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Abstract: Soil sand particles play a crucial role in soil erosion because they are more susceptible
to being detached and transported by erosive forces than silt and clay particles. Therefore, in soil
erosion assessment and mitigation, it is crucial to model and predict soil sand particles at unsampled
locations using appropriate methods. The study was aimed to evaluate the ability of a multivariate
approach based on non-stationary geostatistics to merge LiDAR and visible-near infrared (Vis-NIR)
diffuse reflectance data with laboratory analyses to produce high-resolution maps of soil sand content.
Remotely sensed, high-resolution LiDAR-derived topographic attributes can be used as auxiliary
variables to estimate soil textural particle-size fractions. The proposed approach was compared
with the commonly used univariate approach of ordinary kriging to evaluate the contribution of
auxiliary variables. Soil samples (0–0.20 m depth) were collected at 135 locations within a 139 ha
forest catchment with granitic parent material and subordinately alluvial deposits, where soils
classified as Typic Xerumbrepts and Ultic Haploxeralf crop out. A number of linear trend models
coupled with different auxiliary variables were compared. The best model for predicting sand content
was the one with elevation derived from LIDAR data as the only auxiliary variable. Although the
improvement in estimation over the univariate model was rather marginal, the proposed approach
proved very flexible and scalable to include any type of auxiliary variable. The application of LiDAR
data is expected to expand as it allows the high-resolution prediction of soil properties, generally
insufficiently sampled, at different spatial scales.

Keywords: forest soils; data fusion; topographic attributes; soil spectroscopy; external drift

1. Introduction

Many functions are carried out by soil, ensuring a fundamental contribution to human
life and well-being; however, to understand the potential of soil in providing functions,
it is necessary to characterize the variability of soil properties in space and time [1]. Soil
texture is one of the most important properties that influence many soil functions, such as
water cycling, and processes, such as soil erosion or aggregation, through both the absolute
values of its properties and their spatial variability [2]. Generally, soils with high sand
contents also have low organic carbon contents [3], and sand particles are more susceptible
than finer ones (silt and clay) to being detached and transported by erosive forces [4]. In
sandy soils within mountainous and forested areas with varying morphology, modeling
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and predicting sand content at unsampled locations is, therefore, crucial to assess soil
erosion and design measures for its mitigation.

Since direct laboratory measurements are generally expensive and time-consuming,
different types of soil sensing technologies, from diffuse reflectance spectroscopy to prox-
imal and remote sensing, although indirect measures, can provide rapid and reliable
information on soil property variability at different spatial and temporal scales [5–7]. How-
ever, data measured in laboratories and/or with different soil sensing methods require their
fusion and integration [8–10]. A proper integrated use or synthesis (fusion) of different spa-
tial data results in a more informative result than the one coming from individual sources
and provides new knowledge, understanding, and explanations of the processes [11–13].

When modeling and mapping topsoil, there has always been a compromise between
the need to produce models of high spatial resolution but limited extent (at the local scale)
and the need to produce models of coarse spatial resolution but wide extent (as at the
regional or country scale) [14]. Large-scale spatial soil models at high resolution could fill
the gap of knowledge and reduce the uncertainty in soil modeling, as well as allow the
inclusion and understanding of all necessary physical and biological processes that take
place on the Earth’s surface [15]. Morphometric attributes such as elevation, slope gradient,
aspect, local relief, and slope curvature have been commonly used to estimate the surface
lithology and model the spatial variability of soils [16,17]. Actually, topography, together
with climate and land cover, is one of the main factors that influence soil properties and
determine its heterogeneity at many scales [18].

However, most of these studies used digital elevation models with a spatial resolution
greater than 10 m. Although such a scale may be suitable for some environmental studies,
it may be unsuitable for accurately describing the spatial variability of highly changing
landscapes [19], such as the characteristic landscapes of the forested mountains of some
Calabrian areas in southern Italy [20].

One of the most important recent developments in remote sensing for lithological
mapping of the soil surface is the increasing availability of high-resolution digital elevation
models (DEMs) derived from LiDAR (Light Detection and Ranging) elevation data. The
high density of measurement points obtained from a LiDAR sensor allows for precision
mapping of land surface features and also makes it possible to clearly distinguish soil from
vegetation [14]. LiDAR data are widely used to study landscape and topography [21], tree
attributes [20], phenotyping, and biomass [20], but they can also be used to assess soil
properties [22].

It is widely recognized that there are various advantages, including economic ones,
that would result from the use of LiDAR data in predicting soil lithology [14]. The use of
LiDAR data makes it possible to cover vast areas that are morphologically impervious and
even difficult to access and to construct DEMs with high spatial resolution [23]. Recently,
the DEM resolution derived by LiDAR data has increased, reaching even 0.5 m with the use
of airplanes [24] up to very accurate resolutions (~0.03 m) using the drone [25]. Airborne
laser scanning (ALS) is the most highly accurate and efficient method to acquire 3D data
from large areas and to generate DEMs, such as the Digital Terrain Model (DTM) and
the Digital Surface Model (DSM). Moreover, using geographic information systems (GIS)
algorithms, these new high-resolution elevation data can be used to provide several primary
and secondary topographic attributes.

It is widely accepted that a larger number of soil samples can more accurately de-
scribe and model spatial heterogeneity. To overcome the generally limited resources of the
budget for soil measurements, soil spectroscopy techniques, such as visible-near-infrared
spectroscopy (Vis-NIR, 350–2500 nm), can be used to estimate soil properties such as the dif-
ferent particle sizes (clay, silt, and sand), organic and inorganic carbon concentrations, and
iron concentrations quickly, accurately, and relatively inexpensively [26–28]. This allows
the use of soil data from hyperspectral spectroscopic measurements appropriately reduced
in dimensions as an additional source of information supplementing direct laboratory soil
measurements in order to improve the prediction of the variable of interest [29].
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To produce soil maps associated with some measure of prediction uncertainty by effi-
ciently combining heterogeneous data, several techniques spanning from traditional spatial
statistics and geostatistics to machine learning have been used in recent decades [30–32].
Actually, the different computing technologies lead to a single formulation, which makes
it possible to model the spatial variability of any soil property on different spatial scales,
separating the deterministic component (trend at the long scale) from the stochastic one
(at the short or local scale) [33]. Geostatistics describes the spatial patterns and provides
estimates of attributes at unsampled locations [34]. Its most common linear interpolator
under stationary (i.e., no trend) conditions is ordinary kriging, which uses only the variable
of interest [35]. Non-geostatistical techniques (multi-linear regression or machine learning)
have generally been used to describe the trend, while geostatistical techniques quantify
the stochastic component of variability [36]. These two types of approaches can be kept
separate or combined in hybrid techniques (non-stationary geostatistics) [37]. An efficient
hybrid technique is kriging with external drift [35,38], in which the trend is externally
modeled by auxiliary variables and the trend and residuals are simultaneously estimated
in a single system with a jointly calculated covariance function. However, the trend of the
target variable or some of its transformation functions must be expressed by linear models.
It therefore follows from the above that the joint analysis of a variety of spatially correlated
data of different types requires a proper method of data processing.

