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Abstract7

Monitoring the size of key indicator species of fish is important to understand ecosys-

tem functions, anthropogenic stress, and population dynamics. Standard methodologies

gather data using underwater cameras, but are biased due to the use of baits, limited de-

ployment time, and short field of view. Furthermore, they require experts to analyse long

videos to search for species of interest, which is time consuming and expensive. This pa-

per describes the Underwater Detector of Moving Object Size (UDMOS), a cost-effective

computer vision system that records events of large fishes passing in front of a camera,

using minimalistic hardware and power consumption. UDMOS can be deployed under-

water, as an unbaited system, and is also offered as a free-to-use Web Service for batch

video-processing. It embeds three different alternative large-object detection algorithms

based on deep learning, unsupervised modelling, and motion detection, and can work both

in shallow and deep waters with infrared or visible light.
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1. Introduction11

Monitoring the frequency of detection of key indicator species of marine fishes in12

their native habitat is a useful method of gathering data to understand characteristics such13

as population distribution, biomass change, anthropogenic impact, and the function of14

ecosystem relationships such as mutualistic behaviour. Common approaches to gathering15

such data use standalone video recording devices, sometimes equipped with baits that are16

deployed underwater (baited remote underwater video device, BRUV), capturing footage17

continuously until on-board storage is exhausted (Cappo et al., 2004; Vos et al., 2014; Mal-18

let and Pelletier, 2014). This continuous recording results in a number of characteristics19

which produce bias in data collection, e.g. the duration of deployment time capturing data20

is limited to a few hours and this limitation also encourages the use of non-passive baited21

camera systems, which may affect inference regarding the presence of species. Upon re-22

trieving the devices, experts need to view single time period samples in the form of long23

videos to search for species of interest and conduct further analysis such as taxonomic24

confirmation, maximum abundance of fish per frame (MaxN), and estimation of life stages25

dependant upon their size. In some cases, dual cameras are used to allow on-screen mea-26

sures of fish length by helping expert-observation with shape analysis tools (Costa et al.,27

2006).28

In recent years, researchers have applied artificial intelligence to accelerate the post29

data capture process (Qin et al., 2016; Shafait et al., 2016; Marini et al., 2018; González-30

Rivero et al., 2020). However the methodology for video collection of information, and31

port capture data retrieval from video and its analysis is both time consuming, expen-32

sive, and generates substantial video data. Another practical difficulty is to find, hire, and33
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train professional video operators. Today, operators are mostly university students whose34

commitment time, interest, and availability is often limited and fragmented. Also, this35

approach offers no alternative to the continuous recording approach. On the contrary, an36

automatic solution - for example an edge-computing vision system - could autonomously37

monitor for far longer time underwater while constantly capturing video event data. Al-38

though analogue solutions for motion sensing may offer alternatives to a passive AI-based39

approach (Daum, 2005; Spampinato et al., 2008; Hsiao et al., 2014; Salman et al., 2020),40

many have implications regarding bias and limited capacity underwater (e.g. microwave41

motion sensors) (Yoon et al., 2012; Hussey et al., 2015). Also, detection methods may42

perturb the presence or absence of species (e.g. analogue sonar scanning) or simply are43

not precise enough to discriminate between debris or smaller organisms. With these con-44

siderations in mind, in order to create a detection system for larger indicator species, such45

as sharks and rays, a solution is needed to detect animated moving objects and classify46

them in terms of their size.47

This paper describes the Underwater Detector of Moving Object Size (UDMOS) soft-48

ware, a cost-effective computer vision system that can be deployed underwater and is able49

to identify and record videos of fishes of large size moving in front of a camera. The min-50

imum fish size to detect is a configurable parameter that defines the minimum percentage51

object’s size with respect to the camera’s frame size that should trigger video recording.52

UDMOS can work in shallow as well as deep waters, and uses minimal hardware and de-53

ployment equipment to operate. Hardware is scalable from a very inexpensive solution,54

based only on a single IR camera and one Raspberry Pi4 device, to more expensive solu-55

tions that use more cameras and more powerful hardware. UDMOS can be deployed to56
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capture the presence of large fishes over long time periods and this characteristic reduces57

the need for a baited system to concentrate activity in front of the camera. This non-58

invasive solution is cost effective and reduces the bias for fish detection that the presence59

of bait may cause. Additionally, UDMOS is offered as a free-to-use cloud Web service60

that can post-process videos captured by standard BRUVs.61

In this study, the performance of the workflow is assessed on five real operational62

cases under different light and depth conditions, using different object detection algo-63

rithms that can work on minimal hardware. The performance comparison also involves64

a movement-detection algorithm embedded in UDMOS. Overall, UDMOS addresses the65

following research question: Can we use modern single-board computers to design a large,66

precise, non-invasive, efficient, and cost-effective system for monitoring fish of a specific67

size range?68

UDMOS embeds several novel features with respect to alternative remote underwater69

video devices (Edgington et al., 2006; Schlining and Stout, 2006; Ebner et al., 2014; Codd-70

Downey et al., 2017). Internally, it can use one among three different approaches to detect71

objects or movement. These approaches work on a low-resource hardware, with different72

response times. One advantage of UDMOS with respect to other approaches (Brooks et al.,73

2011; Struthers et al., 2015; Quevedo et al., 2017; Schmid et al., 2017), is that it can work74

with one basic camera to estimate the approximate distance of an object. Different from75

other solutions (Harvey et al., 2003; Edgington et al., 2006; Schlining and Stout, 2006;76

Van Damme, 2015; Palazzo et al., 2014), UDMOS is conceived to automatically adapt to77

both low and high power hardware. Unlike camera-trap systems that use motion detec-78

tion (Zhou et al., 2008; Kays et al., 2010; Miguel et al., 2016; Apps and McNutt, 2018;79
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Golkarnarenji et al., 2018; Marcot et al., 2019), our workflow improves motion detection80

precision through an adaptive thresholding algorithm and offers alternative object detec-81

tion models. Similar to other underwater devices (Edgington et al., 2003; Hermann et al.,82

