SUPPORTING INFORMATION

A diruthenium metallodrug as a potent inhibitor of Amyloid-β aggregation: synergism of mechanisms of action

Sara La Manna¹, Concetta Di Natale², Valeria Panzetta^{2,3}, Marilisa Leone⁴, Flavia A. Mercurio⁴, Irene Cipollone^{5,6}, Maria Monti^{5,6}, Paolo A. Netti^{2,3}, Giarita Ferraro⁵, Aarón Terán ⁷, Ana E. Sánchez-Peláez⁷, Santiago Herrero⁷, Antonello Merlino⁵, Daniela Marasco ^{1,4,*}

¹Department of Pharmacy, University of Naples "Federico II", 80131, Naples, Italy

²Department of Chemical, Materials, and Industrial Production Engineering (DICMaPI), University of Naples Federico II, 80125 Naples, Italy.

³Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II,

Istituto Italiano di Tecnologia, 80125, Naples, Italy

⁴Institute of Biostructures and Bioimaging - CNR, 80145, Naples, Italy

⁵Department of Chemical Sciences, University of Naples "Federico II", 80126, Naples, Italy

⁶CEINGE Biotecnologie Avanzate "Franco Salvatore" S.c.a r.l., 80131, Naples, Italy

⁷MatMoPol Research Group, Department of Inorganic Chemistry, Faculty of Chemical Science,

Complutense University of Madrid, Avenida Complutense s/n, 28040, Madrid, Spain.

Index

Figure S1. Time course of ThT fluorescence emission intensity of compound 1 and 2. Values are the
average of two measurements
Figure S2. CD spectra of compound 1 (panel A) and compound 2 (panel B), at the indicated times of
stirring5
Figure S3. ¹ H NMR spectra of $A\beta_{21-40}$ in the absence (blue) and in the presence of compound 1 (green)
or compound 2 (red). $\mathrm{H}_{N}\!/aromatic$ and $\mathrm{H}\alpha\!/\!side$ chains regions of the spectra are shown on the left
and on the right panels, respectively
Figure S4. Absorption spectra of compound 1 (left panel) and 2 (right panel) upon the addition of
increasing amount of (a and b) $A\beta_{1-42}$, (c and d) $A\beta_{1-16}$, and (e and f) $A\beta_{21-40}$ peptides. The arrows
indicate the spectral variations. As insets, UV intensities at indicated wavelengths versus
concentration of Aβ peptides are reported
Figure S5. (a-c) Fluorescence emission spectra at different times of $A\beta_{1-16}$ in the absence and presence
of compound 1. (d-e) Fluorescence emission spectra at different times of compounds 1 and 2 ($\lambda_{ex} =$
440 nm)8
Figure S6. ESI-MS spectrum of A β_{21-40} peptide at 0 h (panel A). ESI-MS spectra of A β_{21-40} peptide
incubated with compound 1 after 0 (panel B) and 24 h (panel C). The peaks marked with b_n derive
from spontaneous in source fragmentation of $A\beta_{21-40}$ peptide (b series elements); the asterisk
highlighted the species present in the control (compound 1 alone)
Figure S7. ESI-MS spectrum of A β_{1-42} peptide at 0 h (panel A). ESI-MS spectra of A β_{1-42} peptide
incubated with compound 1 after 0 (panel B) and 24 h (panel C). The peaks marked with b _n derive

Table S1: Experimental m/z values detected in the spectra of $A\beta_{1-16}$, $A\beta_{21-40}$, $A\beta_{1-42}$ alone (Control) and with the addition of compound **1** at 0 and 24 h of incubation. The ion species corresponding to each experimental m/z, the expected m/z value (theoretical) and their charge states are also reported.

Table S2: Experimental m/z values detected in the spectra of $A\beta_{1-16}$, $A\beta_{21-40}$, $A\beta_{1-42}$ alone (Control) and with the addition of compound **2** at 0 and 24h of incubation. The ion species corresponding to each experimental m/z, the expected m/z value (theoretical) and their charge states are also reported.

Figure S1. Time course of ThT fluorescence emission intensity of compound 1 and 2. Values are the average of two measurements.

Figure S2. CD spectra of compound **1** (panel A) and compound **2** (panel B), at the indicated times of stirring.