The objectives of the study were (1) to define a multivariate approach based on
non-stationary geostatistics to merge remotely sensed high-resolution LiDAR-derived
topographic attributes with Vis-NIR diffuse reflectance spectroscopy and laboratory data
to produce high-resolution maps of soil sand content and its estimation uncertainty, and
(2) to evaluate the advantage of using LiDAR data over employing the univariate model of
ordinary kriging to estimate the soil sand content.

2. Materials and Methods
2.1. Study Area

The study area is the Bonis catchment, situated in the upland landscape of the Sila Mas-
sif (Figure 1), Calabria Region (southern Italy), which is an important site for investigating
the effect of forest management on its hydrologic behavior. Due to its location, the installed
instrumentation, and its forest cover, the Bonis catchment has been studied intensively for
many years [20,39–41]. The catchment has an area of 140 hectares, and its altitude varies
from 1019 to 1341 m a.s.l., with a mean value of 1130 m a.s.l. (Figure 1). The forest cover is
mainly characterized by Pinus nigra ssp. laricio (Poir.) Maire (about 95 hectares), whereas
the remaining 45 hectares are formations of Castanea sativa Mill, riparian vegetation, and a
small portion of bare soil.

In the catchment, Palaeozoic granitoid rocks crop out, which are deeply fractured and
weathered and often covered with thick layers of saprolite and/or colluvial deposits [41].
The landscape is predominantly characterized by rugged morphology with steep slopes,
often cut by deep incisions [41]. The slope gradient varies from 0◦ to 50◦, with a mean
value of 21◦. According to the Calabria Soil Map [42], the soils of the study area can be
classified as Typic Xerumbrepts and Ultic Haploxeralf [43]. The dominant soil textural
classes are sandy loam and sandy clay loam. The upper A-horizon often shows a very dark
brown color due to the accumulation of organic matter (umbric epipedon). Regarding the
pedo-climate features, the study area is characterized by a mesic soil temperature regime
and an udic soil moisture regime [42].

The climate of the study area is typical of Calabrian mountainous areas, with a long-
term average precipitation of about 1080 mm and an average temperature of about 0.1 ◦C
in the coldest month and 18.3 ◦C in the warmest month. The climate data were provided by
the Multi-Risk Functional Centre of the Regional Agency for Environment Protection of the
Calabria Region and recorded at the Cecita station (UTM zone 33N; easting = 633,373 m;
northing = 4,360,500 m), located a few km from the study area.
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Figure 1. Location of the study area and soil sampling points.

2.2. Remote Sensing (LiDAR) Data Acquisition and Processing

At the study site, the light detection and ranging (LiDAR) scanning system was used
by airborne laser scanning (ALS) to provide a high-quality point cloud and density.

The measurement was made with a Riegl LMS-Q560 laser scanner with a frequency
of 400,000 Hz, a FOV of 60◦, and an inclination of 20◦ mounted on a helicopter operating
at approximately 700 m above ground level. The LiDAR sensor has been set up to obtain
the resulting point cloud at about 20 points per square meter to attain the accuracy of
producing DEM layers with 1 m resolution. The World Geodetic System 1984 (WGS 84)
and Universal Transversal Mercator (UTM) projection (zone 33N) coordinate systems were
assigned to the cloud points. The LiDAR data used in this research were acquired in 2017
as part of a national project [20].

To derive the DEM accurately, the raw point cloud acquired by the sensor must be
processed to remove unwanted points from laser range scans and obtain the cleaned
point cloud. The LiDAR data were processed using the commercial software LiDAR360
version 6.0 (Green Valley International Inc., Berkeley, CA, USA), and the data have been
archived in the LAS (LASer) format.

The workflow to generate the terrain models involves several steps. The first one is
to check the data quality and remove isolated points and noise through denoising. The
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Remove Outliers tool in LiDAR360 was used to remove the noise and improve the quality
of the data. The tool analyzes the average distance to all neighboring points and determines
the average and standard deviation for each point to identify outliers and remove them
from the data. Once outliers have been removed from the point cloud, the next step is to
classify ground points through the Classify Ground Points tool in LiDAR360 and set up
the value 2 for the ground points, as defined by the American Society for Photogrammetry
and Remote Sensing (ASPRS) for Standard LiDAR Point Classes. After this, the DEM tool
was used to create the raster of the DTM with 1-m resolution using the Inverse Distance
Weighting (IDW) interpolation method.

2.3. Topographic Attributes

Elevation, slope, aspect, curvature, length-slope (LS) factor, stream power index (SPI),
and topographic wetness index (TWI) were the topographic attributes used as auxiliary
variables in the geostatistics analysis to produce high-resolution maps of soil sand con-
tent distribution. These topographic attributes were derived by the LiDAR–DTM, using
the SAGA-GIS software version 8.2.1 [44]. Details on the calculation of the topographic
attributes can be found in Wilson and Gallant [45] or Florinsky [46]. The distribution of soil
properties can be influenced by elevation because it affects the local microclimate by chang-
ing the patterns of temperature, precipitation, and soil moisture [47]. The slope gradient
is a morphometric attribute of primary importance in the processes governing both pedo-
genesis and soil erosion/deposition; in fact, it influences surface runoff, soil infiltration,
and the intensity of erosion processes [45,48,49]. The aspect plays a fundamental role in
controlling soil moisture along the slopes through solar radiation and rainfall as well as in
influencing many factors regulating soil formation processes and soil productivity [45,47].
Slope curvature provides information on slope shape; it is important for soil mapping
because it influences local superficial water flow in terms of convergence or divergence
and acceleration or deceleration of the flow across the surface. The LS factor is a variable
used in the RUSLE equation to consider the effect of topography on soil erosion [50]. It
depends on slope steepness factor (S) and slope length (L); it influences surface runoff
intensity and is considered a sediment transport capacity index. The SPI attribute is a
measure of the erosive power of overland flow based on the assumption that discharge
is proportional to the specific catchment area [51]. Generally, the higher the value of SPI,
the higher the likelihood of water soil erosion. The TWI attribute indicates the effects of
local topography on hydrological processes [45]. It is an index of the likelihood of a cell
collecting water and is considered a predictor of soil saturation. It exerts a great influence
on hillslope processes such as soil and water redistribution and vertical infiltration. Finally,
TRI is a morphometric indicator that describes whether the topography of an area is flat or
undulated and represents the spatial variability of a landscape. It may be used to measure
the variation in elevation between neighboring spatial pixels of a DEM [45].

2.4. Field Soil Sampling and Laboratory Analysis

A field survey was conducted to collect 135 topsoil (0–0.20 m depth) samples within
the Bonis catchment (Figure 1), with a density of almost one sample per hectare. At each
sampling location, surface litter was removed, and soil was sampled using a metallic core
cylinder having a diameter of 0.075 m and a height of 0.20 m. The position of the soil
sampling sites was acquired using a hand-held GNSS device with a precision of about 1 m.