2020), UDMOS can work in both IR and visible light conditions by automatically select-83

ing the optimal configuration based on the scene brightness. The workflow is also able to84

approximately account for common issues found by other systems due to small and close85

fishes attracted by the recording device (Harvey et al., 2007; Dunlop et al., 2015; Coghlan86

et al., 2017). Overall, UDMOS strongly reduces the amount of irrelevant video data pro-87

duced, especially when the events to capture are rare, and thus is beneficial both in terms88

of human time saving and hardware costs. It can be used to implement an edge computing89

as well as an as-a-service batch processing system for current BRUV systems.90

UDMOS can be coupled with modern underwater species identification systems that91

work on BRUV-collected videos. Both open-source (Dawkins et al., 2017) and commercial92

fish identification software and abundance estimators (Santana-Garcon et al., 2014) exist93

that can work on BRUV videos, and thus on the UDMOS videos. These systems usually94

work offline and are used after the underwater video capture session. Indeed, they have95

hardware requirements that are not affordable by current low-cost and embeddable tech-96

nology. Most species identification systems and abundance estimators are based on deep97

learning models (Dawkins et al., 2017), which have demonstrated optimal performance98

with respect to other alternative models (Sheaves et al., 2020) and can over-perform human99

classification on species-specific identification tasks (Konovalov et al., 2019; Knausgård100

et al., 2020; Sheaves et al., 2020). However, these model are still unreliable in species101

abundance estimation and generally cannot substitute human experts (Connolly et al.,102
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2021). Furthermore, they have demanding hardware requirements - e.g., 64-bit Operat-103

ing Systems and powerful GPUs (Dawkins et al., 2017) - and thus are normally provided104

as-a-service through high-performance computing architectures that maximise both their105

efficiency and effectiveness (Candela et al., 2016; Coro et al., 2018; Sheaves et al., 2020).106

Overall, on-board species identification requires powerful and expensive hardware and107

battery capacity - GPU processing is very power-consuming, and 64-bit Operating Sys-108

tems on edge computers are still at an early stage - and thus on-board processing is usually109

limited to motion detection (Sheehan et al., 2020).110

UDMOS is principally conceived to reduce the time that either human experts or au-111

tomatic models require to post-process the captured underwater videos for species recog-112

nition, size measurement, and abundance estimations. Thus, one crucial requirement is113

that its performance on an edge computer is optimal as it would be on a cloud computing114

platform. For this reason, UDMOS addresses the simpler task of triggering the recording115

when a large fish passes in front of the camera rather than recognizing the fish. This choice116

has the advantage to (i) avoid biases due to misclassification, (ii) be applicable to a large117

spectrum of species (i.e. not only those for which a model was trained), and (iii) reduce118

recorded video length to a much lower length than the continuous recording (Section 3).119

The next sections describe the complete UDMOS workflow and target hardware (Sec-120

tion 2) and its effectiveness and efficiency (Section 3). Finally, a discussion of the results121

and the potential applications of UDMOS is reported (Section 4).122
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2. Material and Methods123

In this section, the general architecture of the UDMOS workflow is described by fol-124

lowing the flowchart in Figure 1.125

2.1. Hardware Requirements126

The workflow was designed to facilitate a minimal hardware configuration and to con-127

sume low power. Our minimal target hardware was a Raspberry Pi-4 Model B 4GB128

equipped with ARM-Cortex-A72 4X 1.50 GHz. This low-cost device (∼50 euros) is suited129

to be housed in a small and compact underwater device (Section 2.8). As a minimal capture130

device, an infrared camera equipped with a 5 megapixel OV5647 sensor and adjustable-131

focus was targeted (∼20 euros), which can be connected to the Pi-4 camera port to se-132

quentially capture 1080p-resolution images. This camera is endowed with two IR lights133

activated by photo-resistor light sensors.134

2.2. Overall Software Workflow135

UDMOS was developed in Java to maximise platform independence and installation136

flexibility on other hardware than Raspberry Pi-4. The workflow is an endless single-137

threaded process (Figure 1), with proper internal system-recovery mechanisms (not re-138

ported in the schema for simplicity). It embeds two types of object detection models -139

based on a deep learning model (Section 2.3) and an unsupervised model (Section 2.4)140

respectively - and one movement detection model (Section 2.5) which can be used alter-141

natively, depending on the computational power of the available hardware.142

As a first step, the process reads a workflow configuration file that specifies:143

• The input camera frame rate;144
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• The Operating System device number of the camera to use;145

• The object/movement detection model to use, i.e. Deep Learning-based, Unsuper-146

vised, or Standard Movement Detector;147

• Model-specific detection thresholds;148

• Object size classification parameters: The minimum size of the objects to detect149

(minSize parameter); the accepted distance range from the camera (minDistance and150

maxDistance parameters); a sensitivity parameter for large object classification. All151

these parameters are explained in Section 2.6;152

• The number of seconds of the video recording session that starts after the detection153

of a large object (recordingTime parameter).154

It is worth to recall that the minSize parameter is the percentage object’s size over the155

camera’s frame size that should trigger video recording. The option to adjust the input156

camera frame rate and device number is meant to manage also alternative input devices157

(e.g. a USB camera). Alternatively to the device number, the user can specify a range158

of device numbers with cameras connected. In this case, UDMOS will use all available159

cameras by processing each frame in a round-robin mode and will record from all cameras160

when a large object is detected in at least one camera-frame. The entire workflow aims161

at finding the presence in the scene of candidate objects that may be associated with a162

fish having size over a certain threshold, where size is indicated as the portion of scene163

occupied by the object. In this view, it is crucial to estimate the distance of the detected164

object from the camera, e.g. to exclude small fishes moving close to the camera. Different165
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from other solutions (Harvey et al., 2003; Dunbrack, 2006; Mueller et al., 2006; Schaner166

et al., 2009; Letessier et al., 2015), this task is approximately solved by UDMOS without167

additional equipment such as additional cameras or sensors (Section 2.6).168

The rest of the workflow iteratively captures and processes images from the camera(s).169

The input image is first downsized (at 640x360 pixels on a Raspberry Pi-4) to reduce cal-170

culations and power consumption. When more powerful hardware is used, input image171

resolution can by increased from the configuration file. Based on the first captured im-172

ages, a classifier estimates the framed scenario as having a low/medium/high-brightness173

depending on the overall illumination of the scene. This classifier uses the following algo-174

rithm:175
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Algorithm 1 Brightness scenario classifier

Calculate the geometric mean of the RGB values of the grabbed image

Calculate the log-normal standard deviation of the RGB integer values of the

grabbed image

Calculate the confidence limits of the RGB log-normal distribution

For each pixel of the image

If (RGB ≤ lower confidence limit) → black pixel

If (RGB ≥ upper confidence limit) → white pixel

Else → red pixel

Calculate the ratio of non-black pixels as B =
white pixels
red pixels

If (B ≥ 1.5) → high brightness scenario

If (B ≥ 1) → medium brightness scenario

Else → low brightness scenario

This algorithm is an alternative to statistical binary classification algorithms commonly176

used for similar tasks (Otsu, 1979; Huang and Wang, 1995; Dominquez et al., 2002). Inter-177

nally, it uses three classes of pixels (white/black/red) to estimate how many outstandingly178

bright pixels are present in the scene. This operation also distinguishes between deep wa-179

ter IR light conditions (classified as low-brightness scenarios) and higher brightness condi-180

tions. Indeed, IR light in deep waters flattens pixel brightness and makes most pixels fall in181
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the black cluster. Shallow water scenarios may include highly illuminated spots of sunlight182

