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a b s t r a c t 

In 1982 in a series of works Vielliefosse [1, 2] discussed a nonlinear homogeneous evolution equation for 

the velocity gradient tensor in fluid dynamics. Later Cantwell [3] extended this formalism to the non- 

homogeneous case including the effects of viscous diffusion and cross derivatives of pressure field. Here, 

we derive the evolution equations of the geometrical invariants of the magnetic and velocity field gradi- 

ent tensors in the case of magneto-hydrodynamics for both non-homogeneous and homogeneous cases, 

i.e., considering or neglecting viscous effects and source terms. The inclusion of dissipation effects and 

higher-order gradient terms introduces a non trivial evolution of invariants, which can be treated as a 

stochastic evolution equation. Conversely, in the homogeneous case, the magnetic field invariants do not 

evolve, i.e., the magnetic field line topology is conserved, while the corresponding velocity invariants 

are affected by magnetic forces. By writing the equations of the velocity field invariants as a dynamical 

system we can identify the role of the different terms in the evolution equations. In detail, in the ho- 

mogenous case we show that the term associated with the current density drives transitions between 

hyperbolic and elliptical structures. Evolution equations are also discussed in the perspective of an appli- 

cation to the analysis of magneto-hydrodynamic turbulence. 

© 2022 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Turbulence in fluids and magnetized plasmas is one of the 

ost debated topics in physics [4–6] . Indeed, in spite of its wide 

preading in nature, turbulence still presents some features that 

re poorly understood as, for instance, the phenomenon of inter- 

ittency. Another specific issue showing unknown features is the 

eneration of structures and their evolution in time, as depend- 

ng on the observational spatial scale. Indeed, interactions between 

ifferent topological structures in space plasmas have been rec- 

gnized to play a fundamental role in the energy transfer across 

cales and in the dissipation mechanisms which would involve the 

ccurrence of reconnection processes at the sub-ion scales [7,8] . 

Additional information on the topology of multiscale structures 

nd their evolution in fluid and magnetohydrodynamic turbulence 

an be inferred from the study of the statistics geometrical invari- 

nts of field gradient tensors and their evolution from a Lagrangian 
∗ Corresponding author. 
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oint of view. Indeed, the study of coarse-grained gradient tensor 

f velocity and magnetic fields can provide information on several 

hysical processes occurring in the inertial range such as vortex 

tretching, dissipative structures, etc [7–11] . 

The first attempt in fluid dynamics was by Vieillefosse [1,2] that 

nvestigated the dynamics of the gradient tensor of the fluid ve- 

ocity, A i j = ∂ i u j , in the approximation of an inviscid fluid. Later, 

antwell [3] moving from a restricted Euler equation derived an 

quation for the Lagrangian evolution of geometrical invariants as- 

ociated with the velocity gradient tensor. These invariants in the 

ase of incompressible fluids are the coefficients of the character- 

stic equation of the velocity gradient tensor, 

3 + P λ2 + Qλ + R = 0 , (1) 

here P = −A ii = 0 for incompressible fluids, while Q = − 1 
2 A i j A ji 

nd R = − 1 
3 A ik A k j A ji (here repeated indices are meant to be 

ummed on) are related to the trace of products of the veloc- 

ty gradient tensor. In detail, these quantities are invariant under 

O(3)-group. The associated dynamical equations of these quanti- 
 under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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d 

dt 
Q + 3 R = −A ik H ki (2) 

d 

dt 
R − 2 

3 

Q 

2 = −A i j A jk H ki (3) 

here H i j contains the source and the dissipative terms of the 

avier-Stokes equation for the velocity gradient tensor. The solu- 

ions of the evolution equations of the invariants in the limit of 

 i j = 0 have been widely studied in Cantwell [3,12] . 

Later, in the framework of fluid turbulence studies Chertkov 

t al. [9] developed a phenomenological stochastic model for the 

oarse-grained velocity gradient capable of providing a prediction 

or the probability distribution functions of Q and R invariants. This 

odel allows us to get several information on the nonlinear dy- 

amics related to energy transfer and vortex stretching along the 

nertial range. Direct numerical simulations (DNS), as well as, shell- 

odels for the evolution of the invariants statistics p(R, Q ) of the 

oarse-grained velocity gradient tensor in the inertial domain were 

ble to reproduce the topological and geometrical features of real 

urbulent flows, including the alignment between vorticity and the 

train-rate and the typical teardrop shape of the joint probability 

ensity p(R, Q ) [13–16] . The relevance of the approach based on 

he analysis of the features of the velocity gradient tensor and its 

nvariants were also outlined by experimental studies [17] . 

In the framework of astrophysical and space plasma, turbulence 

lays an important role in many processes, such as mass trans- 

ort/diffusion, plasma heating, stochastic acceleration, magnetic re- 

onnection, etc. [5,18] . In such a situation the dynamics of mag- 

etofluids is governed by magnetohydrodynamic turbulence, which 

hows a higher degree of complexity with respect to the ordi- 

ary fluid turbulence due to the role of the magnetic field. Indeed, 

ue to the highly non-Gaussian and strongly long-range correlated 

haracter of magnetic and velocity field fluctuations, understand- 

ng and modeling these fluctuations up to the typical scales of the 

argest eddies/structures are of a general interest. Furthermore, in 

he framework of space plasmas the dynamics of magnetic and ve- 

ocity fields is greatly controlled by the formation of multiscale 

tructures, whose characterization and evolution are still lacking. 

ill now, the largest part of the studies done on interplanetary 

nd space plasma turbulence is devoted to the analysis of the 

pectral properties, intermittency, Alfvénic versus non-Alfvénic fea- 

ures of the magnetic and velocity field fluctuations, coherence, 

tc. [6] , mainly using single-point measurements. Although these 

pproaches provided some advances in the comprehension of tur- 

ulence in magnetized space plasmas [5,6] , less is known on the 

opology of structures involved in the nonlinear dynamics of the 

nergy transfer across the inertial range and in the dissipation 

echanisms. Indeed, the characterization of turbulent structures 

nd their evolution play a fundamental role in understanding and 

haracterizing the magnetofluid dynamics. In this framework, theo- 

etical and observational studies on the magnetic and velocity field 

radient tensors and their invariants could provide additional in- 

ormation. 

Recently, Consolini et al. [11 , 19] and Quattrociocchi et al. 

20] attempted an analysis of coarse-grained velocity and magnetic 

eld gradient tensors to characterize the features of the magnetic 

nd velocity field structures via the gradient tensor SO(3) geomet- 

ical invariants using in-situ satellite measurements from the ESA 

luster mission. The results provided a clear similarity of the joint 

robability distribution p(R, Q ) of the velocity gradient geometric 

nvariants to that observed in the low end of the inertial range of 

uid turbulence [11] . In particular, it was found evidence for a pro- 

ounced increase in the joint statistics along the so-called Vieille- 

osse tail , which support the occurrence of dissipation/dissipation- 
2 
roduction due to vortex stretching. On the other hand, Quattro- 

iocchi et al. [20] , analysing the joint statistics of the topological 

nvariants of the coarse-grained magnetic field gradient tensor, ev- 

denced how in the inertial range this is a function of the dis- 

ance from the proton inertial length scale and it is compatible 

ith a change of the fluctuation field dimensionality at the small- 

st scales. Furthermore, they found the evidence of an increasing 

ole of the ingoing spiral saddle and current-associated dissipation 

tructures at small scales, where dissipation is expected to occur. 

n particular, the analysis of the topological invariants suggested 

hat, although tube-like and sheet-like topologies are present, the 

agnetic field lines are mainly elliptic and heating is mainly due 

o dissipation in current layers and current-associated topologies. 

imilar results were found also in the case of numerical simula- 

ions [10] . 