The soil samples were transferred to the laboratory in polyethylene bags, dried at 40 ◦C
in a ventilated oven, homogenized, and then sieved using a 2-mm mesh stainless steel sieve.
Successively, the sieved samples were used for soil particle size measurement with the
hydrometer method after a pre-treatment with sodium hexametaphosphate as a dispersing
agent [52]. According to the USDA [53] classification for soil texture, sand, silt, and clay
particle sizes were categorized as follows: 0.05–2.0 mm for sand, 0.002–0.05 mm for silt,
and 0.002 mm for clay. In addition, the soil samples were finely sieved through a 0.25 mm
mesh sieve, and SOC concentration was determined by dry combustion using a Shimadzu
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TOC-L analyzer with an SSM-5000A solid sample module (Shimadzu Corporation, Kyoto,
Japan). Each measurement was made in triplicate, and the soil sample was re-measured if
the standard deviation of the three replicates exceeded 2.5%.

2.5. Hyperspectral Spectroscopy Measurements

The visible near-infrared (Vis-NIR) reflectance spectroscopy analysis was performed in
a laboratory using an ASD FieldSpec IV spectroradiometer (Analytical Spectral Devices Inc.,
Boulder, CO, USA) with a spectral range of 350–2500 nm. The spectral measurements were
performed in a dark room to reduce the effect of external light, with the spectroradiometer
held in the nadir position at a distance of 0.10 m from the soil sample. A 50 W halogen
lamp with a zenith angle of 30◦ at a distance of 0.25 m from the sample was used [26]. Each
soil sample was placed in a Petri dish (0.09 m in diameter and 0.01 m deep), and the surface
of the soil was leveled with a spatula [41]. Before starting the soil sample measurements,
dark current was removed, and the spectroradiometer was calibrated with a white panel of
known reflectance (Spectral on Diffuse Reflectance Panel). Generally, the calibration was
repeated once every 20 min.

For each soil sample, 50 scans were acquired, which were then averaged to obtain the
soil spectrum. To reduce the noise level and external interference, the diffuse reflectance
spectra were pre-processed by means of a nine-point smoothing function [54], using the
ViewSpecpro software version 3.2 (Malvern Panalytical Ltd., Malvern, UK). Finally, each
soil spectrum was resampled every 10 nm wavelength to reduce the total number of raw
reflectance bands and avoid overfitting [55].

2.6. Preliminary Statistical Data Analysis and Non-Stationary Geostatistical Approach

An exploratory data analysis was carried out for all study variables before applying
the geostatistical approach. The main basic statistics were calculated (minima, medians,
means, maxima, standard deviations, and skewness and kurtosis coefficients), and those
variables with a significant deviation from the Gaussian distribution (probably due to
large outliers) were transformed to the standardized normal distribution. To do that,
a set of Hermite polynomials truncated to the first 100 terms was used to estimate the
Gaussian anamorphosis function of transformation [35]. At the end, the Gaussian estimates
were back-transformed to the raw values by using the above Gaussian anamorphosis
function [56].

2.6.1. Principal Component Analysis

Principal component analysis (PCA) [57] is a method of analysis for multivariate data
that is widely used because of the simplicity of its algebra and straightforward interpreta-
tion [37]. Moreover, it is frequently applied in remote sensing to reduce the dimensionality
of radiometric variables recorded by multi- or hyperspectral radiometers. The principal
components (PCs) are calculated as the eigenvectors of the correlation matrix [58] and
are not then directly observable variables, for which they require to be interpreted from a
scientific-rational perspective. Mathematically, they are expressed as a linear combination
of the observed variables and are of the same number. Actually, only a part of them is
necessary, and namely, those with eigenvalues greater than 1 determine the number of
retained PCs (Kaiser’s criterion) [59]. The results can be subjected to rotation by a variety
of methods to improve the interpretation of PCs. Those employing orthogonal rotations
are preferred as they preserve the statistical independence of the PCs. In this study, the
VARIMAX procedure was used, and the values of the loading coefficients were multiplied
by 100 and rounded to the nearest integer, and those with absolute values greater than
68.73 (the root mean square of all the values multiplied by 100 in the matrix of PC loadings)
were plotted in a graph.

PCA was performed on the pretreated reflectance spectroscopy data with the SAS/
FACTOR procedure of the statistical software package SAS/STAT version 9.2 [60] in order
to reduce the number of variables (250 raw diffuse reflectance bands).
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2.6.2. Fusion of Heterogeneous Spatial Data

Two data sets were required to apply the non-stationary geostatistical technique
known as kriging with external drift (KED) [45,48] to estimate the soil sand content at the
nodes of the interpolation grid (mesh = 1 m). The latter was based on the digital elevation
model (DEM) obtained from the LiDAR data.

The first of these is the co-regionalization data set (vector file of points), including
the sand content (target variable) data and all the auxiliary variables (external variables
for KED) measured/calculated at the 135 soil sampling locations and used to calculate
the trend.

The second one is the interpolation data set (raster file) based on a 1-m mesh DEM at
whose nodes all the auxiliary variables have been calculated or estimated.

Preliminarily to the realization of the two aforementioned data sets, it was necessary
to apply fusion techniques since the data to be processed were of different types and not in
the same spatial location (not collocated): (1) scattered sample data (at 135 locations): clay
and soil organic carbon (SOC); (2) sample data at the same 135 locations but consisting of
diffuse reflectance spectra discretized into 216 wavelength intervals and to which principal
component analysis (PCA) was applied in order to reduce their size to a few principal
components (PCs); and (3) raster data at the 1-m DEM nodes (elevation and all derived
topographic attributes).

For the realization of the collocated point data set, a migration of the raster data
from the pixel to the nearest sample location was therefore necessary. Differently for the
raster data set, the point data were required to be interpolated at the grid nodes, using
ordinary kriging for clay content and SOC data and ordinary cokriging [35] for the principal
components (PCs) of spectroscopy data.

For an in-depth description of the basic geostatistical techniques, such as the Linear
Model of Coregionalization (LMC), kriging, and cokriging. Interested readers are referred
to the numerous manuals on the subject [35,37,61]. Following, there is a brief description of
the main statistical and geostatistical procedures used in this work.

2.6.3. Kriging with External Drift

Non-stationary geostatistics is applied in cases where the target variable exhibits
systematic variations (trend or drift), so that estimation of the variogram model may be
problematic or, in some cases, impossible. The variogram is a mathematical model that
describes the spatial continuity of the attributes of interest and measures the average
dissimilarity between observations depending on separation distance and direction [61].
Its main features are summarized by two parameters: sill and range. Generally, after an
initial increase, the variogram will reach a maximum (sill variance) at a finite lag distance
(range), which is the distance over which pairs of values are spatially correlated [61].
Moreover, the variogram can show a discontinuity at its origin, called the nugget effect,
which characterizes the very short-scale variability within the shortest sampling interval
and the error variance [61]. In the non-stationary case, the sill is increasing without any
finite distance within the study area. Non-stationary geostatistical techniques (universal
kriging, UK, and kriging with external drift, KED) [35] are based on the assumption that
a generic random variable is constituted by a deterministic component plus a random
component. Universal kriging represents the trend as a linear combination of generally
polynomial functions of the coordinates, while KED is a linear combination of independent
external variables. However, combinations of the two trend types are also possible.