(especially in the morning), alternated with dark zones, and averagely-illuminated zones183

that may result in an overall high-brightness scenario. In the afternoon, shallow waters184

would fit medium-brightness conditions. Managing these different underwater conditions185

required building an ad hoc pixel classifier instead of using a standard binary classifier.186

After brightness classification, scenario-specific values are used for minSize, minDistance,187

maxDistance, and sensitivity from the configuration file. These values were pre-estimated188

based on a development set of simulated underwater scenarios (Section 2.9).189

As a further step, the workflow introduces a process to detect either objects or move-190

ment in front of the camera (Sections 2.3-2.5). Object detectors return a list of rectangles191

(box-images) inscribing objects in the current frame. This list is the input to the size192

analyser process, a decision system that estimates (i) if the inscribed object has a colour193

distribution likely corresponding to a fish, (ii) the average distance of the object, and (iii)194

the size of the object. If the object’s size is over the minSize threshold, the workflow195

activates a video saving process for recordingTime seconds and saves frames into a new196

MPEG-4 video file. This phase uses a direct Operating System call (through the multi-OS197

FFmpeg software) to stream frames from the camera to a file, which uses the best cam-198

era frame rate and image quality. If more than one camera is available, the detection of199

at least one object with size higher than minSize in one camera-frame will trigger video200

recording from all cameras. After the recording session, the workflow returns back to the201

camera-frame capturing step.202

The next sections describe the three detectors currently supported by the UDMOS203

workflow, i.e. deep learning-based object detector (Section 2.3), unsupervised object de-204
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tector (Section 2.4), and standard movement detector (Section 2.5). Furthermore, the size205

analyser is described to explain how object size classification works (Section 2.6). Addi-206

tionally, the Web service version of UDMOS is explained (Section 2.7), and its embedding207

equipment for direct underwater operation is described (Section 2.8). Finally, the devel-208

opment and test sets used to tune and test the workflow are explained (Sections 2.9 and209

2.10).210

2.3. Deep Learning Object Detection Model211

As a first object detection model embedded in UDMOS, a state-of-the art deep learn-212

ing process is used that has the requirement to scale down to low-resource hardware. The213

You Only Look Once (YOLO) v3 model (Redmon et al., 2016) was chosen because it sup-214

ports near real-time object detection also on low-resource hardware like Google Coral and215

NVIDIA Jetson Nano. YOLO is distributed as pre-trained with the Microsoft’s Common216

Objects in Context (COCO) dataset, a large collection of ∼200k annotated images specif-217

ically conceived for deep learning model training (Lin et al., 2014). It is ∼4x faster than218

alternative models and uses a Convolutional Neural Network (CNN) that divides the image219

into small cells and classifies every cell as belonging or not to an object (object-cell identi-220

fication). Internally, the CNN uses a decision threshold on the object detection probability,221

and UDMOS allows to set this threshold in the configuration file (deep learning decision222

threshold parameter). As an additional step, a cell-merging operation estimates bounding223

boxes around clusters of object-cells (bounding box estimation). Finally, each box is la-224

belled as one among several predefined object classes and is returned as an output. The225

UDMOS workflow uses YOLO up to the bounding box estimation - i.e. unlabelled boxes226

are produced as the output - because the pre-trained labelling process was too domain-227
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dependent. Instead, the object detection part of YOLO is independent of the application228

domain and thus allowed us to re-use a pre-trained YOLO model in UDMOS.229

However, YOLO is not fast enough to run efficiently on a Raspberry Pi-4, even when230

using CPU enhancers (Rosebrock, 2020). As an alternative, the Tiny-YOLO version was231

used, which is 442% faster than YOLO and uses a shallower CNN while losing a small232

precision percentage. A pre-trained version of Tiny-YOLO was integrated with UDMOS233

via the DeepLearning4J suite (DL4j, 2016), which efficiently interfaces with the model.234

Tiny-YOLO requires ∼3s to process a camera image at a 416x416 resolution on a Rasp-235

berry Pi-4. This lag in object detection can be acceptable for slow-dynamic deep water236

scenarios (below 100m), where fish averagely cover ∼1m in 3s (Huse and Ona, 1997;237

Pinte et al., 2014). However, a more efficient object detector (Section 2.4) is needed to238

manage faster responses in shallow waters, where speed considerably increases and can239

even double (Pinte et al., 2014). Using deep learning is more suited for the Web service240

version of UDMOS that relies on a cloud computing e-Infrastructure (Section 2.7).241

The deep learning object detection module of UDMOS returns a list of rectangles242

referring to bounding boxes around objects in the current camera frame. The decision243

threshold regulates the number of produced rectangles. In summary, this module uses the244

following computational steps (Figure 2-a):245
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Algorithm 2 deep learning object detection

Adapt the image to the Tiny-YOLO operating resolution (416x416)

Scale the pixel RGB values from the 0-255 range to the 0-1 range

Apply Tiny-YOLO to the image, while using the deep learning decision threshold

Retrieve the set of detected objects’ bounding boxes (rectangles) from the CNN

output

Re-adapt the rectangles’ coordinates to fit the original image dimension

Return the set of detected rectangles

The image pre-processing steps prepare the frame for the Tiny-YOLO optimal opera-246

tional resolution, which requires re-adapting the detected rectangles to the original image247

dimensions afterwards.248

2.4. Unsupervised Object Detection Model249

The unsupervised object detection model embedded in UDMOS, is a fast object detec-250

tion method that can run very fast on low-resource hardware. It leverages the illumination251

properties of typical UDMOS underwater deployment scenarios, where visibility fades out252

exponentially with distance due to the attenuation characteristics of visible and IR wave-253

lengths through water. Thus, the background of the scene is darker than the fishes moving254

in front of the camera and creates a high contrast. This assumption is valid especially in255

deep waters (e.g., Figure 4-Test case 1), but can be also valid in shallow waters (down256
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to ∼50m) if the camera is oriented parallel to the surface, because water rapidly absorbs257

sunlight (e.g., Figure 4-Test cases 2-5).258

The unsupervised detection process (Figure 2-b) was entirely realised with Java through259

the BoofCV library (Abeles, 2017). The contour extraction process is a routine that applies260

a binary filter to the image using the Otsu thresholding method as a first step (Otsu, 1979).261

