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Abstract. In piecewise smooth dynamical systems, a co-dimension 2 discontinuity manifold
can be attractive either through partial sliding or by spiraling. In this work we prove that both
attractivity regimes can be analyzed by means of the moments solution, a spiraling bifurcation
parameter and a novel attractivity parameter, which changes sign when attractivity switches
from sliding to spiraling attractivity or vice-versa. We also study what happens at what
we call attractivity transition points, showing that the spiraling bifurcation parameter is
always zero at those points.
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1. INTRODUCTION

Piecewise smooth dynamical systems play an important role in physics, engineering and
biological applications (e.g., see [1–3,5,6,16,20]), in particular when solution trajectories
approach a discontinuity manifold Σ. The case when Σ shows some attractivity features
is of major interest, meaning that nearby solutions are attracted, in forward time, by
Σ, and solution trajectories starting on Σ are forced to stay there, providing what is
called sliding motion. What happens in co-dimension 1 is well known (see [15]), and
there are extensive results about what happens on the intersection of two co-dimension
1 discontinuity manifolds, both from a theoretical (see, e.g., [7, 8, 10, 17, 18]) and from
a numerical (see, e.g., [13, 14, 19, 21]) point of view. In particular, we will focus our
attention on attractivity regime (see Definition 1.2 and Definition 1.5). As already
clarified in [12], this phenomenon could occur in two different ways: by attractivity
through sliding and attractivity through spiraling. Our aim here is to analyze what
happens on Σ when attractivity conditions switch from sliding regime to spiraling
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regime and vice-versa, and to fully characterize these scenarios by a single parameter,
depending on the dynamics projected on Σ.

The paper structure is as follows. In the Introduction we recall basic Filippov
first-order theory in co-dimension 1 and 2 and give definitions of attractivity through
sliding and through spiraling. In Section 2 we introduce a parameter, which we prove
can characterize the two kinds of attractivity by its sign, and prove the main results of
this paper; then, in Section 3 we exemplify our results through numerical simulations.
Finally, in Section 4 we propose future research directions.

1.1. THE PROBLEM

Let us consider a piecewise smooth differential system of the following type:

ẋ(t) = f(x(t)), f(x(t)) = fi(x(t)), x ∈ Ri, i = 1, . . . , 4, t ∈ [0, T ]. (1.1)

Here, the Ri ⊆ Rn are open, disjoint and connected sets, so that (locally) Rn =
⋃
Ri,

and on each region Ri the function f is given by a smooth vector field fi, which is
assumed to be well defined on Ri. Further, the regions Ri’s are separated by manifolds
defined as 0-sets of smooth (at least C 2) scalar functions hi:

Σi := {x ∈ Rn : hi(x) = 0}, i = 1, 2.

1.2. CO-DIMENSION 1 CASE

In this scenario, we are concerned with two regions separated by a manifold Σ defined
as the 0-set of a smooth scalar valued function h. One has the following system:

ẋ = f1(x), x ∈ R1, and ẋ = f2(x), x ∈ R2,

Σ := {x ∈ Rn : h(x) = 0}, h : Rn → R ,
(1.2)

where h is a C k function, with k ≥ 2, ∇h is bounded away from 0 for all x ∈ Σ, hence
near Σ, and (without loss of generality) we label R1 such that h(x) < 0 for x ∈ R1,
and R2 such that h(x) > 0 for x ∈ R2.