To treat non-stationary cases, Matheron [62] introduced the kriging of intrinsic random
functions of order k (IRF-k), which essentially consists of two steps: (1) trend identification,
and (2) determination of the spatial structure of residuals through the definition of general-
ized spatial covariance models using higher order increments compared with the linear
increments of ordinary kriging. In this way, the trend can be completely filtered out, and
thus stationarity is again achieved [35]. Reference is made to the text cited before [62] and
to other publications on the subject [40] for a complete description of the theory. Only the
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main operational steps for producing the spatial maps of the estimated variable of interest
and estimation uncertainty will be outlined below.

Unlike universal kriging, in IRF-k theory it is not necessary to know the coefficients of
the trend but only its order, which is generally assumed to be less than or equal to 2.

Structural analysis, according to this theory, consists of two steps:

(1) Determination of the order k of the trend;
(2) Calculation of the generalized covariance function K(h) of the module of the distance

vector (h) and fitting of an authorized parametric model to it.

The order of the trend (k) corresponds to the degree of the polynomial used to describe
the large-scale variation (i.e., at a scale longer than the size of the study area). For determin-
ing the degree of trend, the least-squares errors corresponding to the various polynomials
of degrees 0, 1, and 2 are calculated for each sampling point. The degree corresponding
to the minimum error is assigned rank 1, and that with the maximum error is assigned
rank 3. The ranks for each degree are finally averaged over all sample points, and the
degree corresponding to the smallest average rank is assumed to be the optimal degree for
the trend.

In this procedure, the neighborhood is split into two rings: the closest samples to the
target sample belong to ring number 1, and the other samples belong to ring number 2.
Fitting is based on a cross-validation procedure. All the data from ring 1 are used to fit
the functions corresponding to the different trend hypotheses. Each datum of ring 2 is
used to evaluate the quality of the fit. Then the roles of both rings are inverted. The best fit
corresponds to the minimal average variance of the cross-validation errors.

A convenient model for generalized covariance functions is the polynomial model
given by the linear combination of a given set of generic basic structures. All possible
combinations can be reduced in practice to a combination of four basic models with terms
arranged according to increasing regularity [35]:

K(h) = C0 δ(h)− b0|h|+ bS|h|2 log|h|+ b1|h|3 (1)

where δ(h) = 0 for h = 0, otherwise δ(h) = 1. The coefficients C0, b0, bs, and b1 in a two-
dimensional space R2, must satisfy the following set of inequalities for K(h) to be a valid
generalized covariance of IRF-k (authorized model):

C0 ≥ 0, b0 ≥ 0, b1 ≥ 0, bS ≥ −
3
2

√
b0b1 (2)

Unlike the variogram, the generalized covariance function cannot be estimated directly,
but depends on knowing the order of the trend in the IRF-k theory.

The procedure for selecting the generalized covariance function is based on a cross-
validation technique performed using the two rings of samples as previously defined when
determining the optimal degree of the trend. The criterion used is to compare the ratio
(jackknife estimator) between the experimental and the theoretical variances: the closer this
ratio is to 1, the better the result.

In the case of external drift, the technique consists of replacing the large-scale trend
function, previously modeled as a low-order polynomial, by a linear combination of a few
deterministic functions of external variables (auxiliary variables). However, a combination
of the two types of trends is also allowed.

Finally, kriging applied to an IRF-k provides an optimal solution to the case in which
it is necessary to filter out from the estimation error any linear external function (trend)
assumed to be known at each point of the interpolation grid. This is mathematically
equivalent to imposing that the kriging estimator respects not only the polynomial trend
of the coordinates, but also the spatial variation of the auxiliary function(s) of ‘external
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drift’. It is therefore necessary to add a new constraint to the set of weights λα, given by
the following:

N

∑
α=1

λαFF(xα) = FF(x0) (3)

where FF(xα) and FF(x0) represent the values of the external drift function at the N points
xα, where the experimental data exist, and at all points x0, where the value of the original
IRF-k is to be estimated, respectively.

The different steps of the proposed methodology for estimating the soil sand content
are summarized in Figure 2.
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sand content.

2.7. Mapping Methods Comparison

The comparison between KED and ordinary kriging (OK) was carried out in cross-
validation using the two statistics suggested by Carroll and Cressie [63]: the mean error (ME)
and the root mean squared standardized error by standard deviation of kriging (RMSSE):

ME =
1
n

n

∑
α=1

[z∗(xα)− z(xα)] (4)

RMSSE =

√√√√√ n
∑

α=1

[z∗(xα)−z(xα)]
2

σ2(xα)

n
(5)

where z∗(xα) is the estimated value at location x, z(xα) the measured value at the same
location, and σ(xα) is the standard deviation of kriging (OK or KED) at the same location
(x). ME was used to assess the unbiasedness of the estimation, and its optimal value should
be about zero; RMSSE was used to assess estimation accuracy, and its optimal value should
be about 1.
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For the comparison, the correlation coefficient between observation and estimation as
well as the one between standardized error and estimation were also calculated.

3. Results
3.1. Exploratory Data Analysis

The basic statistics of the soil attributes and elevation measured at 135 points are
reported in Table 1. As can be seen, sand, silt, and clay exhibit sufficiently symmetrical
distributions, while SOC shows a great positive asymmetry. Therefore, it was decided to
transform SOC through a Gaussian anamorphosis function before interpolating it with
ordinary kriging.

Table 1. Summary statistics for the contents of sand, silt, clay, and soil organic carbon.

Statistics Sand Silt Clay SOC

Minimum (%) 39.00 1.00 7.00 0.67
Median (%) 63.00 22.00 15.00 2.38
Mean (%) 62.63 21.34 16.03 2.66
Maximum (%) 86.00 40.00 29.00 11.02
Stand. Dev. (%) 9.73 6.72 5.04 1.30
Skewness (-) −0.26 0.00 0.72 2.69
Kurtosis (-) 2.86 3.01 3.11 15.58

Regarding the diffuse reflectance spectra measurements, in Table 2, the results of
principal components analysis (PCA) are reported. Only the principal components (eigen-
vectors) with an eigenvalue greater than 1 are reported in Table 2. It is important to note
that the first PC explains more than 85%, due to the high correlation among the reflectance
at the different bands, while the second explains only less than 10% of the total variance.
Since each of the remaining four PCs explains just or less than 2% of the total variance,
only the first two PCs were retained, which cumulatively explain almost 95%, in order to
simplify the subsequent analyses and facilitate the interpretation of the radiometric indices.

Table 2. Decomposition of the correlation matrix of diffuse reflectance data into principal components
(PC) (only PCs with eigenvalues greater than 1 are reported).