Figure S3. ¹H NMR spectra of $A\beta_{21-40}$ in the absence (blue) and in the presence of compound **1** (green) or compound **2** (red). H_N/aromatic and H α /side chains regions of the spectra are shown on the left and on the right panels, respectively.

Figure S4. Absorption spectra of compound **1** (left panel) and **2** (right panel) upon the addition of increasing amount of (a and b) $A\beta_{1-42}$, (c and d) $A\beta_{1-16}$, and (e and f) $A\beta_{21-40}$ peptides. The arrows indicate the spectral variations. As insets, UV intensities at indicated wavelengths versus concentration of $A\beta$ peptides are reported.

Figure S5. ESI-MS spectrum of $A\beta_{21-40}$ peptide at 0 h (panel A). ESI-MS spectra of $A\beta_{21-40}$ peptide incubated with compound **1** after 0 (panel B) and 24 h (panel C). The peaks marked with b_n derive from spontaneous in source fragmentation of $A\beta_{21-40}$ peptide (b series elements); the asterisk highlighted the species present in the control (compound **1** alone).

Figure S6. ESI-MS spectrum of $A\beta_{1-42}$ peptide at 0 h (panel A). ESI-MS spectra of $A\beta_{1-42}$ peptide incubated with compound **1** after 0 (panel B) and 24 h (panel C). The peaks marked with b_n derive from spontaneous in source fragmentation of $A\beta_{1-42}$ peptide (b series elements); the asterisk highlighted the species present in the control (compound **1** alone).

Figure S7. ESI-MS spectrum of $A\beta_{1-16}$ peptide alone at 0 h (panel A). ESI-MS spectra of $A\beta_{1-16}$ peptide incubated with compound **2** at 0 h (panel B) and at 24 h (panel C) conditions. The peaks marked with b_n derive from spontaneous in source fragmentation of $A\beta_{1-16}$ peptide (b series elements). § indicates K⁺ adducts.

Figure S8. ESI-MS spectrum of $A\beta_{21-40}$ peptide alone at 0 h (panel A). ESI-MS spectra of $A\beta_{21-40}$ peptide incubated with compound **2** at 0 h (panel B) and at 24 h (panel C) conditions. The peaks marked with b_n derive from spontaneous in source fragmentation of $A\beta_{21-40}$ peptide (b series elements). The § indicates K⁺ adducts.

Figure S9. ESI-MS spectrum of $A\beta_{1-42}$ peptide alone at 0 h (panel A). ESI-MS spectra of $A\beta_{1-42}$ peptide incubated with compound **2** at 0 h (panel B) and at 24 h (panel C) conditions. The peaks marked with b_n derive from spontaneous in source fragmentation of $A\beta_{1-42}$ peptide (b series elements); the asterisk highlighted the species present in the control (compound **2** alone). The § indicates K⁺ adducts.

Figure S10. (a-c) Fluorescence emission spectra at different times of $A\beta_{1-16}$ in the absence and presence of compound 1. (d-e) Fluorescence emission spectra at different times of compounds 1 and 2 ($\lambda_{ex} = 440$ nm).

Table S1: Experimental m/z values detected in the spectra of $A\beta_{1-16}$, $A\beta_{21-40}$, $A\beta_{1-42}$ alone (Control) and with the addition of compound 1 at 0 and 24 h of incubation. The ion species corresponding to each experimental m/z, the expected m/z value (theoretical) and their charge states are also reported.