The interesting case is when trajectories reach Σ from R1 (or R2), and one has
to decide what happens next. To answer this question, it is useful to look at the
components of the two vector fields f1,2 orthogonal to Σ:

w1(x) := ∇h(x)>f1(x), w2(x) := ∇h(x)>f2(x), x ∈ Σ . (1.3)

Here, Σ is called attractive in finite time if for some positive constant c, we have

w1(x) ≥ c > 0 and w2(x) ≤ −c < 0, (1.4)

for x ∈ Σ and in a neighborhood of Σ. In this case, trajectories starting near Σ must
reach it, transversally, and remain there, giving rise to so-called sliding motion. A vector
field associated to sliding motion is called sliding vector field. Filippov proposal is to
take as sliding vector field on Σ a convex combination of f1 and f2, namely

fΣ := (1− α)f1 + αf2, (1.5)
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with α chosen so that fΣ ∈ TΣ (fΣ is tangent to Σ at each x ∈ Σ):

ẋ = (1− α)f1 + αf2, α = ∇h(x)>f1(x)
∇h(x)>

(
f1(x)− f2(x)

) . (1.6)

At the same time, Filippov theory also provides first order exit conditions: whenever
α = 0, respectively α = 1, one should expect to leave Σ and enter R1 with vector
field f1, respectively enter R2 with vector field f2.

It could also happen that w1(x) ≥ 0 and w2(x) ≥ 0, or w1(x) ≤ 0 and w2(x) ≤ 0,
situations which are referred to as crossing; or, lastly, it could be that w1(x) ≤ −c < 0
and w2(x) ≥ c > 0, for some positive constant c, which is referred to as repulsive
sliding motion.

1.3. CO-DIMENSION 2 CASE

Here, we are concerned with (1.1) where now the Ri’s are (locally) separated by two
intersecting smooth manifolds of co-dimension 1. That is, we have

Σ1 = {x : h1(x) = 0}, Σ2 = {x : h2(x) = 0},
h1, h2 : Rn → R, Σ = Σ1 ∩ Σ2,

(1.7)

and we will also use the following notation

Σ±1 = {x : h1(x) = 0, h2(x) ≷ 0}, Σ±2 = {x : h2(x) = 0, h1(x) ≷ 0}. (1.8)

We will always assume that h1, h2 are C k functions, with k ≥ 2, that ∇h1(x) 6= 0,
x ∈ Σ1, ∇h2(x) 6= 0, x ∈ Σ2, and further that ∇h1(x) and ∇h2(x) are linearly
independent for x on (and in a neighborhood of) Σ; also, without loss of generality,
let us assume that ∇h1 and ∇h2 always have unit 2-norm.

So, we have four different regions R1, R2, R3 and R4 with the four different smooth
vector fields fi, i = 1, . . . , 4, in these regions:

ẋ(t) = fi(x(t)), x ∈ Ri, i = 1, . . . , 4, (1.9)

and fi is assumed to be well defined on Ri, for i = 1, 2, 3, 4.
Without loss of generality, we will label these regions as follows (see Figure 1 for

a visualization of the proposed setting):

R1 : f1 when h1 < 0, h2 < 0, R2 : f2 when h1 < 0, h2 > 0,
R3 : f3 when h1 > 0, h2 < 0, R4 : f4 when h1 > 0, h2 > 0.

(1.10)
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Fig. 1. Problem setting

Moreover, we set
wji := ∇h>j fi, i = 1, 2, 3, 4, j = 1, 2.

Let us also set
W :=

[
w1

1 w1
2 w1

3 w1
4

w2
1 w2

2 w2
3 w2

4

]
, (1.11)

and, for i = 1, 2, 3, 4,

wi :=
[
w1
i

w2
i

]
. (1.12)

We highlight that, on each Σ±i , i = 1, 2, we can define the so-called sub-sliding vector
fields fΣ±

i
in an analogous way as in (1.5), (1.6). More specifically, we define

fΣ+
1

:= (1− αΣ+
1

)f2 + αΣ+
1
f4, αΣ+

1
(x) := ∇h1(x)>f2(x)

∇h1(x)> (f2(x)− f4(x)) , x ∈ Σ+
1 ,

fΣ−
1

:= (1− αΣ−
1

)f1 + αΣ−
1
f3, αΣ−

1
(x) := ∇h1(x)>f1(x)

∇h1(x)> (f1(x)− f3(x)) , x ∈ Σ−1 ,

fΣ+
2

:= (1− αΣ+
2

)f3 + αΣ+
2
f4, αΣ+

2
(x) := ∇h2(x)>f3(x)

∇h2(x)> (f3(x)− f4(x)) , x ∈ Σ+
2 ,

fΣ−
2

:= (1− αΣ−
2

)f1 + αΣ−
2
f2, αΣ−

2
(x) := ∇h2(x)>f1(x)

∇h2(x)> (f1(x)− f2(x)) , x ∈ Σ−2 .