Later, Bandyopadhyay et al. [7] used the symmetric/anti- 

ymmetric parts of the magnetic and velocity field gradient ten- 

ors to quantify the kinetic dissipation in turbulent space plasmas 

t sub-ion scales in the Earth’s magnetosheath using MMS mission 

ata.They showed how dissipation is clearly localized near strong 

urrent sheets. More recently, Hnat et al. [8] analysed the mag- 

etic topology of convected structures in the solar wind studying 

he joint statistics p(R, Q ) of invariants using multipoint measure- 

ents from the ESA-Cluster mission. Their results evidenced the 

xistence of different types of structures, plasmoids, flux ropes and 

-points, which provide the evidence of the role of turbulence in 

olar wind dissipation and heating mechanisms. 

These set of observational studies along with some numerical 

imulations provided a significant evidence of the potentials of gra- 

ient tensor invariants’ studies in classifying the relevant struc- 

ures involved in the evolution of turbulent space plasmas, as well 

s, in identifying the main structures involved in plasma heating 

nd dissipation processes [7,8] . 

In spite of these observational and numerical studies on topo- 

ogical invariants of magnetic and velocity field gradient tensors 

 mathematical derivation of equations governing the Lagrangian 

volution of these geometrical invariant quantities is to our knowl- 

dge still lacking. Indeed, we have not found in the literature stud- 

es similar to those by Cantwell [3 , 12] in the case of magnetohy-

rodynamics. 

In this theoretical work, we derive the evolution equations of 

he geometrical invariant quantities (SO(3)-scalars) of the magnetic 

nd velocity field gradient tensors in the framework of magneto- 

ydrodynamic theory. We remark that the relevance of this work 

s to provide additional elements to characterize the topological 

roperties of structures over different dynamical regimes in MHD 

urbulence. Indeed, the evolution equations of the geometrical in- 

ariants contain some additional terms with respect to the fluid 

ase, whose relevance stands in characterizing different dynamical 

ituations. In other words, the estimation of the relevance of these 

dditional terms could help to better characterize turbulent plasma 

egions that show similar spectral/scaling features. 

This work is the natural extension to MHD of previous works 

y Vieillefosse [1 , 2] and Cantwell [3 , 12] . 

. On SO(3) topological invariants of gradient tensor: Definition 

nd meaning 

In the magnetohydrodynamic theory the relevant quantities are 

he magnetic and the velocity field ( B and v ), and the evolution

quations describing the dynamics of these quantities are the well- 

nown Navier-Stokes equation and the dynamo equation, i.e., 

∂ 

∂t 
v + ( v · ∇ ) v = − 1 

ρ
∇p + 

1 

cρ
J × B + η∇ 

2 v , (4) 
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nd 

∂ 

∂t 
B = ∇ × ( v × B ) + χ∇ 

2 B , (5) 

here ρ is the plasma mass density, p is the kinetic pressure, η
nd χ are the viscosity and the magnetic diffusivity, J = 

c 
4 π ∇ × B 

s the current density, and c is the speed of light. In the framework 

f noncollisional plasmas the viscosity η is negligible, i.e., η = 0 , 

nd in the case of incompressible plasmas the mass density ρ is 

aken to be constant along a Lagrangian path, being ∇ · v = 0 . 

Let us now consider the gradient tensors of the magnetic and 

elocity fields, ˜ A and 

˜ Z , which are defined as follows, 

 i j = ∂ j v i , (6) 

 i j = ∂ j B i , (7) 

espectively. 

An early attempt to get the evolution equations for the gradient 

ensors was done by Materassi and Consolini [21] , that obtained 

D 

Dt 
˜ A = − 1 

ρ
� + 

1 

ρ
˜ Z 

2 − ˜ A 

2 + 

1 

ρ
( B · ∇ ) ̃  A + . . . ., (8) 

D 

Dt 
˜ Z = 

[
˜ Z , ̃  A 

]
+ ( B · ∇ ) ̃  A + . . . ., (9) 

here D 
Dt = 

∂ 
∂t 

+ ( v · ∇ ) is the Lagrangian derivative, � = ∇ ∇ P 

ith P = p + B 2 / 8 π is the total pressure and [ ., .. ] stands for com-

utator. The ellipses refer to the dissipative terms in the case of 

 non-ideal MHD. Furthermore the two quadratic terms stand for 
˜ A 

2 
)

i j 
= A ik A k j and 

(
˜ Z 

2 
)

i j 
= Z ik Z k j , respectively. 

Moving from the definition of the gradient tensors of the two 

elds, it is possible to introduce for each of the two gradient ten- 

ors a set of geometrical scalar invariants under SO(3) that can be 

efined starting by the characteristic equation for the eigenvalues 

 λ) of the gradient tensor, i.e., 

| ˜ M − λ˜ I || = 0 , (10) 

here ˜ M = 

˜ A or ˜ Z in our case. Eq. 10 defines the characteris- 

ic polynomial of the gradient tensor ˜ X , which, for the Cayley- 

amilton theorem, is conserved under the SO(3) group. In detail, 

or each of the two fields one can write 

| ˜ A − λ˜ I || = λ3 + P λ2 + Qλ + R = 0 , (11) 

| ˜ Z − λ˜ I || = λ3 + W λ2 + X λ + Y = 0 . (12) 

ere, the scalars (P, Q, R ) and (W, X, Y ) are the geometrical invari-

nts for the velocity field gradient tensor and the magnetic field 

ne, respectively. These quantities are related to the trace of ˜ M 

n , 

ith n = 1 , 2 and 3. However, because we consider the case of

n incompressible plasma medium, ∇ · v = 0 , and since ∇ · B = 0 ,

he first two geometrical invariants, P and W , are identically zero, 

hile the other invariants are, 

 = −1 

2 

Tr ( ̃  A 

2 ) , X = −1 

2 

Tr ( ̃  Z 

2 ) , (13) 

nd 

 = −1 

3 

Tr ( ̃  A 

3 ) , Y = −1 

3 

Tr ( ̃  Z 

3 ) . (14) 

These geometrical invariants have a topological meaning, in 

erms of velocity and magnetic field lines, as explained hereafter: 

ence, we refer to them as topological invariants. The solutions 

f the characteristic polynomials, Eqs. 10 , give information on the 

treamlines of the magnetic and velocity fields. These allow to 

dentify and classify the topology of plasma structures. Indeed, 
3 
he set of the solutions of the characteristic polynomials (R ∗, Q 

∗) 
nd (Y ∗, X ∗) identifies the elliptic or hyperbolic character of the 

ow/field lines. As a matter of fact, the zero discriminant lines, 

R,Q = 4 Q 

3 + 27 R 

2 = 0 , (15) 

Y,X = 4 X 

3 + 27 Y 2 = 0 , (16) 

efine in the (R, Q ) and (Y, X ) planes two regions depending on 

. In particular, if 	 > 0 we deal with elliptic field lines (ingo- 

ng/outgoing spiral saddle), while if 	 < 0 the field lines are hyper- 

olic (tube/sheet-like structures). Fig. 1 shows the invariants’ plane 

 (R, Q ) or (Y, X ) ) and the expected typical topology of the fields

ines. A more detailed and general discussion of the flow topolo- 

ies can be found in Chong et al. [22] . 