	Description		Theoretical w/-		
	Description		0 h	24 h	1 neor eticar m/2
	٨ß	1997.96 (+1)	1997.98 (+1)		1997.10
	Ap ₁₋₁₆	998.94 (+2)	998.92 (+2)	-	999.03
	b ₁₃	1585.86 (+1)	-	-	1585.67
	b ₁₂	1448.68 (+1)	1448.66 (+1)	-	1448.61
	b ₁₁	1349.57 (+1)	-	-	1349.54
	b ₁₀	1220.51 (+1)	-	-	1220.50
	b9	1057.41 (+1)	-	-	1057.43
	b_8	913.36 (+1)	-	-	913.38
	$A\beta_{1-16} + 1 - Cl^{-} - H_2O -$		827.56 (+3)	827.56 (+3)	827.68
40 11 1	2·CH ₃ COO ⁻	-	1240.86 (+2)	1240.88 (+2)	1241.01
$A\beta_{1-16}$:# 1	$A\beta_{1-16} + 1 - Cl^{-} - H_2O -$		847.90 (+3)	847.94 (+3)	847.34
	CH ₂ COO ⁻	-	1270.87 (+2)	1270.89 (+2)	1270.52
	$AB_{1.16} + 2 \cdot (1 - C)^2 - H_2O -$				
	$2 \cdot CH_3COO^{-1}$	-	1485.87 (+2)	1485.90 (+2)	1485.00
	$AB_{1.16} + 2 \cdot (1 - C)^2 - H_2O -$				
	$3/2 \cdot CH_3 COO^{-}$	-	1514.99 (+2)	1515.03 (+2)	1514.50
	$AB_{1.16} + 2 \cdot (1 - C)^2 - H_2O -$				
	$CH_2COO^{-})$	-	1545.97 (+2)	1545.98 (+2)	1545.00
	$A\beta_{1} + 2 \cdot (1 - C)^{2} - H_{2}O - H_{2}O$				
	$1/2 \text{ CH}_{3}\text{COO}^{-1}$	-	1573.90 (+2)	1573.96 (+2)	1573.50
	Αβ ₂₁₋₄₀	1887.04 (+1)	1887.06 (+1)	1887.06 (+1)	1887.22
		944.03 (+2)	944.03 (+2)	944.03 (+2)	944.11
	hıs	1669 91 (+1)	1669 90 (+1)	-	1669.86
	b ₁₆	1555 84 (+1)	1555 87 (+1)	1555 86 (+1)	1555.81
	b ₁₅	1456 78 (+1)	1456 79 (+1)	$1456\ 80\ (+1)$	1456.75
	b ₁₄	1325 72 (+1)	1325 74 (+1)	132577(+1)	1325.71
AB21 10. #1	b_12	1212 65 (+1)	1212 66 (+1)	-	1212.62
1 - p 21-40• ··· 1	b ₁₂	1155 62 (+1)	1155 64 (+1)	1155 61 (+1)	1155.60
	b ₁₁	1042.54(+1)	1042.55 (+1)	1042.55(+1)	1042.52
	<u> </u>	929 46 (+1)	929 46 (+1)	929 48 (+1)	929.43
	$AB_{21} + 1 - Cl^2 - H_2O -$	<i>y</i> 2 <i>y</i> .10 (*1)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,)2).10(+1)	,2,15
	CH_2COO^-	-	1216.90 (+2)	-	1216.08
	$AB_{21,40} + 1 - Cl^2 - H_2O$		1246 94 (+2)		1246 58
		1505 46 (+3)			1505 71
	Αβ ₁₋₄₂	1128.84 (+4)	-	-	1129.54
	b41	1106 58 (+4)			1106.56
	b40	1078 28 (+4)			1078.29
	040	$1404\ 71\ (+3)$			1404 37
	b ₃₉	105355(+4)	-	-	1053 52
	b ₃₈	1371.66(+3)			1371 34
10.41		$1029\ 00\ (+4)$	-	-	1028 78
p_{1-42}, π_1	hac	133364(+3)	_	_	1333 33
	b ₃₆	1300 37 (+3)		_	1300 31
	b ₃₅	125647(+3)		_	1256.63
	b	1230.77(+3) 1218 01 (+3)	-	-	1230.03
	b	$\frac{1210.71(\pm 3)}{1100.06(\pm 2)}$	-	-	1210.72
	b	$\frac{1177.70(\pm 3)}{1162.52(\pm 2)}$	-	-	1177.72
	<u> </u>	$\frac{1102.33(+3)}{971.56(+1)}$	-	971 56 (+1)	071.56
	D ₇	8/1.36 (+1)	8/1.56 (+1)	8/1.36 (+1)	8/1.30

