational state transfer”, which is an architectural style
for developing services using the http data transfer proto-
col. In particular, ISPRA uses the ArcGIS REST API, the
Advanced Programming Interface REST developed by ESRI
through the proprietary ArcGIS Online platform. The ESRI
API can be queried through specific http requests (for exam-
ple the GET type, in which the service address is followed by
a series of key-value information) that allow us, for example,
to obtain the representation in JSON (JavaScript Object No-
tation) format of geometries (geospatial-layer features) and
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associated attributes. Normally this service is limited to the
return of a maximum number of features for each request.
The acquisition of the database required (i) knowledge of the
REST service APIs and (ii) a procedure for the automatic
download of subsets of data, which cannot be downloaded in
a single piece by the design of the website, and (iii) merg-
ing of all of the subsets into a single vector map. To exe-
cute the download, we prepared a script to download sub-
sets of 100 polygons (geometric features) for each single call
to the service, using the Linux wget command. The proce-
dure is simple and consists of a loop in which, at each itera-
tion, a number (1) of polygons (100 in the actual case) out
of the 300 000 total available polygons. Given that the API
of the REST service database was unknown to us, we fol-
lowed a trial-and-error procedure to obtain a working script.
Downloaded data consisted of 2927 files in GeoJSON for-
mat, which we converted to a single ESRI shapefile using the
GDAL/OGR library.

Author contributions. FB, MS, LF, MC, and IM decided on the
classification system, performed multiscale comparative analysis,
and drafted the final version of the lithological map. IM and MA
prepared the dataset and the script for the final classification. FB,
MS, LF, MC, IM, and LM compiled the legend and designed the
layout of the final map. FB and MS wrote the text. LF, MC, IM,
MA, and LM reviewed and integrated the paper at several stages,
and IM supervised the research activity.
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