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1. Quantum efficiency16

In general, hot-electron based photodetectors present low quantum efficiencies. Nevertheless,17

this is a compromised condition in exchange for absorption at energies below the band gap.18

The quantum efficiency depends on the operational spectral range of the photodetector. As19

the wavelength is increased, the quantum efficiency decreases. This is why, as the proposed20

photodetector works in the telecom wavelengths, the quantum efficiency is low. In Fig. S1,21

we represent the quantum efficiency for both phases. For comparison, another hot electron22

photodetector (with no reconfigurability) working at the C band has been reported in literature23

with quantum efficiency of 0.2%. [1].24

Fig. S1. Quantum efficiency of the proposed photodetector as a function of the
wavelength for both phases of Sb2S3 (crystalline in blue and amorphous in red) . .



2. Thickness dependence and substrate effect.25

In the manuscript, Sb2S3 has been considered as substrate (i.e., Sb2S3 of infinite thickness).26

Nevertheless, the experimentally switch of Sb2S3 between its both phases has only been27

demonstrated for thicknesses in the range of tens of nanometers. Therefore, for a more realistic28

consideration of the studied system, the first step is to calculate the plasmon depth in the Sb2S329

as function of the PCM layer. This penetration depth 𝑑 can be calculated from equation 1.30
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where 𝜆 is the wavelength, and 𝜖𝑃𝐶𝑀 and 𝜖𝑔 are the real part of the dielectric function of the31

PCM and gold respectively.32

As shown in Figure S2, the plasmon depth is around 253 nm for both resonant wavelengths33

and both phases (1310 – amorphous and 1550 nm- crystalline).34

Fig. S2. Plasmon penetration depth in Sb2S3 for both phases (amorphous in blue
and crystalline in red). The plasmon depth for both resonant wavelengths: 1310 nm -
amorphous and 1550 nm - crystalline is around 253 nm.

The second step is to calculate the absorbance of the proposed design for different thicknesses35

of the PCM in order to make a more realistic stimation of the photoresponsivity of the device.36

The PCM is on top on a silicon substrate. In Figure S3, the second plasmon order has been37

simulated for different thicknesses of antimony sulphide. For thicknesses higher than 300 nm38

(near plasmon depth) plasmon peaks can be generated. However, the amplitude of these peaks is39

not as high as for the infinite thickness reported in the paper. Thickness should be increased for40

this purpose. From a thickness of 800 nm the absorbance is exactly as if the PCM is treated as41

a substrate. So, this should be the thickness of the PCM to achieve the results obtained in the42

manuscript.43

The same simulations have been performed setting different materials as substrate as shown44

Figure S4. For a thickness of 800 nm the proposed design for the second plasmon order is45

simulated over a glass (SiO2) and a sapphire (𝛼-Al2O3) substrate. In this case, as the refractive46

index of the PCM is higher than the one of the substrate materials (SiO2 and 𝛼-Al2O3), interference47

fringes are produced leading to the appearance of extra peaks in the absorbance spectra. To avoid48

this, only a Si, or other materials with a higher refractive index than the PCM, have to be used as49

substrate.50



Fig. S3. Absorption spectra of the proposed photodetector for the second plasmon order
and for amorphous, crystalline and the intermediate states by changing the thickness 𝑑
of Sb2S3 over a silicon substrate. The thicknesses have been varied from d=50 nm to
d=800 nm and finally, considered as a substrate.

Fig. S4. Absorption spectra of the proposed photodetector for the second plasmon
order and for amorphous, crystalline and the intermediate states for a thickness 𝑑 = 800
nm of Sb2S3 over a glass and a sapphire substrate.



3. The use of a capping layer51

A capping layer has been modelled in order to avoid the oxidation of the PCM and to prevent the52

reshaping of the grating at high temperatures required for amorphization.53

The capping layer can be located between the gold ribs and the PCM. 3 different capping54

layers have been simulated. The materials considered for the capping layer are the most common55

ones used in experiments: SiO2, Si3N4 and ZnS. The plasmonic response is analysed for the56

three materials and for thickness ranging from 0 to 5 nm. This study has been performed for57

the second plasmon order as it is the one producing higher absorbance. The introduction of the58

capping layer does not alter the values of the absorbance, and therefore, of the photoresponsivity.59

Nevertheless, the plasmon resonances are blueshifted as we are introducing another medium with60

lower refractive index than the PCM. As shown in Figure S5, the higher refractive index of the61

capping layer, the lower the blueshift of the resonance. This shift due to the introduction of the62

capping layer can be considered to recalculate the periods.63

Fig. S5. Absorption spectra of the proposed photodetector for the second plasmon
order and for amorphous, crystalline and the intermediate states considering Sb2S3
as a substrate. The wavelength of the resonant peaks are studied as a function of the
thickness of the capping layer. The different materials for the capping layer are: SiO2,
Si3N4 and ZnS and its thickness have been varied from 0 to 5 nm. This capping layer
is located between the gold ribs and the PCM.

It should be noted that the introduction of a capping layer between the metal and the PCM64

may affect the Schottky barrier. As the energy band gaps of the capping layers (SiO2 - (7.565

-9.2 eV) [2], Si3N4 - (4.5-5.33 eV) [3] and ZnS - (3.6 eV) [4]) are higher than the ones of the66

Sb2S3, the value of the Schottky barrier its expected to increase. Moreover, as the Schottky67

barrier increases, the photoresponsivity is expected to decrease. To the best of our knowledge,68

no theoretical or experimental data is available in literature to predict the alteration in the value69

of the Schottky battier by introducing any of the previous layers between Au and Sb2S3. From70

this arguments, what can be expected is that ZnS is the best candidate as: (i) the blueshift in71



the plasmonic resonance is lower, and (ii) the Schottky barrier will experience the slightest72

modification as ZnS presents the lower bandgap.73
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