PC Eigenvalue Difference Explained Variance (%) Cumulative Explained
Variance (%)

1 186.61 166.34 85.21 85.21
2 20.27 15.89 9.26 94.47
3 4.38 0.81 2.00 96.47
4 3.57 2.05 1.63 98.10
5 1.52 0.40 0.69 98.79
6 1.12 0.61 0.51 99.31

The composition of the first two rotated PCs can be derived from Figure 2.
Practically, all bands (410–1760 nm) from the visible (Vis, 380–760 nm) to the near

infrared (NIR, 760–1500 nm) and part of the short-wave infrared (SWIR, 1500–3000 nm),
except for a narrow range centered on about the 1400 nm band, weigh positively and
significantly on PC1 (Figure 3). This can then be interpreted as an indicator of the average
diffuse reflectance of the soil in the indicated radiometric range and of its color. Furthermore,
remembering that absorbance is inversely proportional to reflectance, the PC1 can also be
assumed to be an inverse indicator of iron oxide concentration [64].
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by 100 in the matrix of PC loadings.

On the PC2, mainly the bands from 1760 to 2500 nm weigh positively and significantly
(Figure 2), comprising the major absorption bands for OC (primarily 1772 nm; 1871 nm;
and to a lesser extent 660 nm; 2070 nm; 2177 nm; 2246 nm; 2351 nm; 2483 nm) and for clay
(mainly 2201 nm and to a lesser extent 1877 nm; 1904 nm; 2177 nm; 2192 nm; 2220 nm;
2492 nm) [64]. The PC2 can therefore be interpreted as an inverse indicator of SOC and
clay concentrations.

3.1.1. LiDAR Data

Table 3 shows the basic statistics of elevation and topographic attributes obtained from
LiDAR data and calculated at the nodes of a one-meter mesh grid. As can be seen, the study
area, with a maximum height difference of about 300 m, is characterized by high variability
in its topography. There are some very steep areas with slopes of about 72 degrees that
are practically inaccessible and where it is impossible to take soil samples. LS and SPI also
show very high outliers, and there are areas with negative curvature, which indicate a
concave surface, and others with positive curvature (convex surface), with a prevalence of
those with negative curvature (negative skewness).

Table 3. Summary statistics for the topographic attributes.

Statistics Elevation Slope Aspect LS SPI TRI TWI Curvature

(m) (◦) (-) (-) (-) (-) (-) (-)

Minimum 1020.53 0.00 −1.00 0.00 0.00 0.00 0.00 −84.37
Median 1168.26 22.45 245.52 4.60 0.01 0.28 5.90 0.16
Mean 1171.02 23.40 213.27 5.05 0.23 0.31 5.98 −0.02
Maximum 1340.83 72.86 360.00 112.63 1131.30 7.23 24.03 89.76
Stand. Dev. 65.79 11.44 104.17 3.36 5.74 0.19 1.65 4.47
Skewness (-) 0.18 0.45 −0.60 2.23 65.10 1.49 1.74 −1.61
Kurtosis (-) 2.27 2.90 2.04 24.17 6394.88 8.71 12.44 40.59

The high variability of the topographic attributes can be explained by the changing
morphology of the catchment under study (Figure 1), with an increasing elevation gra-
dient from west to east and southeast. Furthermore, the area is characterized by a dense
drainage network with numerous tributaries of the mainstream that produce deep and
narrow incisions.
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In the scope of applying the KED to the sand content data, all auxiliary variables had
to have been calculated or estimated at the nodes of the 1 m DEM. Therefore, clay, SOC,
PC1, and PC2 kriging estimates were added to the topographic attributes.

3.1.2. Soil Properties Data

An isotropic model consisting of a nugget effect and an exponential model with a
range of 394.5 m and therefore an effective range of about 1185 m (approximately the
maximum size of the basin in direction 132◦ from the north) was fitted to the experimental
variogram of the clay content (Figure 4a).
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soil organic carbon (SOC) (b) concentrations. Experimental variances (horizontal dashed lines) are
also shown. The symbol G before the SOC stands for Gaussian-transformed data.

This denotes a great continuity in the variation of clay content, as is evident from
its kriging map (Figure 5a), in which the highest contents occurred in the lowest parts,
whereas the lowest ones were in the highest parts in the east and southeast.
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Different is the behavior shown by SOC, which was previously transformed to a
Gaussian variable as mentioned before. An isotropic model, including a nugget effect and
a spherical model with a range of 137 m, was fitted to the experimental variogram of its
Gaussian transform (Figure 4b).

The variability of SOC is thus characterized by less continuity than that of clay, with
spatial autocorrelation over a shorter range (137 m). The implication of the above is
also evident in the back-transformed map of SOC’s kriging estimates (Figure 5b). It is
characterized by a pattern of numerous small areas of limited size. However, two macro-
areas can still be distinguished: one above the median line (132◦N) of the basin with higher
values and the part south of this line with lower values.

3.1.3. Spectroscopic Data

An isotropic LMC consisting of three basic structures: a nugget effect, a spherical
model with a short-range of 159 m, and a spherical model with a long-range of 716 m, was
fitted to the set of direct and cross-experimental variograms of PC1 and PC2 (Figure 6).
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As can be deduced from Figure 6, both in PC1 and PC2, the largest spatial component
is unfortunately represented by the discontinuity at the origin of the graphs (intercept).
That is called the nugget effect and results from insufficient density of sampling with large
unsampled areas. It is also shown that in the cross-variogram, the model reaches zero
within a distance of about 150 m (very low sill). This means that the extraction and rotation
of the PCs produced not only statistical but also quite spatial independence of the two
components at a relatively short distance. This is also verified by the high distance from
the intrinsic correlation curve (dashed line) in the cross-variogram, which represents the
maximum possible spatial correlation between the two variables [37].

Figure 7a shows the map of PC1, which has a somewhat reverse pattern to that of
SOC. This is consistent with the previously given interpretation of PC1 as a sort of spatial
indicator of average soil reflectivity. It is known, in fact, that soils with a higher organic
matter content are generally darker and therefore less reflective [64].
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Figure 7. Maps of the (a) first (PC1) and (b) second (PC2) principal components calculated from
diffuse reflectance spectra. The white areas within the maps are outcropping rocks.

Figure 7b shows the map of PC2, with a large zone of higher values in the north.
Interpretation becomes more difficult here, as the area at lower elevation (Figure 1) includes
both zones with higher clay concentrations (northwest corner) (less reflective) and zones
(south and southeast) with low clay and organic matter concentrations (more reflective).
Actually, the diffuse reflection by soil in the range 1700–2500 nm depends on the presence
of other components beyond the texture and organic carbon. Furthermore, selective
absorption also depends on the particular composition of the clay and organic matter [27].