. Lagrangian evolution equations of MHD gradient tensors 

The evolution equations of the topological invariants of the gra- 

ient tensors in the case of visco-resistive MHD can be derived 

tarting from the Eqs. 4 - 5 . 

Let us start by rewriting the Navier-Stokes and the dynamo 

quations in a more explicit way. Thus, consider the magnetic field 

orce density term in the Navier-Stokes equation, 

j × B 

ρ

nd express it by evidencing the magnetic field pressure term, i.e., 

1 

ρ
( j × B ) 

i = 

1 

ρ
ε ilm J l B m 

= 

B m 

ρ
ε ilm εl jk ∂ 

j B 

k 

= − 1 

2 ρ
∂ i B 

2 + 

1 

ρ
B 

n ∂ n B 

i . 

ere, we set c and the term c/ 4 π equal to the unit for sim- 

licity. Furthermore, to avoid any ambiguity with the indices of 

he vector/tensor components we will make use of the super- 

cript/subscript notation used in quantum relativistic field theory, 

aving in mind that A i j and A 

i j are equivalent notations for the 

ensor components (the same is for the vector components). Us- 

ng this notation the contraction between two indices is only done 

etween superscript and subscript indices, e.g., ∇ · v = ∂ i v i . 
Let us now consider the set of the equations of the visco- 

esistive MHD under the assumption of an incompressible fluid, 

 · v = 0 , 

∂ t v i = −v l ∂ l v i − 1 
2 ρ ∂ i B 

2 + 

1 
ρ B 

l ∂ l B 

i − 1 
ρ ∂ i p + 

1 
ρ ∂ k σ

ik 

∂ t B 

i = −v l ∂ l B 

i + B 

l ∂ l v i + χ∂ 2 B 

i 
(17) 

here 

ik = 

[ 
η
(
δni δmk + δnk δmi − 2 

3 

δik δmn 
)

+ νδik δmn 
] 
∂ m 

v n . (18) 

qs. 17 can be written in a Lagrangian form considering the rela- 

ionship between the Eulerian and Lagrangian time derivatives: 

˙ v i = − 1 
2 ρ ∂ i B 

2 + 

1 
ρ B 

l ∂ l B 

i − 1 
ρ ∂ i p + 

1 
ρ ∂ k σ

ik 

˙ B 

i = B 

l ∂ l v i + χ∂ 2 B 

i 
(19) 

urthermore, to simplify our computations we introduce a constant 

ensor related to the definition of σ ik , i.e., we write 

ikmn = η
(
δni δmk + δnk δmi − 2 

3 

δik δmn 
)

+ νδik δmn , (20) 

uch that 

ik = �ikmn A nm 

(21) 
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Fig. 1. The invariants’ plane and the expected typical topology of the field lines. The red line is the discriminant line 	 = 0 . OSS, ISS, T LS and SLS stand for outgoing/ingoing 

spiral saddles and tube/sheet-like structures. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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hich is a dissipative term. Using this definition, Eqs. 19 in the 

ulerian representation are 

∂ t v i = −v l ∂ l v i − 1 
2 ρ ∂ i B 

2 + 

1 
ρ B 

l ∂ l B 

i − 1 
ρ ∂ i p + 

1 
ρ ∂ k 

(
�ikmn A nm 

)
∂ t B 

i = −v l ∂ l B 

i + B 

l ∂ l v i + χ∂ 2 B 

i 
. 

(22) 

his is the starting point to derive the evolution equation of the 

elocity, A i j = ∂ j v i , and magnetic, Z i j = ∂ j B i , field gradient tensors,

.e., to compute the following evolution equations for the gradient 

ensors, 

∂ t A 

i j = ∂ j 
[
−v l ∂ l v i + 

1 
ρ ∂ k 

(
�ikmn A nm 

)
− 1 

ρ ∂ i p − 1 
2 ρ ∂ i B 

2 + 

1 
ρ B 

l ∂ l B 

i 
]

∂ t Z i j = ∂ j 
(
−v l ∂ l B 

i + B 

l ∂ l v i + χ∂ 2 B 

i 
)

(23) 

To derive a compact form for these two equations we consider 

hem separately, starting from the evolution equation of the veloc- 

ty gradient tensor. 

 t A 

i j = −∂ j 
(
v l ∂ l v i 

)
+ �ikmn ∂ j 

(
1 

ρ
∂ k A nm 

)
− ∂ j 

(
1 

ρ
∂ i p 

)
+ 

− ∂ j 
(

1 

2 ρ
∂ i B 

2 
)

+ ∂ j 
(

1 

ρ
B 

l ∂ l B 

i 
)

= −v l ∂ l A 

i j − A 

i 
l A 

l j + 

�ikmn 

ρ
∂ j ∂ k A nm 

− 1 

ρ
∂ i ∂ j p+ 

− 1 

ρ
∂ i B l ∂ 

j B 

l − 1 

ρ
B l ∂ 

i ∂ j B 

l + 

1 

ρ
∂ l 

(
B 

i ∂ j B 

l + B 

l ∂ j B 

i 
)

= −v l ∂ l A 

i j − A 

i 
l A 

l j + 

�ikmn 

ρ
∂ j ∂ k A nm 

− 1 

ρ
∂ i ∂ j p+ 

+ 

1 

ρ

(
Z i l − Z i l 

)
Z l j + 

1 

ρ
B 

l 
(
∂ l Z 

i j − ∂ i Z l j 
)
, 
4 
here we used the definition of the magnetic field gradient tensor 

 i j . Thus, the evolution equation of the velocity gradient tensor is 

iven by 

 t A 

i j = −v l ∂ l A 

i j − A 

i 
l 
A 

l j + 

�ikmn 

ρ ∂ j ∂ k A nm 

− 1 
ρ ∂ i ∂ j p+ 

+ 

1 
ρ

(
Z i 

l 
− Z i 

l 

)
Z l j + 

1 
ρ B 

l 
(
∂ l Z 

i j − ∂ i Z l j 
)
. 

(24) 

his result has been derived under the assumption of a spatially 

onstant density ρ , which is compatible with incompressible fluid 

ssumption. 