This operation separates pixels into black and white classes by maximising the variance of262

inter-class intensity. As a second step, 8-neighborhood erosion sets to black those pixels263

that are not connected to their 8 direct neighbors. The next contour tracing process creates264

clusters of 8-neighbour continuously connected pixels. A polygonal fit operation is then265

applied to the contour clusters (BoofCV, 2020). This process first fits a simple polygon of266

3 sides around the contour line and then increases the number of sides until the euclidean267

distance between the polygon and the line does not change sensibly. At each computational268

step, it adds sides by splitting those that likely minimise the polygon-contour distance. As269

a final process, object bounding boxes are traced by taking the extreme coordinates of each270

polygon.271

A configurable unsupervised model threshold is introduced to return only boxes of over272

a minimum size, which controls the relative area of the box rectangle area
image area . This threshold is273

independent of the scene brightness scenario, because the duty to further select the objects274

potentially referring to large fishes is left to the the size analyser (Section 2.6).275

In summary, the unsupervised object detection process uses the following computa-276

tional steps (Figure 2-b):277
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Algorithm 3 unsupervised object detection

Transform the image into a binary image with the Otsu method

Apply 8-neighborhood erosion

Trace object contours

Fit closed polygons to contours

For each polygon

Calculate the bounding box

Calculate A =
rectangle area
image area

If (A ≤ unsupervised model threshold) → discard the rectangle

Else → collect the rectangle

Return the collected rectangles

The high contrast between fishes and the background is the main responsible for the278

effectiveness of this process. Other general unsupervised approaches were experimented279

as well, e.g. cluster analysis, (Shen et al., 2016) and point of interest detection (Hui and280

Yuan, 2012), but they gained lower performance because they did not harness operational281

conditions at best.282
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2.5. Movement Detection Model283

Standard movement detection is offered as an alternative model to deep learning and284

unsupervised object detection, and is also a baseline for performance assessment. The285

movement detection process (schematized in Figure 2-c) is inspired to standard movement286

detection used in surveillance cameras (Singla, 2014), but adds an adaptive thresholding287

process that dynamically adjusts detection sensibility. First, the image is divided into three288

equal zones on the horizontal axis to add directional reference to the detected movements.289

Second, for each zone, a disparity image is calculated by comparing two consecutive290

frames pixel-by-pixel. In particular, The relative difference dij = ∣RGB current−RGB previous
RGB previous ∣ij291

is calculated for every pixel, where ij are the xy coordinates of the pixel in the image. If292

d is over a disparity threshold, the pixel is labeled as moved. Based on the disparity im-293

age, an overall movement score is calculated as the relative number of moved pixels in the294

zone M =
Number of moved pixels
Total number of pixels . If M is over a movement threshold, a movement detection295

alert is raised for the reference zone. By construction, the movement threshold is a sensi-296

bility parameter that depends on the scene depth-of-view more than on the brightness of297

the scene. It regulates the minimum extension of the movement that should trigger video298

recording. If the movement threshold is properly set, a large movement in one zone likely299

corresponds to a large moving object.300

The disparity threshold is indeed an adaptive threshold that is periodically learned301

from the average movement of the scene: Every second, the disparity threshold is set to302

max(dij) to cut off repetitive, background, and small movements, and thus to select only303

large pixel movements within a 1s period. We verified that this approach works also for304

terrestrial applications, where repetitive movements are present (e.g. trees leaves moved305
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by the wind). The adaptation frequency can be customised from the UDMOS workflow306

configuration.307

The movement detection process can be summarised as follows (Figure 2-c):308

Algorithm 4 Movement detector

Add the input image to a computational stack

If the stack contains less than 2 images → wait

Else, divide the image into three equally spaced left/center/right zones

For each zone

For each pixel ij in the zone

Calculate dij = ∣
RGB current−RGB previous

RGB previous ∣ij

If dij ≥ disparity threshold → label the pixel as moved

Calculate M =
Number of moved pixels
Total number of pixels

If M ≥ movement threshold → movement detected in the zone →

object found = TRUE

If more than 1s has passed from the last update → update the disparity threshold to

max(dij)

If the loop finished without interruption → no moving object was found →

object found = FALSE

One advantage of this algorithm, is that it allows to easily implement a trigger for a309
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motor (e.g. as in the device of Figure 3-b), based on the detection zone, which would move310

the camera in the direction of the highest movement amount.311

2.6. Size Analyser312

The size analyser is a decision process that analyses every bounding box around the313

objects detected by one of the supported object detectors. In particular, it (i) decides if314

the image portion within the box (box-image) potentially refers to a fish, (ii) estimates the315

distance of the object, and (iii) estimates the object’s size. The size analyser was designed316

by balancing speed and accuracy for the limited-resource reference hardware without using317

distance sensors. It is not used when the movement detector is active, because this process318

implicitly includes size detection as zone size.319

As a first step, object bounding boxes overlapping of more than 80% are merged al-320

together to avoid processing multiple parts of one object. This parameter can be adjusted321

from the UDMOS configuration. As a second step, each box-image is checked to likely322

correspond to a single object. Underwater, gray-scaled well-framed objects in front of a323

camera usually present a colour distribution having a higher brightness in the middle that324

fades out towards the edges. Middle brightness is higher if a device-mounted light is used325

(e.g. in deep waters). In order to select well-framed objects only, for each box-image the326

size analyser traces a horizontal histogram of pixel intensity normalised and grouped into327

5-bins after image gray-scaling. Additionally, it tests this distribution to resemble a 5-bin328

Gaussian distribution, with unitary standard deviation, through mean squared error estima-329

tion. If the error is under a sensitivity threshold, the object is considered as well-framed.330

This heuristic procedure came after tests on the development set videos, but is also based331

on the observation that many large fishes targeted by UDMOS (e.g. sharks and tuna) have332
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reflective skins that enhance the described effect. Indeed, non-fish objects in deep waters333

(e.g. floating algae, plastic debris etc.) usually present non-uniform brightness distribu-334

tions and thus are discarded by the size analyser. Similarly, overlapping fishes typically335

present multi-modal distributions because they produce several brightness peaks, whose336

number depends on the number of fishes. Thus, multiple fishes within one bounding box -337

including fish schools - are normally discarded by this heuristic (Section 3.2).338

As a consequence, large objects detected by the size analyser usually correspond to339

large fishes in underwater scenarios, especially in deep waters. The choice to select only340

well-framed objects may limit the recognition of fishes in a perspective position, but these341

are usually difficult to recognize even for a human expert’s eye and even for stereo BRUVs342