	D : /:	Î			
	Description		0 h	24 h	- Theoretical m/z
		1996.93 (+1)	1997.00 (+1)	1996.99 (+1)	1997.10
	$A\beta_{1-16}$				
	•	998.94 (+2)	998.93 (+2)	998.92 (+2)	999.03
	b ₁₃	1585.86 (+1)	1585.85 (+1)	1585.86 (+1)	1585.67
	b ₁₂	1448.68 (+1)	1448.66 (+1)	1448.68 (+1)	1448.61
	b ₁₁	1349.57 (+1)	1349.55 (+1)	1349.57 (+1)	1349.54
	b ₁₀	1220.51 (+1)	1220.46 (+1)	=	1220.50
	b9	1057.41 (+1)	57.41 (+1)		1057.43
$A\beta_{1-16}\#2$	b ₈	913.36 (+1)	913.36 (+1)	913.36 (+1)	913.38
	$A\beta_{1-16} + \# 2 - ??$	-	-	1094.79 (+2)	??
	<i>Aβ</i> ₁₋₁₆ + #2 - ??	-	-	1103.81 (+2)	??
			-	1046.85 (+4) 1395.50 (+3)	??
	$2A\beta_{1-16} + \# 2 - ??^{-1}$	-			
					??
				1051.10 (+4)	??
	<i>2Aβ</i> ₁₋₁₆ + # 2 - ??	-	-		
				1401.20 (+3)	??
		1887.04 (+1)	1887.06 (+1)	1887.05 (+1)	1887.22
	Αβ ₂₁₋₄₀				
		944.03 (+2)	944.02 (+2)	944.02 (+2)	944.11
[b ₁₈	1669.91 (+1)	1669.90 (+1)	1669.90 (+1)	1669.86
	b ₁₆	1555.84 (+1)	1555.86 (+1)	1555.86 (+1)	1555.81
$A\beta_{21-40} \# 2$	b ₁₅	1456.78 (+1)	1456.79 (+1)	1456.79 (+1)	1456.75
	b ₁₄	1325.72 (+1)	1325.74 (+1)	1325.74 (+1)	1325.71
	b ₁₃	1212.65 (+1)	1212.65 (+1)	1212.65 (+1)	1212.62
	b ₁₂	1155.62 (+1)	1155.64 (+1)	1155.64 (+1)	1155.60
	b ₁₁	1042.54 (+1)	1042.55 (+1)	1042.55 (+1)	1042.52
	b ₁₀	929.46 (+1)	929.46 (+1)	929.47 (+1)	929.43
		1505.46 (+3)	1505.11 (+3)		1505.71
	$A\beta_{1-42}$			-	
		1128.84 (+4)	1128.84 (+4)		1129.54
	b ₄₁	1106.58 (+4)	1106.58 (+4)		1106.56
	b ₄₀	1078.28 (+4)	1078.28 (+4)		1078.29
		1404.71 (+3)	1404.70 (+3)		1404.37
	b ₃₉			-	
		1053.55 (+4)	1053.55 (+4)		1053.52
$A \beta_{1-42} \# 2$		1371.66 (+3)	1371.64 (+3)		1371.34
	b ₃₈			-	
		1029.00 (+4)	-		1028.78
	b ₃₆	1333.64 (+3)	-	-	1333.33
	b ₃₅	1300.37 (+3)	1300.98 (+3)	-	1300.31
	b ₃₄	1256.47 (+3)	1256.99 (+3)	-	1256.63
	b ₃₃	1218.91 (+3)	1218.93 (+3)	-	1218.92
	b ₃₂	1199.96 (+3)	1200.62 (+3)	1199.53 (+3)	1199.92
	b ₃₁	1162.53 (+3)	-	-	1162.23
	b ₇	8/1.56 (+1)	-	-	8/1.37

Table S2: Experimental m/z values detected in the spectra of A β_{1-16} , A β_{21-40} , A β_{1-42} alone (Control) and with the addition of compound **2** at 0 and 24h of incubation. The ion species corresponding to each experimental m/z, the expected m/z value (theoretical) and their charge states are also reported.

Table S3: SEM analysis. Average diameter and length of fibers obtained for $A\beta$ peptides in the presence and in the absence of compound **1**.

Sample	Time	Average Length (µm)	Average Diameter (μm)
$A\beta_{1,16}$ alone	0	n.d.	n.d.
1110	24	n.d.	n.d.
$A\beta_{1,16} + 1$	0	n.d.	n.d.
	24	n.d.	n.d.
$A\beta_{1-42}$ alone	0	444 ± 7	16 ± 4
	24	494 ± 11	12 ± 3
$A\beta_{1,42} + 1$	0	363 ± 9	13 ± 2
	24	n.d.	n.d.
A β_{21-40} alone	0	273 ± 11	9 ± 2.
	24	359 ± 6	14 ± 4
$A\beta_{21-40} + 1$	0	363 ± 9	16 ± 4
	24	n.d.	n.d.