Consider now the following quantity �ik = Z ik − Z ki . This can be 

elated to the skew-symmetric part of the ˜ Z . Indeed, we have 

ik = Z ik − Z ki 

= 

(
δi 

a δ
k 
b − δi 

b δ
k 
a 

)
Z ab 

= −ε ikh εhba ∂ 
b B 

a 

= −ε ikh ( ∇ × B ) h 

= −ε ikh j h 

.e., 

ik = −ε ikh j h (25) 

here we introduce the electric current density j . Using the new 

efined quantity �ik and Eq. 26 , the evolution equation of the ve- 

ocity field gradient tensor can be re-written as 

 t A 

i j = −v l ∂ l A 

i j − A 

i 
l 
A 

l j + 

�ikmn 

ρ ∂ j ∂ k A nm 

− 1 
ρ ∂ i ∂ j p 

+ 

1 
ρ ε ihl j h Z 

j 

l 
+ 

1 
ρ B 

l 
(
∂ l Z 

i j − ∂ i Z l j 
)
. 

(26) 

Let us now move to the evolution equation of the magnetic 

eld gradient tensor, Z i j . From Eq. 23 we have, 

 t Z 
i j = ∂ j 

(
−v l ∂ l B 

i + B 

l ∂ l v i + χ∂ 2 B 

i 
)
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t
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T
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g

= −∂ j v l ∂ l B 

i − v l ∂ l ∂ j B 

i + ∂ j B 

l ∂ l v i + B 

l ∂ j ∂ l v i + χ∂ 2 ∂ j B 

i 

= −v l ∂ l Z i j + A 

i 
l Z 

l j − Z i l A 

l j + B 

l ∂ l A 

i j + χ∂ 2 Z i j . 

he evolution equation of the magnetic field gradient tensor Z i j 

an be, thus, written as 

 l Z 
i j = −v l ∂ l Z i j + A 

i 
l Z 

l j − Z i l A 

l j + B 

l ∂ l A 

i j + χ∂ 2 Z i j . (27)

ummarizing the equations for the evolution of the gradient ten- 

ors in a Lagrangian form are 
 

 

 

˙ A 

i j = −A 

i 
l 
A 

l j + 

�ikmn 

ρ ∂ j ∂ k A nm 

− 1 
ρ ∂ i ∂ j p+ 

+ 

1 
ρ �il Z j 

l 
+ 

1 
ρ

(
B 

l ∂ l Z 
i j − B l ∂ 

i Z l j 
)

˙ Z i j = A 

i 
l 
Z l j − Z i 

l 
A 

l j + B 

l ∂ l A 

i j + χ∂ 2 Z i j 

(28) 

The first of these two evolution equations can be written in a 

lightly different and more compact way by making some simple 

onsiderations on some of its terms. For instance, we can observe 

hat the first term in the brackets on the right side can be written 

s 

1 

ρ
B l ∂ 

i Z l j = − 1 

ρ
B l ∂ 

i ∂ j B 

l = −∂ i ∂ j 
(

B 

2 

2 ρ

)
, 

o that, reminding that we are considering an incompressible fluid, 

 · v = 0 , we get 

˙ 
 

i j = −A 

i 
l A 

l j + 

�ikmn 

ρ
∂ j ∂ k A nm 

− ∂ i ∂ j 
(

p 

ρ
+ 

B 2 

2 ρ

)
+ 

1 

ρ
�il Z j 

l 
+ 

1 

ρ
B l ∂ l Z 

i j . 

(29) 

As a consequence of the incompressibility condition since ∇ ·
 = ∂ i v i = A 

i 
i , the trace of the velocity field gradient tensor, Tr ̃  A =

 , remains conserved along the Lagrangian evolution, i.e., 

d 

dt 
Tr ̃  A = 

˙ A 

i 
i = 0 . 

Inserting into Eq. 29 

 = −T r 
(
A 

2 
)

+ 

� lkmn 

ρ
∂ l ∂ k A nm 

− ∂ 2 
(

p 

ρ
+ 

B 2 

2 ρ

)
+ 

1 

ρ
�kl 

(
1 

2 
�lk + 

1 

2 
�lk 

)
,

(30) 

here �lk = Z lk + Z kl . 

Another important relation due to symmetry features is that 

he contraction �kl �kl is identically null, so that the last relation 

n Eq. 30 reduces to 

∂ 2 
(

p 

ρ
+ 

B 

2 

2 ρ

)
= T r 

(
A 

2 
)

− 1 

2 ρ
T r 

(
�2 

)
− � lkmn 

ρ
∂ l ∂ k A nm 

. (31) 

n other words, the requirement of incompressibility and its valid- 

ty along the material trajectories (Lagrangian view) of the plasma 

mply that the total pressure P MHD = 

p 
ρ + 

B 2 

2 ρ is not a free variable 

ut it can be calculated as a dependent parameter on the two ten- 

ors A and Z. Furthermore, the last equation provides us also some 

nformation on the term 

∂ i ∂ j 
(

p 

ρ
+ 

B 

2 

2 ρ

)
hich appears in Eq. 29 . Indeed, assuming that this tensor 

∂ i ∂ j 
(

p 
ρ + 

B 2 

2 ρ

)
is isotropic, we can express it as 

∂ i ∂ j 
(

p 

ρ
+ 

B 2 

2 ρ

)
= −δi j 

3 

[
−T r 

(
A 

2 
)

+ 

1 

2 ρ
T r 

(
�2 

)
+ 

�klmn 

ρ
∂ l ∂ k A nm 

]

˙ = − δi j 

3 
τpress ( A, �) , 

here τpress is a new quantity. 
5 
Let us now move to expand the form of the term containing the 

ensor ˜ � in Eq. 29 

�ikmn 

ρ
∂ j ∂ k A nm 

= 

1 

ρ

[ 
η
(
δni δmk + δnk δmi − 2 

3 
δik δmn 

)
+ νδik δmn 

] 
∂ j ∂ k A nm 

= 

η

ρ

(
δni δmk ∂ j ∂ k A nm 

+ δnk δmi ∂ j ∂ k A nm 

− 2 

3 
δik δmn ∂ j ∂ k A nm 

)
= 

η

ρ
∂ j ∂ k 

(
A ik + A ki 

)
= 

2 η

ρ
∂ j ∂ k S 

ik , 

here we have introduced the symmetric part of the tensor ˜ A , i.e., 

˜ 
 = 

1 

2 

(
˜ A + 

˜ A 

T 
)
. 

Thus, we have the following identity, 

�ikmn 

ρ
∂ j ∂ k A nm 

= 

2 η

ρ
∂ j ∂ k S 

ik 

hich implies that also the following identity is valid, 

� lkmn 

ρ
∂ l ∂ k A nm 

= −2 η

ρ
∂ l ∂ k S 

lk ≡ 0 . 