(Cappo et al., 2006; Costa et al., 2006; Ditria et al., 2020). Moreover, selecting only well-343

framed objects enhances the precision of size estimation.344

As an additional step, the bounding boxes selected by the brightness analysis are345

checked to fall within the UDMOS operational distance ranges. To this aim, the box-346

image distance is estimated as D =
non−empty bins
histogram bins , i.e. as the relative amount of non-black347

and non-empty bins of the box-image’s colour histogram. This idea, validated against348

development videos, is intuitively valid for underwater scenarios because object colours349

fade out exponentially with distance. This effect is even more evident with IR light which350

flattens colours. Thus, the minDistance and maxDistance configuration parameters define351

the maximum and minimum percentage of coloured histogram bins that indicate when an352

object is too close or too far. A very high D percentage corresponds to very close objects,353

which should be ignored to avoid analysing partial objects and small fishes moving close354

to the camera. By definition, the minDistance value is higher than the maxDistance value.355
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As a final step, object size is estimated as S =
non−black pixels

image size , i.e. as the relative number356

of non-black pixels in the colour histogram of the box-image. The minSize configuration357

parameter is thus the minimum relative size of the object with respect to the entire frame.358

This estimate is approximately valid because it is calculated for an object that is likely in a359

longitudinal position and not far from the camera. Thus, it is reasonable to estimate object360

size as the portion of non black pixels within the box-image.361

In summary, the size analyser process can be summarised as follows:362

21



Algorithm 5 Size analyser

Receive input from the object detection model: a list of rectangular regions in the

current frame

Merge rectangles that overlap of more than 80%

For each rectangle

Extract the inscribed image and use 8-bit gray-scale representation

Trace the colour histogram

Trace the horizontal RGB distribution

Calculate the average error between the horizontal RGB distribution and a 5-

bin Gaussian distribution

If (error ≤ sensitivity) → discard the rectangle

Else calculate D =
Non−empty bins
histogram bins

If (D ≤maxDistance OR D ≥minDistance) → discard the rectangle

Else calculate S =
Non−black pixels

image size

If (S ≤minSize) → discard the rectangle

Else return → large object found = TRUE

If the loop finished without interruption → no large object was found →

large object found = FALSE
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The output of the process is a boolean variable whose TRUE value makes the overall363

UDMOS workflow activate a camera recording process for recordingTime seconds.364

2.7. Web Service365

Our workflow is open-source (Supplementary material) and was integrated with the366

DataMiner cloud computing platform of the D4Science e-Infrastructure (Coro et al., 2017,367

2015a). This platform allows uploading video files on an online file system and executing368

the complete UDMOS workflow to retrieve video segments that include large-fish events.369

DataMiner offers 15 machines with Ubuntu 18.04.5 LTS x86 64 operating system, 16 vir-370

tual cores, 32 GB of RAM, and 100 GB of disk, to run executions in parallel/distributed371

and multi-tenancy modes. Moreover, it enables Open Science features like repeatability,372

reproducibility, re-usability to the integrated processes and enacts collaborative experi-373

mentation. It also includes an automatic provenance tracking feature, i.e. it keeps track of374

all the input/output data, parameters, and metadata used (Assante et al., 2019b).375

UDMOS was integrated through a software-to-service integration tool of DataMiner376

(Coro et al., 2016c) that published the workflow under the Web Processing Service in-377

vocation standard (WPS, Schut and Whiteside (2007)), which optimises service re-use378

from other software. The tool automatically generated a Web graphic interface based on379

the input/output definitions. Deploying UDMOS as a free-to-use Web service through380

D4Science also allowed to have low maintenance costs through a long-term sustainability381

plan of the e-Infrastructure (Assante et al., 2019b).382

In summary, UDMOS was also published as a distributed, secure, and Open Science383

Web service. In particular, it is currently available as a WPS service after free registration384

to the D4Science platform (CNR, 2020). This service accepts a video file as input and385
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asks for confirmation or modification of the default configuration parameters. The ser-386

vice execution returns one ZIP file containing video clips of large objects captured by the387

workflow, where each video has recordingTime length. Offering UDMOS as a free-to-use388

Web service on a sustainable platform also allows to go beyond embedded devices and to389

provide a post-processing system for the videos collected by other BRUVs.390

2.8. Underwater Deployment Equipment391

The deployment system comprises of five key components (Figure 3-a): A battery, a392

data storage device, an embedded single-board edge computer capable of running UDMOS393

(e.g. a Raspberry Pi-4), an IR camera (imaging sensor), and IR LEDs optionally equipped394

with with photo-resistor light sensors (Figure 3-b). These components are housed inside a395

waterproof container with an optical window of sufficient size for both the IR emitters to396

illuminate the study location and the imaging sensor to monitor and capture data (Figure397

3-c). The imaging sensor differs from visible light cameras in that it lacks an IR filter, thus398

enabling the capture of IR wavelengths reflected from the study area. The IR emitters have399

diffuse illumination characteristics in order to illuminate the field of view of the camera400

sensor evenly without spotlight effect. The quality of the canister housing depends of401

the operational context of UDMOS and can range from inexpensive micro cases (∼ 20402

euros) for shallow waters and short video sessions (∼ 1h), to high-quality solutions for403

deep waters, e.g. the polyoxymethylene case in Figure 3-c (∼ 600 euros) or even more404

expensive equipment.405

Data can be captured to either storage integrated within the edge computer or to an ex-406

ternal storage device such as a solid-state disk drive connected via USB. Solid-state storage407

also provides benefits in terms of both low power consumption (which is a key attribute of408
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the system in order to maximise monitoring) and capture duration. Additionally, scalable409

storage offers greater capacity options rather than memory cards and conventional storage410

limitations which are typical of contemporary BRUV systems.411

Due to the combination of modifiable characteristics, the system offers a more focussed412

data capture method and less invasive approach over a longer time period, in comparison413

to the investment in equipment. The system can be deployed at the study area in the same414

methods as current systems, either by being physically placed by divers, or deployed from415

a boat.416

2.9. Development Cases417

Following best practice indicated by other works (Di Benedetto et al., 2019, 2020),418

development case videos were built by modelling, rigging, and animating fishes with the419

Autodesk Maya software (Autodesk, 2010). The aim of testing these videos was to assess420

the optimal parameters of the detection models and of the size analyser. Thus, virtual421

scenes were produced with both IR and visible light filters, and included virtual groups422

of fishes of different sizes moving in front of a virtual camera in deep and shallow water423

conditions. The animations also simulated different speeds of the virtual fishes over time424

and the presence of multiple fishes at the same time in the camera frame, also having425

similar sizes to allow the fine tuning of the models.426

2.10. Test Cases427

The performance of the UDMOS workflow was tested on five videos recorded by un-428

derwater remote devices in real deployment scenarios under different depth and light con-429

ditions. The target species to record were tuna, sharks and mantas. All videos had around430