For a more extensive treatise of the subject and a deeper insight on how to take over
the natural ambiguity in defining a dynamics on Σ, e.g. see [9–11].
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We will focus on the co-dimension 2 case, specifically when Σ attracts nearby
dynamics. Reasonable conditions, when dealing with attractivity of a co-dimension 2
discontinuity manifolds, require that projected vector fields wi as in (1.12) do not point
away from the sub-manifolds Σ±1,2 in their respective regions of interest Ri, i = 1, 2, 3, 4.
We are going to resort to sign pattern1) of suitable matrices, which is still denoted
by sgn.

Definition 1.1. Let N ⊆ Rn be an open set such that Σ ∩N 6= ∅. The discontinuity
manifold Σ satisfies the sign pattern conditions in N if

sgnwi(x) 6= sgn
[
h1(x)
h2(x)

]
, for x ∈ Ri ∩N, i = 1, 2, 3, 4. (1.13)

Attractivity regime for a discontinuity manifold Σ of co-dimension 2 can occur
in two distinct ways (see [12]): through sliding or through spiraling.

Definition 1.2 (Partial Nodal Attractivity, [12]). The discontinuity manifold Σ is
partially nodally attractive, or attractive through sliding at x0 ∈ Σ if there exists an
open neighborhood N of x0 such that:

(a) Σ satisfies sign pattern conditions (1.13) in N ;
(b) at least one of the following conditions is satisfied for all x ∈ Σ ∩N :

(1+) w1
4(x) < 0 < w1

2(x) together with (1+
a ): det

[
w2(x) w4(x)

]
< 0;

(1−) w1
3(x) < 0 < w1

1(x) together with (1−a ): det
[
w3(x) w1(x)

]
< 0;

(2+) w2
4(x) < 0 < w2

3(x) together with (2+
a ): det

[
w4(x) w3(x)

]
< 0;

(2−) w2
2(x) < 0 < w2

1(x) together with (2−a ): det
[
w1(x) w2(x)

]
< 0;

(c) if any of (1±) or (2±) is satisfied, then (1±a ) or (2±a ) must be satisfied as well.

We stress that, throughout this work, exit conditions from sliding on Σ are always
assumed to be first order and unambiguous (see [12]). This implies that, at potential
exit points, none of the fi’s put itself tangent to Σ, and also that one, and only one,
of the Filippov sub-sliding vector fields fΣ±

1,2
can also be tangent to Σ. We highlight

this in the following.

Assumption 1.3. For all x ∈ Σ, one and only one sub-sliding vector field fΣ±
1,2

on Σ±1,2 is directed outward with respect to Σ.

Example 1.4. Assumption 1.3 says that if, at some x ∈ Σ,

∇h2(x)>fΣ−
1

(x) < 0,

1) The sign pattern of a matrix is obtained by replacing each entry by its sign; see [4] for a complete
exposition of the subject.
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then it has to necessarily hold that

∇h2(x)>fΣ+
1

(x) < 0, ∇h1(x)>fΣ−
2

(x) > 0, ∇h1(x)>fΣ+
2

(x) < 0,

provided that all the vector fields above exist and are well defined, as given in (1.5)
(see also (1.6)). Analogous relations have to be valid if any other dynamics off Σ is
taking place on some sub-manifold different from Σ−1 .