3.2. Coregionalization Data Set

The correlation matrix between sand content and all variables assumed to be potential
auxiliary variables is reported in Table 4. As can be seen, apart from the expected high
negative correlation with clay and the smaller positive correlation with elevation, the
other correlations are rather low. It was therefore decided to exclude SPI and curvature
as possible auxiliary variables, but to retain SOC and TWI. The reason was to account
for possible local influences of organic carbon and water content on the estimation of
sand content because, generally, the different contents of sand can affect the soil moisture
and the rate of decomposition and stabilization of the organic carbon [65]. On the other
hand, spatial correlations might also be nonlinear and therefore not evaluated by Pearson’s
correlation coefficient.
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Table 4. Correlation matrix of the coregionalization data set. In bold are the significant correlation
coefficients with a probability level of p < 0.001.

Variables Sand Clay SOC PC1 PC2 Elevation Slope Aspect LS SPI TRI TWI Curvature

Sand 1
Clay −0.76 1
SOC −0.08 0.02 1
PC1 −0.05 0.07 −0.59 1
PC2 −0.19 0.28 −0.13 −0.04 1

Elevation 0.42 −0.37 0.26 −0.36 −0.18 1
Slope −0.17 0.08 0.10 −0.19 0.03 −0.17 1

Aspect 0.18 −0.10 −0.01 −0.06 −0.04 0.20 0.05 1
LS −0.15 0.05 0.00 −0.18 −0.03 −0.14 0.85 0.04 1
SPI −0.04 0.06 −0.06 0.07 −0.09 −0.06 −0.13 −0.16 0.04 1
TRI −0.19 0.09 0.10 −0.16 0.14 −0.23 0.89 0.01 0.75 −0.08 1
TWI −0.02 0.02 −0.21 0.11 −0.17 0.11 −0.48 −0.13 −0.08 0.60 −0.43 1

Curvature −0.08 0.21 0.08 −0.05 0.30 0.02 −0.06 0.07 −0.33 −0.25 −0.07 −0.37 1

3.3. Kriging with External Drift
3.3.1. Trend Estimation

For the trend calculation, various combinations (T = 17) of internal (a linear function
of x, y coordinates) and external drift (different linear combinations of the ten auxiliary
variables selected) were compared. For the internal drift, it was preferred to consider only
a linear function of the coordinates (deterministic-type variation), treating most of the
variation in sand content related to spatial coordinates as stochastic and then describing it
by the generalized covariance function. As can be seen from the examination of Table 5a, in
which the various trend models are sorted according to mean rank, the best model with
the lowest mean rank and also the lowest mean square error was the one consisting of
a constant coefficient plus clay content as an auxiliary variable. This result, on the other
hand, was quite predictable given the strong relationship between sand and clay, which
are generally measured simultaneously in the laboratory. It therefore has little practical
value since the main advantage of such predictive models is to use as predictors auxiliary
variables that are more easily measured, at a lower cost, and thus more available than
the primary interest variable. This statistically optimal model will then be used only as a
reference, but the focus will be on other predictive models that use auxiliary variables other
than textural ones.

The inclusion of the spectroscopic variables (f3, f4) after clay and SOC degrades the
model, albeit slightly, with a lower mean error but a higher mean square error and mean
rank. However, spectroscopic measurements, although easier to obtain than those of soil
properties such as clay and SOC, require specific instrumentation, trained personnel, and a
certain amount of measurement time. Furthermore, unless these measurements are made
in proximal sensing with adapted equipment, they are rarely available in raster format.
In the above results, it is surprising that the trend model with the inclusion of the first
topographical attribute (elevation), although significantly correlated with sand content
(Table 4), occupies the fifth position with a lower mean absolute error but a significantly
higher mean square error and mean rank. The inclusion of the other topographic attributes
worsened the performance of the model even further.

Table 5. Automatic structure identification. T stands for trial; x, y: coordinates. For identifying the
external drift, different linear combinations (T1 to T17) of the selected ten auxiliary variables were
used: f1. clay; f2. SOC; f3. PC1; f4. PC2; f5. elevation; f6. slope; f7. aspect; f8. LS; f9. TRI; f10. TWI.

(a) Identification of the Order k

Mean Error Mean Squared Error Mean Rank

Trial Ring 1 Ring 2 Total Ring 1 Ring 2 Total Ring 1 Ring 2 Total
T1: 1 f1 0.260 −0.645 −0.197 44.020 49.220 46.640 7.043 6.924 6.983
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Table 5. Cont.

(a) Identification of the Order k

Mean Error Mean Squared Error Mean Rank

T7: 1 f1 f2 0.256 −0.654 −0.203 47.210 51.990 49.620 7.137 7.127 7.132
T9: 1 f1 f2 f3 0.529 −0.676 −0.079 55.440 58.050 56.760 7.933 7.574 7.752
T11: 1 f1 f2 f3 f4 0.576 −0.601 −0.018 61.680 63.080 62.380 8.309 8.052 8.179
T12: 1 f1 f2 f3 f4 f5 0.382 −0.632 −0.129 64.530 69.020 66.790 8.359 8.054 8.205
T2: 1 x y f1 0.600 −1.021 −0.217 48.780 65.710 57.320 7.301 8.265 7.787
T8: 1 x y f1 f2 0.745 −0.934 −0.102 52.060 67.750 59.970 7.568 8.392 7.983
T10: 1 x y f1 f2 f3 0.770 −0.889 −0.067 64.920 74.870 69.940 8.418 8.571 8.495
T13: 1 f1 f2 f3 f4 f5 f6 0.734 −1.036 −0.158 77.280 80.660 78.990 8.967 8.754 8.860
T14: 1 f1 f2 f3 f4 f5 f6 f7 0.884 −0.888 −0.009 86.140 96.730 91.480 9.466 9.244 9.354
T15: 1 f1 f2 f3 f4 f5 f6 f7 f8 0.748 −0.871 −0.068 102.200 103.600 102.900 9.917 9.576 9.745
T16: 1 f1 f2 f3 f4 f5 f6 f7 f8 f9 1.008 −0.783 0.105 136.400 121.700 129.000 10.328 9.663 9.993
T3: 1 f2 0.769 −1.257 −0.253 108.500 115.700 112.100 10.104 10.137 10.121
T17: 1 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 1.588 −0.874 0.347 204.800 163.000 183.700 11.029 10.188 10.605
T5: 1 f3 1.118 −0.735 0.184 112.900 119.100 116.000 10.297 10.476 10.387
T4: 1 x y f2 1.408 −1.137 0.125 116.400 163.900 140.300 10.510 10.922 10.717
T6: 1 x y f3 1.518 −0.531 0.485 117.900 158.400 138.300 10.316 11.080 10.701
Count of measures: Ring 1 = 1260; Ring 2 = 1281; Total = 2541 Average Neighborhood Radius: 386.57 m

(b) Covariance Identification
S1 = Nugget effect; S2 = Order 1 Generalized Covariance (G.C.), Scale = 200 m

Explained/Theorical Variance Ratios Generalized covariance

Mean square error (Q) Ring 1 Ring 2 Rings Jackknife
test S1 S2

0.701 0.959 1.007 0.984 0.985 32.380 5.021
0.703 0.923 1.040 0.983 0.983 41.350 0.000
0.717 1.026 0.831 0.910 0.894 0.000 25.150

3.3.2. Generalized Covariance Function (GCf) Identification

With regard to the estimation of the generalized covariance function, the model
that realizes the jackknife estimator closest to one is the one consisting of the nugget
effect plus the linear component with a scale equal to 200 m (Table 5b). The spatially
uncorrelated component is approximately one order of magnitude larger than the spatially
correlated one.