The symmetric tensor term, ∂ j ∂ k S 
ik , can be further rearranged 

o get a new expression, obtaining, 

 

j ∂ k S 
ik = 

1 

2 

∂ j ∂ k 
(
∂ k v i + ∂ i v k 

)
= 

1 

2 

(
∂ j ∂ k ∂ 

k v i + ∂ j ∂ k ∂ 
i v k 

)
= 

1 

2 

∂ 2 ∂ j v i + 

1 

2 

∂ j ∂ i 
(
�
 ∇ · � v 

)
= 

1 

2 

∂ 2 A 

i j , 

nd, therefore, 

�ikmn 

ρ
∂ j ∂ k A nm 

= 

η

ρ
∂ 2 A 

i j . (32) 

Now, remembering the condition A i 
i = 0 Eq. 31 becomes 

∂ 2 
(

p 

ρ
+ 

B 

2 

2 ρ

)
= T r 

(
A 

2 
)

− 1 

2 ρ
T r 

(
�2 

)
. (33) 

Joining all the previous considerations we get for the evolution 

quations of the gradient tensors the following expression 

 

 

 

˙ A 

i j = −A 

i 
l 
A 

l j + 

η
ρ ∂ 2 A 

i j − 1 
3 

[
1 

2 ρ T r 
(
�2 

)
− T r 

(
A 

2 
)]

δi j 

+ 

1 
ρ �il Z j 

l 
+ 

1 
ρ B 

l ∂ l Z 
i j 

˙ Z i j = A 

i 
l 
Z l j − Z i 

l 
A 

l j + B 

l ∂ l A 

i j + χ∂ 2 Z i j 

(34) 

hat can be joined with the following two expressions for the trace 

f the two gradient tensors 
 

Tr ̇ ˜ A = 

1 
ρ Tr 

(
˜ � · ˜ Z 

S 
)

= 0 

Tr ̇ ˜ Z = 0 

(35) 

hese two conditions on the solenoidal condition of the velocity 

nd magnetic field can be used to write Eq. 34 in a more compact 

ay, i.e., 

 

˙ ˜ A = − ˜ A 

2 + 

η
ρ ∇ 

2 ˜ A + 

1 
3 

[
− 1 

2 ρ T r 
(

˜ �2 
)

+ Tr 
(

˜ A 

2 
)]

1 + 

1 
ρ

˜ � · ˜ Z + 

1 
ρ (B · ∇) ̃ Z 

˙ ˜ Z = 

[
˜ A , ̃  Z 

]
+ (B · ∇) ̃ Z + χ∇ 

2 ˜ Z 

(36) 

Now, following the same approach used to get the ODE of the 

radient ˜ A in the case of hydrodynamic situations [3] we start 
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gain from Eq. 29 , which is now reformulated applying some of 

he previous expression in the following form, 

˙ 
 

i j + A 

i 
l A 

l j − 1 

ρ
�il Z j 

l 
= 

η

ρ
∂ 2 A 

i j − ∂ i ∂ j 
(

p 

ρ
+ 

B 

2 

2 ρ

)
+ 

1 

ρ
B 

l ∂ l Z 
i j . 

(37) 

f we now look at the right hand side term of this equation, we 

an notice that this term is zero if we neglect the gradients of the 

ensors ˜ A and 

˜ Z and the one of the total pressure p 
ρ + 

B 2 

2 ρ . This 

ituation is true when one considers a very small parcel of fluid 

n order to introduce a Lagrangian approach. Let us now take into 

ccount the condition Tr ̇ ˜ A = 0 and Eq. 33 . Thus, we have, 

∂ 2 
(

p 

ρ
+ 

B 

2 

2 ρ

)
δi j 

3 

= 

[ 
T r 

(
A 

2 
)

− 1 

2 ρ
T r 

(
�2 

)] δi j 

3 

(38) 

nd subtracting Eq. 38 from Eq. 37 we obtain an expression for the 

volution of the tensor A 

i j 

˙ 
 

i j + A 

i 
l A 

l j −
[ 

T r 
(
A 

2 
)

− 1 

2 ρ
T r 

(
�2 

)] δi j 

3 

− 1 

ρ
�il Z j 

l 
= 

= 

η

ρ
∂ 2 A 

i j −
[
∂ i ∂ j 

(
P MHD 

ρ

)
− ∂ 2 

(
P MHD 

ρ

)
δi j 

3 

]
+ 

1 

ρ
B 

l ∂ l Z 
i j 

here 

 MHD = p + 

B 

2 

2 

The last expression for the evolution of the velocity field gradi- 

nt tensor can be written in a more compact matrix form 

˙ ˜ 
 + 

˜ A 

2 −
[ 

Tr 
(

˜ A 

2 
)

−
Tr 

(
˜ �2 

)
2 ρ

] 

1 

3 

−
˜ � · ˜ Z 

ρ
= 

˜ H (39) 

ith 

˜ 
 = 

η

ρ
∇ 

2 ˜ A −
(
∇ � ∇ − 1 

3 

∇ 

2 
)(

P MHD 

ρ

)
+ 

1 

ρ
B · ∇ ̃

 Z (40) 

q. 39 provides a description of the evolution of the velocity gradi- 

nt tensor in a magnetized fluid from the Lagrangian point of view, 

.e., following a (practically pointlike) parcel of fluid. The second 

and of Eq. 39 , i.e., the tensor ˜ H , can be considered to be neg-

igile if the gradients of the gradient tensors, ˜ A and 

˜ Z , and of the 

ressure term P MHD are small/negligible, i.e., if the medium can be 

onsider locally homogeneous. In such a situation, Eq. 39 reduces 

o the following homogeneous form 

˙ ˜ 
 + 

˜ A 

2 −
[ 

Tr 
(

˜ A 

2 
)

−
Tr 

(
˜ �2 

)
2 ρ

] 

1 

3 

−
˜ � · ˜ Z 

ρ
= 0 . (41) 

lternatively, we can use the full expression of the Eq. 39 where 

he tensor ˜ H in the right hand can be considered as a noise term. 

his is for instance the case of turbulent plasma media where the 

uantity ˜ H may be irregular enough to be associated with a spatio- 

emporal noise term as already done by Cantwell [3] . 

Let us now move to the evolution equation of the magnetic 

eld gradient tensor, ˜ Z , and write it in a more compact form. Thus, 

e get 

˙ ˜ 
 + 

[
˜ Z , ̃  A 

]
= χ∇ 

2 ˜ Z + B · ∇ ̃

 A , (42) 

here [ . . . , . . . ] stands for a commutator. In analogy to the case 

reviously studied, the right-hand term can be posed to be a new 

ensor term, ˜ �, i.e., 

˜ = χ∇ 

2 ˜ Z + B · ∇ ̃

 A , 

hich is associated with dissipation ( χ∇ 

2 ˜ Z ) and deformation ( B ·
 ̃

 A ) of the magnetic field topology in the transported parcel. In 
6 
he case of a turbulent plasma, the term 

˜ � can be assimilated to 

 spatio-temporal noise source term as it is for ˜ H . Thus, with the 

bove definition we can write 

˙ ˜ Z + 

[
˜ Z , ̃  A 

]
= 

˜ �
˜ � = χ∇ 

2 ˜ Z + B · ∇ ̃

 A 

. (43) 

In conclusion, the resulting evolution equations for the mag- 

etic and velocity filed gradient tensors, ˜ Z and 

˜ A , reduce to the 

ollowing set of equations 
 

˙ ˜ A + 

˜ A 

2 −
[ 

Tr 
(

˜ A 

2 
)

− Tr ( ̃ �2 ) 
2 ρ

] 
1 
3 

− ˜ �·˜ Z 
ρ = 

˜ H 

˙ ˜ Z + 

[
˜ Z , ̃  A 

]
= 

˜ �
, (44) 

here the two noise terms, ˜ H and 

˜ �, can be neglected in the case 

f smooth and homogenous plasma (small gradients). In particu- 

ar, if we can assume that ˜ � is negligible, the magnetic gradient ˜ Z 

s transported by the operator [ ., ̃  A ] along the parcel trajectory, so 

hat ˜ A generates á la Lie , without deformation and dissipation. 