25



5 minute and 30 second lengths and included events where large sharks, tunas, or rays431

passed in front of the camera. Events had variable durations with a minimum of ∼ 15432

seconds. Test videos were either self made (the ones in shallow waters) or taken from433

reusable online material (which limited the number of videos that could be used), and all434

come from collections of baited and non-baited underwater videos for biodiversity mon-435

itoring (see the Supplementary material). UDMOS was set to work on 640x320 scaled436

images to simulate a real operative scenario with a Raspberry Pi-4. The characteristics of437

the test cases (summarised in Table 1) are reported in the following:438

• T1 (Figure 4-Test case 1): A set of 15 short videos from deep water environments439

at depths ranging between ∼100m and ∼700m, with IR illumination and visibility440

up to ∼1m. A bait was used in most scenarios to attract fishes, and non-fish moving441

objects were also present in the scene. Target species to record were fishes relatively442

larger than the others in the scene, e.g. sharks, tunas, and giant squids. The overall443

video-set duration is 5 min. and 45s.444

• T2 (Figure 4-Test case 2): A shallow water scenario (∼3m depth), with no bait used,445

and visible light had a ∼10m maximum visibility. Density of fishes was generally446

low but small fishes moving in front of the camera were present. Furthermore, a447

high sunlight illumination came from the upper-right part of the scene that reduced448

fish/background contrast. Target species to record were sharks and mantas. The449

difficulties brought by this scene are a non-uniform illumination and the need to450

distinguish between large fishes far from the camera and small fishes very close to451

the camera. Video duration is 5 min. and 16s.452
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• T3 (Figure 4-Test case 3): The same location as T2, with a higher level of illumina-453

tion. Several shoals were present that UDMOS had to automatically ignore. Video454

duration is 5 min. and 42s.455

• T4 (Figure 4-Test case 4): The same location as T2, with a lower level of illumi-456

nation, many small fishes insistently swimming in front of the camera, and just one457

event (a shark) to capture. This was the most difficult scenario. Video duration is 5458

min. and 19s.459

• T5 (Figure 4-Test case 5): The same location as T2, with a bit higher level of illumi-460

nation than in T4. Events were more frequent than in T4, but there were more fishes461

insistently swimming in front of the camera. Video duration is 5 min. and 52s.462

These descriptions indicate that these five cases were selected to test the limitations463

and the performance of UDMOS at the variation of fish density, large fishes’ distance, and464

illumination level.465

2.11. Performance Metrics466

Performance metrics were defined after dividing the test videos into 15s segments (the467

minimum duration of an event across the test cases). Segments containing an event were468

considered true positives (TPs), and true negatives (TNs) otherwise. A missed 15s event469

was considered a false negative (FN), and a misidentified segment was considered a false470

positive (FP). Based on these assumptions, the following standard performance metrics471

were used:472

Precision =

TP

TP + FP
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Recall =
TP

TP + FN

Accuracy =
TP + TN

TP + TN + FP + FN

F -measure = 2 ⋅
Precision ⋅Recall

Precision +Recall

In summary, Precision measures the fraction of events that are truly associated with473

large fishes passing in front of the camera. Recall measures how many correct events are474

returned among those really occurring. Accuracy and F-measure summarise the overall475

quality of the workflow: The former measures how well the workflow is able to detect476

correct events and to discard incorrect events; the latter is the harmonic mean of Precision477

and Recall and indicates how much the workflow is balanced between returning many478

events and correct events.479

3. Results480

This section reports the UDMOS parameter estimation out of the development set (Sec-481

tion 3.1), and then reports the workflow performance on our five test cases at the variation482

of the detection model used (Section 3.2).483

3.1. Operational parameter estimation484

The tuning of UDMOS on the development set estimated the values of all configura-485

tion parameters (Table 2): The optimal deep learning threshold was set independent of the486

brightness scenario. Its small value (0.1) makes Tiny-YOLO produce many object bound-487

ing boxes than using higher values. Likewise, the unsupervised model threshold was set488

independent of the brightness scenario and its value (1%) enabled the selection of even489
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very small bounding boxes. The movement threshold depended on the brightness scenario490

and its values - that refer to the minimum size of the moving pixel blob to detect - were491

higher for the low brightness scenario (10%), which indicates that large objects correspond492

to large pixel blobs when the depth of field is shorter. Instead, in the other scenarios large493

fishes can be also far from the camera, thus the model was set to be more sensitive to494

movement detection (i.e. movement threshold was set to 1%). This threshold is not too495

weak because it is coupled with the adaptive threshold that excludes small moving blobs496

such as those associated with shoals and floating algae.497

The minSize threshold was set to decrease when passing from low to high brightness498

scenarios (15% to 2%) because large fishes correspond to larger bounding boxes in deep499

water environments and far objects are invisible (visibility is ∼1m) , whereas far objects in500

the other scenarios may have also small bounding boxes. Also minDistance and maxDis-501

tance had decreasing trends for the same reason (from 97%-48% to 36%-10%).502

Finally, the sensitivity threshold had an increasing trend across the brightness scenarios503

(from 3 to 7), since in deep waters objects are close and have a high definition, and thus504

the Gaussian fit should be stricter to enhance detection Precision. Instead, in the higher505

brightness scenarios farther large objects can be small and less defined, thus a higher error506

should be allowed.507

3.2. Performance comparison508

This section reports a comparison between the UDMOS workflow alternatively us-509

ing deep learning, unsupervised, and motion detection models. The performance (Table 3)510

was the same when using a Raspberry Pi-4 and the cloud computing service; thus hardware511

difference only affected the efficiency of the process but not its effectiveness. The perfor-512
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mance comparison in Table 3 highlights that in the deep water scenarios (T1) all workflows513

reached at least 75.9% Accuracy and 80% F-measure (Table 3), but particularly the ones514

based on the deep learning and unsupervised models (100% Accuracy and F-measure).515

The movement detection workflow reported a 6.7% lower Recall than the other two work-516

flows because it missed large fishes not moving in front of the camera that were just eating517

the bait. It also reported a 30% lower Precision because scenes were very animated, and518

thus recording was often triggered (75.9% Accuracy and 80% F-measure). On T2, the op-519

timal workflow was the one using the unsupervised object detector (85.7% Accuracy and520