Synthesizing the two previous results on trend estimation and identification of GCf, it
can therefore be said that according to the KED approach, all intrinsic spatial variation is
stochastic with a prevalence of the spatially uncorrelated component (nugget effect).

In consideration of the fact that measurements of texture and, in general, all soil
properties are demanding of both man-hours and costs, it was decided to assess how much
the statistically optimal sand model degraded by considering only topographic attributes
as auxiliary variables. These are generally more available (less expensive) and at a much
higher sampling density than observations of soil properties.

Eight trend models were then compared (Table 6), subsequently adding all the other
seven topographic attributes (TRI, aspect, slope, LS, curvature, SPI, and TWI) as auxiliary
variables to the elevation.

Table 6. Automatic structure identification. T stands for trial. For identifying the external drift,
different linear combinations (T1 to T8) of topographic attributes as auxiliary variables were used:
f1. elevation; f2. TRI; f3. Aspect; f4. Slope; f5. LS; f6. Curvature; f7. SPI; f8. TWI.

(a) Identification of the Order k

Mean Error Mean Squared Error Mean Rank

Trial Ring 1 Ring 2 Total Ring 1 Ring 2 Total Ring 1 Ring 2 Total
T1: 1 f1 0.525 −0.188 0.165 89.660 100.500 95.150 89.660 100.500 95.150
T2: 1 f1 f2 0.873 0.137 0.501 109.100 113.500 111.300 109.100 113.500 111.300
T3: 1 f1 f2 f3 0.791 0.008 0.395 116.000 115.900 116.000 116.000 115.900 116.000
T4: 1 f1 f2 f3 f4 0.710 −0.011 0.345 163.300 142.300 152.700 163.300 142.300 152.700



Remote Sens. 2023, 15, 4416 17 of 24

Table 6. Cont.

(a) Identification of the Order k

Mean Error Mean Squared Error Mean Rank

T5: 1 f1 f2 f3 f4 f5 0.749 0.080 0.410 155.400 141.700 148.500 155.400 141.700 148.500
T6: 1 f1 f2 f3 f4 f5 f6 0.770 0.030 0.396 132.700 126.800 129.700 132.700 126.800 129.700
T7: 1 f1 f2 f3 f4 f5 f6 f7 0.421 0.173 0.295 176.500 163.200 169.800 176.500 163.200 169.800
T8: 1 f1 f2 f3 f4 f5 f6 f7 f8 0.179 0.080 0.129 204.400 186.800 195.500 204.400 186.800 195.500
Count of measures: Ring 1 = 3271; Ring 2 = 3343; Total = 6614 Average Neighborhood Radius: 493.06 m

(b) Covariance Identification
S1 = Nugget effect; S2 = Order 1 Generalized Covariance (G.C.), Scale = 200 m; S3 = Spline G.C., Scale = 200 m; S4 = Order 3 G.C., Scale = 200 m

Explained/Theorical Variance Ratios Generalized covariance

Mean square error (Q) Ring 1 Ring 2 Rings Jackknife
test S1 S2 S3 S4

0.629 0.989 1.014 1.002 1.003 82.470 0.826 0.000 0.000
0.629 0.987 1.016 1.002 1.003 84.120 0.000 0.000 0.000
0.677 0.956 0.821 0.879 0.870 0.000 47.980 0.000 0.000

The best model in terms of both minimum mean rank and minimum mean square
error is the one that uses elevation as the only auxiliary variable (Table 6a). This is indeed
the only topographic attribute that shows a significant correlation with sand content, while
the correlations with the other attributes were rather low.

As far as the generalized covariance function is concerned, it consists again of two
structures: the nugget effect and the linear component with a 200-m scale (Table 6). How-
ever, there was a marked prevalence of the spatially uncorrelated component, which was
about two orders of magnitude higher than the structured component. In addition, there
are no relevant statistical differences with the generalized covariance model that uses only
the nugget effect as the basic structure. The exclusion of clay as an auxiliary variable in the
trend therefore also resulted in an increase in randomness regarding the sand estimation
variance.

Assuming ordinary kriging as the univariate reference approach, an isotropic model
containing three basic structures was fitted to the experimental variogram of the sand
content: a nugget effect, a spherical model with a range of 150.99 m, and a spherical model
with a range of 513 m (Figure 8).
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Figure 8. Experimental variogram (filled circle) and the fitted model (solid red line) for clay concen-
tration. Experimental variance (horizontal dashed line) is also shown.

The variogram model appears to be well structured, upper-bounded, and with the
spatial component at the shorter range approximately twice as large as the uncorrelated
spatial component and the structured component at the longer range.
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3.4. Comparison among the Three Approaches

The results of the cross-validation of the three models for estimating sand content
are shown in Table 7. Model 1, whose trend contains only the clay content as an auxiliary
variable, is assumed to be the best reference model; Model 2, in which the trend has only
the topographic attribute of elevation; and Model 3, assumed to be the univariate reference
model with no auxiliary variables.

Table 7. Results of the cross-validation test for the three models: (1) The trend includes only the clay
content as an auxiliary variable; (2) the trend includes only elevation; and (3) there is no trend. RMSSE
is the root mean squared standardized error by standard deviation of kriging; r is the correlation
coefficient between observation and estimation; ρ is the correlation coefficient between standardized
error and estimation.

Model Mean Error RMSSE r ρ

1 −0.0215 0.97 0.78 0.02
2 0.0252 0.90 0.38 0.02
3 −0.1398 1.13 0.35 0.16

As expected, Model 1 is the best in terms of observation-estimate correlation, lowest
bias, best accuracy, and lowest correlation between standardized errors and estimates
(systematic error). This result was already predicted by comparing the seventeen trend
models with different combinations of auxiliary variables, including both soil attributes
and topographic attributes (Tables 5 and 6). However, Table 7 allows us to assess the
actual advantage obtained by supplementing the sand content observations with elevation,
obtained from high spatial resolution LiDAR data, as the auxiliary variable. Model 2
compared to Model 3 has a higher observation-estimate correlation, albeit a small one, a
lower bias, and a lower standardized error-estimate correlation (less systematic error).

The previous results made it possible to compare the three models from a statistical
point of view, essentially in terms of smoothing effect, bias, and accuracy. The purpose is
now to continue the comparison in terms of mapping or graphical restitution of the sand
content estimates and their corresponding uncertainties.