Eqs. 44 are well defined á la Langevin and thus can be consid- 

red the starting point for the derivation of a stochastic approach 

f the velocity and magnetic field gradient tensors via a Fokker- 

lanck description, as well as, the starting point to derive the evo- 

ution equation of the associated SO(3) geometrical invariants of 

he two gradient tensor. The latter is the next step that we will 

iscuss in the following Section. 

. Derivation of the evolution equations for the topological 

uantities 

The next step is to get the set of equations describing the evo- 

ution of the SO(3) geometrical invariants associated with the gra- 

ient tensors of the velocity and magnetic fields. 

As discussed in Section 2 moving from the definitions of the ve- 

ocity and magnetic field gradient tensors ( ̃  A and 

˜ Z ) it is possible 

o introduce some invariant quantities to describe the local topol- 

gy of the field lines for the velocity and the magnetic field. In 

he case of incompressible plasmas the set of geometrical invari- 

nt quantities reduces to four quantities associated with the traces 

f the gradient tensors and their powers (see Section 2 ), i.e., 
 

 

 

 

 

 

 

 

 

Q = − 1 
2 

Tr ( ̃  A 

2 ) 

X = − 1 
2 

Tr ( ̃  Z 

2 ) 

R = − 1 
3 

Tr ( ̃  A 

3 ) 

Y = − 1 
3 

Tr ( ̃  Z 

3 ) 

, 

As widely discussed in Section 2 these geometrical invariants 

re associated with the secular equations of the two gradient ten- 

ors. Under the requirement of zero divergence condition for the 

agnetic and velocity field lines the eigenvalue equations reduce 

o 

3 
v + λv Q + R = 0 , λ3 

B + λB X + Y = 0 , (45)

eing invariant expressions under SO(3) group transformations. 

Now, moving from the evolution equations of the two gradient 

ensors in Eqs. 44 we attempt a derivation and a discussion of the 

volution equations for these topological invariants. These equa- 

ions allow to descrive the Lagrangian evolution of the topology of 

he magnetic and velocity field lines in a transported plasma par- 

el, which is important as far as some paramount phenomena in 

lasma, i.e., the magnetic reconnection, etc., has to do with topo- 

ogical changes. 

Let us start with the derivation of the evolution equation for 

he quantity Q considering the expression 

˙ 
 = 

d 

dt 

[ 
−1 

2 

Tr 
(

˜ A 

2 
)] 
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c

[

i

f

s

o

n{

w

v

o  

E

= −1 

2 

d 

dt 

(
A 

i j A ji 

)
= 

= − − 1 

2 

(
˙ A 

i j A ji + 

˙ A 

ji A i j 

)
= − ˙ A 

i j A ji 

ow using the Eq. 41 in its homogeneous form, i.e., neglecting the 

oise term, we get 

˙ 
 = 

= 

{ (
˜ A 

2 
)i j −

[ 

Tr 
(

˜ A 

2 
)

−
Tr 

(
˜ �2 

)
2 ρ

] 

δi j 

3 

−
(

˜ � · ˜ Z 

)i j 

ρ

} 

A i j 

= 

(
˜ A 

2 
)i j 

A ji −
[ 

Tr 
(

˜ A 

2 
)

−
Tr 

(
˜ �2 

)
2 ρ

] 

Tr ̃  A 

3 

−
(

˜ � · ˜ Z 

)i j 

ρ
A ji 

= Tr 
(

˜ A 

3 
)

− 1 

ρ
Tr 

(
˜ � · ˜ Z · ˜ A 

)
= −3 R − 1 

ρ
�i j Z jk A 

k 
i . 

hen in the case ˜ H = 0 , 

˙ 
 + 3 R + 

1 

ρ
Tr 

(
˜ � · ˜ Z · ˜ A 

)
= 0 . (46) 

The same approach can be used to derive the evolution equa- 

ion for the other geometrical invariant of the velocity field. In de- 

ail, for the R quantity we get 

˙ 
 = Tr 

(
˜ A 

4 
)

− 4 

3 

Q 

2 −
Tr 

(
˜ �2 

)
3 ρ

Q −
Tr 

(
˜ � · ˜ Z · ˜ A 

2 
)

ρ
. (47) 

his equation contains a 4 th -power term of the velocity gradient 

ensor, which can be simplified using the Cayley-Hamilton theo- 

em, i.e., 

r 
(

˜ A 

4 
)

= Tr 
(
−Q ̃

 A 

2 − R ̃

 A 

)
. 

Thus, we have 

˙ 
 = 

2 

3 

Q 

2 −
Tr 

(
˜ �2 

)
3 ρ

Q −
Tr 

(
˜ � · ˜ Z · ˜ A 

2 
)

ρ
. (48) 

Now we proceed to derive the evolution equations of the topo- 

ogical invariants related to the magnetic field, X and Y , under the 

ypothesis of a negligible noise term, i.e., assuming that 

˙ ˜ 
 = 

[
˜ A , ̃  Z 

]
. 

In this peculiar situation we get trivial evolution equations for 

he magnetic field invariants. Indeed, for the X quantity we have 

˙ 
 = 

d 

dt 

(
−1 

2 

Tr 
(

˜ Z 

2 
))

= − ˙ Z i j Z 
ji 

= 

([
˜ Z , ̃  A 

])
i j 

Z ji 

= Tr 
(

˜ Z ̃

 A ̃

 Z 

)
− Tr 

(
˜ Z ̃

 A ̃

 Z 

)
= 0 , 

.e., 

˙ 
 = 0 . (49) 

n analogous equation can be recovered for the evolution equa- 

ion of the Y quantity, i.e., 

˙ 
 = 0 . (50) 

We can now resume the set of the evolution equations for the 

eometrical invariants when the noise terms can be neglected. In- 

eed, in the case of describing a fluid poit-like parcel the gradients 
7 
f P MHD , ˜ A and 

˜ Z are negligible. Thus, the evolution equations for 

eometrical invariants are homogeneous, i.e., 
 

 

 

 

 

 

 

 

 

˙ Q + 3 R + 

1 
ρ Tr 

(
˜ � · ˜ Z · ˜ A 

)
= 0 

˙ R − 2 
3 

Q 

2 + 

Tr ( ̃ �2 ) 
3 ρ Q + 

Tr ( ̃ �·˜ Z · ˜ A 2 ) 
ρ = 0 

˙ X = 0 

˙ Y = 0 

(51) 

his situation is equivalent to the case of a restricted Euleur evolu- 

ion equation for the magnetofluid, i.e. in the absence of viscosity 

nd dissipation. In the case of a more general situation, i.e., when 

oise terms are not negligible (i.e., ˜ H � = 0 and 

˜ � � = 0 ), we obtain 

 

 

 

 

 

 

 

 

 

 

 

 

 

˙ Q + 3 R + 

1 
ρ Tr 

(
˜ � · ˜ Z · ˜ A 

)
= −Tr 

(
˜ H · ˜ A 

)
˙ R − 2 

3 
Q 

2 + 

Tr ( ̃ �2 ) 
3 ρ Q + 

Tr ( ̃ �·˜ Z · ˜ A 2 ) 
ρ = −Tr 

(
˜ H · ˜ A 

2 
)

˙ X = −Tr 
(

˜ � · ˜ Z 

)
˙ Y = −Tr 

(
˜ � · ˜ Z 

2 
)

. (52) 

. Discussion 

In previous Sections we derived the evolution equations for the 

eometrical (topological) invariants of the gradient tensors of the 

elocity and magnetic fields in the framework of MHD description 

f plasmas. The results of our work are contained in the two sets of 

qs. 51 and 52 , which deal with homogenous and inhomogeneous 

ituations, respectively. 