89.7% F-measure) because it was ∼6% more precise at detecting far fishes than the deep521

learning-based workflow (82.4% Accuracy and 85.7% F-measure). The movement detec-522

tion workflow had a lower performance than the other two workflows (66.7% Accuracy523

and 78.8% F-measure) because it also captured small and close moving fishes. On T3, the524

performance of the unsupervised detector-based workflow was still optimal (91.3% Accu-525

racy and 93.8% F-measure). Unlike the deep learning-based workflow (76.2% Accuracy526

and 78.3% F-measure), it ignored shoaling events. Interestingly, the movement detection527

workflow reached a high performance (80% Accuracy and 87.2% F-measure) because the528

adaptive threshold correctly classified shoals as small moving blobs. On T4 (the most529

difficult case), there was a higher heterogeneity between the results due to a different man-530

agement of small and close fishes. The workflow using the deep learning model had a531

much better management of false positives (61.1% Accuracy and 58.8% F-measure) than532

the one using the unsupervised model (38.9% Accuracy and 56% F-measure). The move-533

ment detector also reached a good performance (47.6% Accuracy and 64.5% F-measure),534

but in this case a high Recall can be a negative indicator because it suggests that the pro-535
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cess was raising detection alerts too often, although events were rare. In this view, the deep536

learning-based workflow was the best balance between Precision and Accuracy. Being T5537

similar to T4, the deep learning-based workflow was better (47.4% Accuracy and 64.3%538

F-measure) than the one using the unsupervised model (44.4% Accuracy and 58.3% F-539

measure), and the movement detector reached good performance too (43.5% Accuracy540

and 60.6% F-measure).541

Considering the test cases as one overall test set (Total row in Table 2), the unsuper-542

vised detector-based workflow had the highest performance (75.2% Accuracy and 81.9%543

F-measure), although not much higher then the one of the deep learning-based workflow544

(74.5% Accuracy and 79% F-measure). The movement detector workflow had a lower per-545

formance (64.5% Accuracy and 74.9% F-measure) with a ∼14% relative Accuracy loss.546

This result particularly justifies the preference of object detection models over movement547

detection for the operational scopes of UDMOS. In this difference, the size analyser’s role548

is crucial because the object detectors are both set to detect many objects, and the size549

analyser is responsible for increasing Precision. Indeed, the detectors report objects also550

during non-event segments, but these do not become false positives because the size anal-551

yser discards them. This feature indicates the added value brought by the size analyser552

to drastically increase the Precision of the underlying models. On the other hand, also553

the Precision of the object detectors is important. For example, the higher precision of554

Tiny-YOLO is the main responsible for the different results on T4, because the two object555

detectors use the same size analyser.556

Apart from effectiveness measurements, the efficiency of the models is also important557

because UDMOS is meant to run on a low-resource device like Raspberry Pi-4. When558
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using the deep learning model on this platform, UDMOS takes ∼3s to process one frame,559

which makes it unpractical for fast-moving fish detection. Instead, UDMOS takes ∼800ms560

per frame when using the unsupervised model, and ∼400ms per frame with the movement561

detector. Thus, the unsupervised model is a good compromise between efficiency and ef-562

fectiveness when using low-resource hardware. Power consumption is also well managed563

thanks to the single-threaded design of the workflow and an accurate internal management564

of memory. A Raspberry Pi-4 can continuously compute UDMOS with the unsupervised565

model for ∼4h with a 5000mAh/5V standard power bank, which guarantees a much longer566

duration with professional power supply (∼66000 mAh/22.2V).567

4. Discussion and Conclusions568

In this paper, a workflow to detect large objects underwater, with the objective of de-569

tecting large fishes moving in front of a camera, has been described. The presented so-570

lution has a number of advantages (Table 4), e.g. it can internally use one among three571

different models that reported reasonably good performance on the selected test cases. The572

results also demonstrate that UDMOS can work effectively and efficiently even with low-573

resource hardware. Deep water scenarios are particularly suited to our approach because574

fish movements are relatively slow and IR light and limited visibility enhance distance575

and object size estimation. Generally, the time lag of an object detection algorithm is576

appropriate for certain operational conditions when the average distance covered by the577

target species during the lag is lower than the extent of the camera frame, otherwise a578

fish could cross the camera during the lag without being seen. For example, the 3s lag579

of our deep learning-based workflow is suited for targeting sharks and rays at a ∼200m580
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depth because these species averagely cover 1m in 3s (Pinte et al., 2014), which corre-581

sponds to ∼64% of the camera frame at a 1.5m distance from an OV5647 sensor (i.e.,582

1m∗focal−length
1.5m∗sensor−image−width = 0.64, according to the specifications of the Raspberry Pi Founda-583

tion (2021)). These considerations should be evaluated when selecting the most appropri-584

ate workflow for the target species and operational conditions.585

Our approach can implement a low-cost solution to (i) monitor fish size, (ii) enable586

large underwater monitoring networks with contained costs to be deployed, and (iii) mon-587

itor the presence of indicator species or behavioural traits over a large area for a long time.588

Cost effectiveness should be also considered in the light to spare expert analysts’ time.589

For example, the presented test case 4 contained just one event of a shark passing (for ∼2590

minutes) far from the camera and included irrelevant events for 62% of video time. For591

longer videos this percentage can be much higher. In this case, the deep learning-based592

workflow reported 1 minute and 15s of the event and 30s of other irrelevant events (71.4%593

Precision). Thus, it was able to detect the presence of the targeted shark and produced594

only two irrelevant videos of 15s, i.e. just a 5% over the total video time.595

The high Precision on event identification across all test cases indicates that UDMOS596

was accurate at measuring the minimum target fish-length, which is enough for the aim of597

our workflow to aid human experts and automatic systems to identify species and estimate598

abundance and biomass. Indeed, the captured videos have an overall length that is aver-599

agely much lower than a continuous recording and contain well-framed species facilitating600

post-processing tasks. Adding further processing on-board - e.g., upper size limitation and601

species identification - would have (i) introduced unnecessary bias, (ii) reduced event cap-602

turing Precision, and (iii) consumed more power.603
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UDMOS has also scalability features that automatically support the improvement of604

the quality of both camera and processing hardware, while keeping power consumption605

low. It is worth to note that using a higher-resolution camera would be beneficial more to606

the human observers (e.g. to recognize the detected species) than to the object detection607

models, which work well also with low image resolutions (Redmon and Farhadi, 2018).608

The use of Java as a programming language aims at covering other single-board comput-609

ers and ARM-CPU based platforms, but our solution can work directly also on powerful610

computers. Differently from other systems (Letessier et al., 2015; González-Rivero et al.,611

2020; Hermann et al., 2020), costs are also reduced in the multiple operational contexts612

covered by our solution without model re-training.613

Apart from underwater devices, UDMOS is also offered as a free-to-use Open Science614

Web service. In this version, UDMOS could be automatically invoked on video streams615

to extract the presence of large fishes in a certain area. This service has the same effec-616

tiveness of the on-board process if the workflow is suited to the application case, because617