Maps of the sand content estimates for the three models are shown in Figure 9.
It is firstly to be said that the three maps are coherent in displaying the main structures

of spatial dependence. However, it is possible to highlight clear differences among the
maps. The one for Model 1 (clay as the auxiliary variable, Figure 9a) shows a high degree
of spatial continuity and mostly reproduces the inverse relationship with the clay due
to the strong negative correlation between the two variables. The Model 2 map (trend
with elevation as the auxiliary variable, Figure 9b), although quite similar to the previous
one, shows greater short-range variability due to the finer spatial resolution of elevation
compared to the sampling scale of clay. Finally, the Model 3 map (no trend, Figure 9c)
shows less spatial continuity compared with the one of Model 1 and is characterized by
more numerous micro-structures of limited extent, probably due to the random nature
of the spatial variation of sand content and the coarse and not even sampling scheme.
In Figure 10, the uncertainty of the estimates, as expressed by the standard deviation of
estimation, is compared for the three models.

Being OK and KED linear interpolators, the estimation standard deviation depends
on the observation arrangement and the mathematical model of the variogram for Model 3
(ordinary kriging) and of the generalized covariance for Models 1 and 2 (kriging with
external drift) [35]. Consistently, the three models show the lowest values in the central
part, where sampling is densest, and the highest values at the edges of the area. However,
compared to Model 3 (Figure 9c), which faithfully reproduces the sampling pattern with
minima at the sampling locations, Models 1 (Figure 10a) and 2 (Figure 10b) reveal more
spatial continuity with a greater accentuation of short-range variability for Model 2.
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Figure 10. Maps of the standard deviation of sand estimation using the three models: (a) Model 1,
in which the trend includes only the clay content as an auxiliary variable; (b) Model 2, in which the
trend includes only elevation; and (c) Model 3, with no trend. The white areas within the maps are
outcropping rocks.
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4. Discussion

The analysis of different trend models of soil sand content using different types of
auxiliary variables, including topographic attributes from LIDAR data, reveals a general
low control of topography on the spatial distribution of the soil sand content. This is a
relatively unexpected result since topography controls a variety of processes occurring in
the soil, including erosive processes, which in turn influence the spatial variation of particle
size composition. Indeed, the dependence of sand content on topography is evident also in
the study area, but the results show that this control is not predominantly of a deterministic
nature (trend).

The interpretation of that might be that the particle size composition of the soil in this
catchment is essentially related to several other properties that are not explicitly indicated
in the trend (stochastic component of variation).

The above could also explain the characteristics of the generalized covariance function
(which models the stochastic component of variation), in which spatially uncorrelated
variability prevails over linearly structured variability. This prevalence can be attributed to
two main causes: (1) the co-presence of different factors of variation that are not clearly
made explicit in the model; and (2) excessive coarseness of sampling, unable to detect
processes occurring in the soil at a finer scale.

Another relatively unexpected result is that apart from elevation, which shows a
low correlation with sand content and is the only topographic attribute included as an
auxiliary variable in M2, the other attributes show non-significant correlations. Probably,
that was due to the uncertainty of their estimates and the high morphological variability
mostly generated by denudation processes (landslides and water erosion) that affected the
site [39,66]. These processes caused a reworking and a spatial redistribution of surficial soil.

The reason for the rather modest improvement of the univariate model M3, achieved
by including elevation as an auxiliary variable in M2, may be attributed to the particu-
lar contextual characteristics discussed above. However, this should not dissuade from
continuing to investigate the real advantages of using high spatial resolution LiDAR data
to improve the prediction of soil attributes. Soil measurements are generally expensive,
and the collection of soil samples at specific locations may be difficult or even impossible,
as occurred in this case due to the extremely steep slope. It is therefore extremely useful
to have a reliable sand content prediction model using the plethora of topographic data
available in a high-resolution DEM.

The introduction of elevation as an auxiliary variable has also resulted in the addition
of a micro-variability component in the M2 map that is not visible in the M1 map, which
appears more noticeably smoothed despite being the best from a purely statistical point
of view. This, which might appear to be an advantage in that it reveals sand variability
at a scale of 1 m, has a risk, however. The risk is that this micro-variability reproduces
topography-related variation and not the real sand-related variation when the correla-
tion between the primary and auxiliary variables is not very strong. Hence, the need to
appropriately choose the variables to be taken as predictors.

Moreover, the results highlight that the choice of the auxiliary variables can have a
significant impact not only on the mapping of estimation but also on its uncertainty. Even
if the same main macro-spatial structures are reproduced by the various models (M1, M2,
and M3), there may be appreciable local differences, and only a careful validation process
can help in choosing the optimal model. Moreover, at unsampled locations, not only is
the value of the variable very critical, but also the uncertainty with which that variable is
known and on which the decision is based (decision-making).

Finally, it is worth underlining that the approach proposed proved to be quite flexible
(including any type of spatial variable) and scalar; therefore, it could be applied at the same
fine spatial resolution over an area much larger than the basin depending on the availability
of LiDAR data. However, the extendibility of a model calibrated over a small area to a
larger region may raise accuracy problems due to the non-stationarity of the response
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variable. Nevertheless, the scalability of the model and the general availability of LiDAR
data outweigh the practical usefulness of Model 2.

5. Conclusions

The main objective of this work was to evaluate whether combining observations of
soil properties with LiDAR-derived topographic attributes can be considered an efficient
and straightforward approach for mapping soil texture (sand content) both at fine resolution
and at a large spatial scale. LiDAR provides topographical knowledge of a vast area at a
finer spatial resolution compared to manual measurements. It would then be desirable to
be able to apply this tool for accurate estimates of soil properties at fine resolution. Various
linear trend models using different auxiliary variables were compared. The best model
from a strictly statistical point of view was the one that used only the clay variable as an
auxiliary variable. This result was expected given the close inverse relationship between
these two soil textural components. However, the practical advantage to be gained from the
use of this statistically optimal model would be very little since the two textural variables
are generally determined at the same time in the laboratory. Therefore, it was decided to
investigate the advantage in terms of estimation accuracy resulting from the use of LiDAR.
Indeed, the improvement obtained by using only LiDAR data (elevation) compared to the
univariate (no trend) model of sand content was rather marginal. This might be due to the
extreme variability and complexity of the morphology of the environment under study and
to the sampling, which was inevitably rather coarse and unevenly distributed.

However, we believe that the terrain morphology detected by LiDAR can affect the
textural components of soil and, indirectly, moisture and available nutrients, which play
an important role in forest dynamics and growth rates. The high-resolution maps of
soil properties can in turn be used by forest managers for site-specific management by
delineating areas that need treatment and thus can be used in precision forestry. These
practices are highly sustainable because they use fewer resources, which has implications
for climate change and the economy.

It is widely recognized that LiDAR elevation data are now becoming the new standard
for the production of high-resolution DEMs worldwide, which should lead to the develop-
ment of new and novel methods of soil property prediction. With the increased availability
of data, an improvement in digital soil mapping (DSM) can also be achieved with the
application of machine learning (ML) techniques to the development of trend models,
leaving geostatistics to assess and model the stochastic component of spatial variation.
Anyway, ML models [39] should be not just more accurate but also less of a black box, so
that important scientific insights can be extracted from soil data and such models can serve
as an effective source of information and knowledge.
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