These equations provide the evolution of magnetized fluid 

plasma) flow topologies, which experience the presence of a mag- 

etic field. If we compare these equations with the corresponding 

nes in the case of a neutral fluid (see Eqs. 3 ), we immediately 

ealize that in this case we have some extra terms related to the 

ffects of the magnetic field on the fluid. The extra terms are 

 

 

 

 

 

 

 

1 
ρ Tr 

(
˜ � · ˜ Z · ˜ A 

)
= − 1 

ρ ε i jh j h ∂ j B l ∂ 
l v i 

Tr ( ̃ �2 ) 
3 ρ Q = − 2 

3 ρ j 2 Q 

Tr ( ̃ �·˜ Z · ˜ A 2 ) 
ρ = − 1 

ρ ε i jh j h ∂ j B l ∂ 
l v k ∂ k v i 

. (53) 

hese terms are mainly related to electromagnetic force ( j × B ) 

tretching terms and a j 2 term, which act on the fluid velocity. 

ow strictly speaking these terms are themselves time dependent. 

ndeed, we can assume that they evolve along the point-like fluid 

arcel according to the evolution equations of gradient tensors, i.e., 

qs. 44 . As a first step in understanding the relevance of the dif- 

erent terms, let us assume that these terms are small, so that we 

an investigate the evolution of the velocity fluid structures in the 

 R, Q] plane by means of a dynamical systems approach consider- 

ng them as small perturbations. Clearly, at the present stage what 

ollows has to be considered only a toy model , requiring the under- 

tanding of the different terms a deeper discussion and analysis. 

Thus, under the above assumption and focusing our attention 

n the second term in Eq. 53 (i.e., the current term), the homoge- 

eous evolution equations, Eqs. 51 , can be written as 
 

˙ Q = −3 R 

˙ R = 

2 
3 

[
Q 

2 + βQ 

] , (54) 

here β does not depend on the velocity variables Q and R . 

Fig. 2 shows the evolution of the velocity gradient tensor in- 

ariants in the case of the restricted Euler equation and considering 

nly the effect of the term − 2 
3 ρ j 2 Q , i.e., β ≥ 0 (here β = j 2 /ρ) in

qs. 54 . In detail, we notice that, in the case of trajectories above 
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Fig. 2. Evolution of the velocity gradient tensor invariants in the case of the restricted Euler equation (left panel) and considering only the effect of the j 2 term (right panel) 

in the case of different starting values, [ R 0 , Q 0 ] = [ −20 , y ] with y ∈ [ −18 , −8] . For the study of the effect of j 2 term we have explored different values of β = 

j 2 

ρ ∈ [0 , 6 . 78] . 

In all cases the motion is from left to right. The black line is the discriminant line and the black circle is the critical value of β . 

Fig. 3. Dependence of the critical value of j 2 term ( j 
2 

ρ ) for which we observe this hyperbolic/elliptic/hyperbolic transition as a function of the maximum value Q max of the 

trajectory for zero j 2 term. The dashed red line is a power law fit. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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he discriminant line, the effect of the j 2 term is only to shift the

rajectories upward and make them clusterizing differently, thus 

ithout changing the character of the flow lines which remain spi- 

al saddles. Conversely, in the case of trajectories below the dis- 

riminant line we find that there is a critical value of the j 2 term

ffect for which the topology of the flow lines is changed from 

 tube/sheet like structure to ingoing/outgoing spiral saddles in a 

ertain interval of R -values during the evolution. This critical value 

f β∗ corresponds to the presence of an unstable saddle point in 

he correspondence of [ R ∗, Q 

∗] = [0 , −β∗] which can be simply de-

ived by a stability analysis of Eq. 54 (see Appendix A for more 

etails). 
t

8 
Figure 3 shows the dependence of the critical value 

f j 2 term effect ( j 
2 

ρ ) for which we observe this hyper- 

olic/helliptic/hyperbolic transition in the Lagrangian evolution of 

he structures in the [ R, Q] plane as a function of the maximum 

alue Q max of the trajectory for zero j 2 term. Thus, j 2 term effect 

s capable of modifying hyperbolic solutions of the invariants 

enerating elliptical structures and vice versa. Furthermore the 

ritical value of the j 2 term, 
(

j 2 /ρ
)∗

depends on the Q max of the 

rajectory in the case of no- j 2 term according to a power law. 

The situation is less clear if we consider the effect of the other 

wo terms, Tr 
(

˜ � · ˜ Z · ˜ A 

)
/ρ and Tr 

(
˜ � · ˜ Z · ˜ A 

2 
)
/ρ , neglecting the j 2 

erm effect. In this case and still assuming the homogeneous situ- 
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Fig. 4. Effect of a set of values of the two terms, Tr 
(

˜ � · ˜ Z · ˜ A 
)
/ρ and Tr 

(
˜ � · ˜ Z · ˜ A 2 

)
/ρ , on the trajectories for elliptical (left panel) and hyperbolic (right panel) structures 

neglecting the j 2 term, Tr 
(

˜ �2 
)

= 0 . The black line is the discriminant line. 

a

a  

e

t

t{
w

m

s

 

f

f

t

c

i

d

[

a

t

i

g  

p

t

t

H

a

a

i

v{

o

c

o

L{

w

t

E

t

o

t

s

w

t

C

t  

t

6

t

f

g

a

d

p

g

o

e

t

tion the Tr 
(

˜ � · ˜ Z · ˜ A 

)
/ρ is expected to be of the same order of ˜ A 

nd that Q is of the order of 
(

˜ A 

2 
)
. However, this has to be consid-

red a very crude approximation, whose validity has to be inves- 

igated by studying the trace terms of Eq. 53 by means of simula- 

ions or real situations. Thus, Eq. 54 becomes 

˙ Q = −3 R + α
√ | Q| 

˙ R = 

2 
3 

[
Q 

2 + βQ 

]
+ γ Q 

, (55) 

here we set β = j 2 /ρ = 0 , i.e., assuming a zero conductivity 

edium, and α and γ are two Q− and R −independent values as- 

ociated with Tr 
(

˜ � · ˜ Z · ˜ A 

)
/ρ and Tr 

(
˜ � · ˜ Z · ˜ A 

2 
)
/ρ , respectively. 