UDMOS addresses the easier goal to identify a minimum fish length instead of a specific618

fish length or species. The availability of Open Science features to reproduce results and619

trace computational provenance, guarantees the transparency of the produced results to-620

wards stakeholders and enables inter-scientist collaboration through the sharing of input,621

output, and parameters.622

UDMOS could be used to implement semi-automatic batch monitoring analyses for623

large fish presence in a certain area. For example, to monitor the presence of elasmo-624

branchs at a specific location such as a sea mount or monitor anthropogenic relationships in625

the context of Other Effective Area-Based Conservation Measures (OECM, CBD (2018)).626
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UDMOS could also help stakeholders to estimate the average size of sharks across longer627

time periods. Furthermore, big data processing methodologies suggest that viable infor-628

mation can be extracted even from noisy temporal observations of large fish occurrences629

(Froese et al., 2014). For example, features like seasonal species composition, average630

overall fish size change in time, and risk indicators could be automatically inferred with a631

good reliability (Coro et al., 2016, 2018).632

Finally, although UDMOS was conceived to optimally operate in underwater scenar-633

ios, it embeds a movement detection model that allows to extend its application contexts.634

Indeed, this model showed a reasonably high performance on several underwater test cases635

and is 2 times faster than the unsupervised object detector. Furthermore, it adds directional636

information that could be used by motors connected to the computational device. Thus,637

this process makes UDMOS potentially usable also in terrestrial applications, where dy-638

namics are averagely faster and automatic movement detection is effective.639
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Test cases

T1 T2 T3 T4 T5

Number of events 15 3 3 1 4

Number of events (15s chunks) 15 9 13 10 10

Video duration (s) 345 316 342 319 352

Depth (m) 100-700 3 3 3 3

Field of view (m) 1 10 10 10 10

Light Infrared Visible Visible Visible Visible

Brightness scenario Low High High Medium High

Fish density High/Low Low Medium Low Low

Bait Yes/No No No No No

Main features tested Management of

low visibility and

IR light

Far fish detection in ad-

verse illumination condi-

tions

Shoal dis-

card

Management of small

and close fishes and rare

events

Management of

many small and

close fishes

Table 1: Summary of the characteristics of the five test videos used to evaluate our methodology. The 15
deep-sea test videos used in T1 referred to scenarios with depths ranging between 100m and 700m and
included both baited and unbaited devices, mostly with few fishes in the scenes and sometimes with shoals
present. Test cases T2-T4 come from shallow water (10m) unbaited systems.
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Brightness scenario

Threshold name Low Medium High

deep learning 0.1 0.1 0.1

unsupervised model 1% 1% 1%

movement 10% 1% 1%

minSize 15% 3% 2%

minDistance 97% 45% 36%

maxDistance 48% 10% 10%

sensitivity 3 6 7

Table 2: Workflow thresholds estimated based on our development-set videos. The deep learning and unsu-
pervised model thresholds are the only parameters independent of the brightness scenario.
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Deep learning-based object detector

Precision Recall Accuracy F-Measure

T1 100% 100% 100% 100%

T2 75.0% 100.0% 82.4% 85.7%

T3 90.0% 69.2% 76.2% 78.3%

T4 71.4% 50.0% 61.1% 58.8%

T5 50.0% 90.0% 47.4% 64.3%

Total 75.8% 82.5% 74.5% 79.0%

Unsupervised object detector

T1 100% 100% 100% 100%

T2 81.3% 100.0% 85.7% 89.7%

T3 88.2% 100.0% 91.3% 93.8%

T4 46.7% 70.0% 38.9% 56.0%

T5 50.0% 70.0% 44.4% 58.3%

Total 74.7% 90.8% 75.2% 81.9%

Movement detector

T1 70.0% 93.3% 75.9% 80.0%

T2 65.0% 100.0% 66.7% 78.8%

T3 77.3% 100.0% 80.0% 87.2%

T4 47.6% 100.0% 47.6% 64.5%

T5 43.5% 100.0% 43.5% 60.6%

Total 60.4% 98.5% 64.5% 74.9%

Table 3: Performance comparison of the presented large-fish detection workflows across all use cases at the
change of the detection models used internally.

50



Advantages

Support of multiple detection algorithms The user can choose among three detection algorithms: Deep

Learning-based, Unsupervised, or Standard Movement Detector.

Computational hardware scalability Supported hardware ranges from a very inexpensive Raspberry Pi-4

(or another single-board computer) with a single IR camera, to pow-

erful hardware with multiple cameras. Furthermore, UDMOS is Java-

based and thus supports multiple operating systems.

Camera scalability Works automatically with one to N cameras connected to the comput-

ing platform.

Multiple illumination operational conditions Works with both IR and visible light because it automatically selects

its optimal configuration based on the scene brightness.

Management of common issues on large fish detection found

by other systems

Uses a statistical analysis on colour distribution to account for too

close fishes, overlapping fishes, and non-fish objects.

Support of both edge- and cloud-computing Offered both as an embeddable solution for direct underwater opera-

tions and as a Web service for batch video processing.

Compatibility with species identification systems The produced videos can be used directly to feed automatic species

identification systems.

Cost effectiveness of post-processing Reduces human expert’s time and automatic processing time for

analysing videos.

Low power consumption The single-threaded architecture is able to spare power consumption

and achieve ∼1 week of continuous activity with professional deploy-

ment equipment.

Open Science compliance The Open Science compliance of the Web service makes it easy to in-

voke the service for video-stream processing and guarantees the trans-

parency of the results through open repeatability, reproducibility, and

provenance tracking.

Potential limitations

Processing time lag The deep learning-based workflow has single-frame processing time

that can be unsuited for low-hardware platforms, and for scenarios

with fast movements to be captured.

No upper-bound for fish size detection There is no upper size bound of the fishes to detect, in order to max-

imise detection effectiveness.

No on-board species identification On-board species identification is not supported due to target-

hardware limitations.

Motion detection is affected by attracted fishes The motion detection-based workflow is very sensitive to small fishes

moving in front of the camera.

Sensitivity to non-uniform illumination Distance estimation is based on colour fading and thus non-uniform

illumination (especially in shallow waters) can affect event capturing

precision.

Sensitivity to uniform distant shoals Single-species detection uses colour distribution analysis, thus com-

pact distant shoals may present a uniform colour distribution and may

be detected as one large fish.

Table 4: Highlight of the advantages and potential limitations of UDMOS.
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Figure 1: Flowchart of our workflow.

52



Figure 3: Images of the proposed equipment for remote underwater video operations: a) overall schema of
the underwater device; b) Raspberry Pi-4 with IR camera and two IR lights activated by photo-resistor light
sensors; c) canister of 160 mm length in polyoxymethylene with IR camera and Raspberry Pi-4 mounted.
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