Fig. 4 shows the effect of a set of values of the other two terms

or elliptical and hyperbolic structures. There is a tendency to de- 

orm the original trajectories and depending on the distance from 

he discriminant line and from the values of these two terms we 

an assist to transition between the two main classes of solutions, 

.e., elliptic and hyperbolic solutions. Thus, in general, we have that 

ifferently from the case of the restricted Euler equation for fluid 

3] the action of the magnetic field on the velocity field can allow 

 significative change of the topology due to the forcing related 

o the electromagnetic force density and the j 2 term that appear 

n the evolution equations of Q and R . Conversely, in the homo- 

eneous case ( Eq. 51 ) the magnetic field invariants, X and Y , are

reserved inside a plasma parcel being rigidly transported along 

he plasma flow lines. 

In the inhomogeneous case the situation is less simple. Indeed, 

he presence of the two noise terms, associated with the tensors 
˜ 
 and 

˜ � introduces a non trivial evolution of both the velocity 

nd magnetic field invariants. We may note that for non-collisional 

nd non-resistive plasmas the expression of the two noise terms 

s essentially related to the total pressure and the gradient of the 

elocity and magnetic field gradient tensors, i.e., 

˜ H = −
(∇ � ∇ − 1 

3 
∇ 

2 
)(

P MHD 

ρ

)
+ 

1 
ρ B · ∇ ̃

 Z 

˜ � = B · ∇ ̃

 A 

. (56) 

Just to show the possible effect on the Lagrangian evolution 

f the topologies under the action of these noise terms in the 

ase of the velocity invariants, we have attempted an integration 

f the evolution equation that have written in terms of stochastic 
9

angevin equations, i.e., 

˙ Q = −3 R + 

√ 

α′ | Q| ζ B (t) + 

√ 

η1 ζ a (t) 
˙ R = 

2 
3 

Q 

2 + βQ + 

√ 

γ ′ Qζ B (t) + 

√ 

η2 ζ
b (t) 

, (57) 

here 

• α′ , β and γ ′ are the same quantities reported in Eq. 55 but that 

now assumes the role of a noise variance, 

• 
√ 

η1 ζ
a (t) and 

√ 

η2 ζ
b (t) are noise terms, 

• η = (η1 , η2 ) are noise variances and 

• ζ i are delta-correlated unit variance noises. 

We remark that in this case also the first and the third 

erm which depend on 

˜ Z , may acquire a stochastic character (see 

qs. 44 ). Fig. 5 shows some examples of the stochastic evolution 

hat we can get for different values of the noise variances. The 

bserved stochastic patterns evidenced how the presence of noise 

erms allows transitions between the different structures. This is- 

ue is extremely relevant in the case of turbulent plasma media, 

here the Lagrangian evolution of structures can imply substan- 

ial changes in the topology of the flow and magnetic field lines. 

learly, in this framework one of the main issues is to understand 

he relative relevance of the terms in Eqs. 51 and 52 and, in par-

icular, the statistics of the noise terms. 

. Summary and conclusions 

Here, we provide a theoretical derivation of the evolution equa- 

ions of the geometrical invariants of the gradient tensors in the 

ramework of MHD for both the homogeneous and the inhomo- 

eneous scenario, i.e., considering or neglecting dissipative effects 

nd source terms. Then, we provide a description of the Lagrangian 

ynamics of the velocity gradient tensor invariants in the [ R, Q] 

lane using a dynamical system approach. In the case of inhomo- 

eneous case the evolution equations have been described in terms 

f stochastic Langevin processes. 

One of the main results of our study is the evidence that, differ- 

ntly from the restricted Euler dynamics, also in absence of noise 

erms, i.e., dissipative and source terms, a dynamical transition be- 
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Fig. 5. Effect of the noise terms in the evolution of invariants for different values of the variances η = (η1 , η2 ) . Here, we set α′ = γ ′ = 0 . 025 and β = 1 . The black line is the 

discriminant line. 
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ween elliptic and hyperbolic structures, governed by the density 

f the current term j 2 , is still possible. Furthermore, understand- 

ng the role of the different terms in the evolution equations pro- 

ides a way of deducing information on the evolution of interplan- 

tary topological structures (e.g., coronal mass ejection (CME)), in 

heir propagation through the heliosphere, on structures involved 

n reconnection processes, on topological structures related to the 

ascade process across the inertial range, and so on. 

However, it is important to underline that the obtained theo- 

etical evolution equations provide additional information on the 

ain features of turbulent media in a complementary way to stan- 

ard approaches (spectral features and scaling properties). For in- 

tance, an estimation of the terms reported in Eq. 53 from real 

bservations, such as, in-situ multi-satellite measurements, can 

ive insights on the relevance of the effect of magnetic forces on 

lasma velocity structures, helping in a better classification of the 

ynamical features of the observed turbulence in space plasmas 

howing similar spectral and/or scaling features. 

t

10 
Some possible approaches to understand the relative 

ole/weight of the different terms in the topological invariants 

ould be the following: 

i) to study the relevance of the terms by means of numerical sim- 

ulations, 

ii) to study some real situations, such as, turbulence in the so- 

lar wind, in the Earth’s magnetosheath, in the Earth’s central 

plasma sheet, etc. 

Once we have a proper estimation of the different terms, we 

an attempt to integrate the above equations to get the evolution 

f the geometrical invariants and the associated topologies of the 

agnetic and velocity flow field lines. This is the target of a future 

ork that will be finalized in a further paper. 

Clearly, the theoretical study presented in this work needs to 

e expanded including a correct estimation of the different terms 

n the evolution equations of the gradient tensor invariants. These 

opics will be devoted to a forthcoming work. 
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ppendix A. Stability analysis of Eq. 54 

In this Appendix we discuss the stability analysis of Eq. 54 . We 

tart by the computation of the fixed points of Eq. 54 by posing 

˙ Q = 0 

˙ R = 0 

, (A.1) 

.e., we look for the solutions of the following system of equations, 

R = 0 

Q 

2 + βQ = 0 

. (A.2) 

his system has two simple solutions, 

P 0 ≡ [ R 

∗
0 , Q 

∗
0 ] = [0 , 0] 

P 1 ≡ [ R 

∗
1 , Q 

∗
1 ] = [0 , −β] 

, (A.3) 

hich are the two fixed points associated with the evolution equa- 

ions of R and Q . 

We now proceed by computing the stability of the two fixed 

oints. Thus, we compute the associated Jacobian matrix, 

 = 

[ 

∂ ̇ R 
∂R 

∂ ̇ R 
∂Q 

∂ ˙ Q 
∂R 

∂ ˙ Q 
∂Q 

. 

] 

(A.4) 

ow, we compute the determinant of the Jacobian matrix, || J|| , the 

race Tr (J) , the determinant 	 and the corresponding eigenvalues, 

1 , 2 , for the two fixed points obtaining, respectively, 

i) for P 0 , || J|| = +2 β , Tr (J) = 0 , 	 = −8 β and λ1 , 2 = ±i 
√ 

2 β , 

ii) for P 1 , || J|| = −2 β , Tr (J) = 0 , 	 = 8 β and λ1 , 2 = ±
√ 

2 β . 
11
Thus, because β = 

j 2 

ρ ≥ 0 we obtain that 

i) P 0 = [0 , 0] is a center with marginal stability and 

ii) for P 1 = [0 , −β] is an unstable saddle point. 

This explains why in correspondence of P 1 we can observe a 

ransition between hyperbolic and elliptic solutions. 
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