Definition 1.5 (Spiral Attractivity, [7]). The discontinuity manifold Σ is said to be
clockwise attractive through spiraling, or clockwise spiraling attractive, (see Figure 2 (a))
at x0 ∈ Σ if there exists an open neighborhood N of x0 where the signs of Table 1
hold and, letting

µCW(x0) := w2
1(x0)w2

4(x0)w1
2(x0)w1

3(x0)
w1

1(x0)w1
4(x0)w2

2(x0)w2
3(x0) , (1.14)

we have
µCW(x0) < 1.

Similarly, we say that the sliding regime is counterclockwise attractive through spiraling,
or counterclockwise spiraling attractive (see Figure 2 (b)) at x0 ∈ Σ if there exists an
open neighborhood N of x0 where the signs of Table 2 hold and we have

µCCW(x0) < 1,

with µCCW(x0) := 1
µCW(x0) .

Table 1
Signs of matrix W in clockwise spiraling around Σ

Component i = 1 i = 2 i = 3 i = 4

w1
i w1

1(Σ−
1 ) > 0 w1

2(Σ+
1 ) < 0 w1

3(Σ−
1 ) > 0 w1

4(Σ+
1 ) < 0

w2
i w2

1(Σ−
2 ) < 0 w2

2(Σ−
2 ) < 0 w2

3(Σ+
2 ) > 0 w2

4(Σ+
2 ) > 0

Table 2
Signs of matrix W in counterclockwise spiraling around Σ

Component i = 1 i = 2 i = 3 i = 4

w1
i w1

1(Σ−
1 ) < 0 w1

2(Σ+
1 ) > 0 w1

3(Σ−
1 ) < 0 w1

4(Σ+
1 ) > 0

w2
i w2

1(Σ−
2 ) > 0 w2

2(Σ−
2 ) > 0 w2

3(Σ+
2 ) < 0 w2

4(Σ+
2 ) < 0
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Fig. 2. Clockwise (a) and counterclockwise (b)

Remark 1.6. The quantity µCW (resp. µCCW) is a bifurcation parameter for clockwise
(resp. counterclockwise) spiral attractivity. In fact, letting x(t) be solution to (1.9)
with some suitable initial condition, as long as for t > 0 we have x(t) ∈ Σ and

µCW(x(t)) < 1 (resp. µCCW(x(t)) < 1), (1.15)

then sliding motion on Σ persists; when instead a time t > 0 is reached and, at
x := x(t) ∈ Σ we have

µCW(x) = 1 (resp. µCCW(x) = 1), (1.16)

then Σ could cease to be attractive at the so-called potential exit point x, and sliding
motion on it, despite it would still exist, could become repulsive, and thus ill-posed if
µCW passes 1.

Now, for t > t, two cases could occur2): either µCW(x(t)) < 1 (resp.
µCCW(x(t)) < 1), and then sliding motion turns back to be well-posed; or
µCW(x(t)) > 1 (resp. µCCW(x(t)) > 1) and then, as observed in [7], dynamics would
leave Σ and would proceed in one of the Ri’s, with no qualitatively difference in the
resulting dynamics, following an outward spiraling regime for t− t sufficiently small.
Remark 1.7. Let us stress that only one attractive regime could occur on Σ; so, if Σ
is attractive through sliding at some point x0, then it cannot be attractive through
spiraling there, and vice-versa, as it can be deduced from definitions above.

Hereafter and before presenting the main results of the paper, without loss of
generality we assume the following.
Assumption 1.8. If N ⊆ Rn is an open set, with Σ ∩N 6= ∅, such that sign pattern
conditions (1.13) and attractivity, either through sliding or through spiraling, hold,
then every w ∈ conv {w1, w2, w3, w4}3) does not have zeros in N . In particular, both

wi(x) and
[
h1(x)
h2(x)

]
are different from 0R2 whenever x ∈ Ri ∩N , i = 1, 2, 3, 4.

2) The possibility that µCW(x(t)) = 1 (resp. µCCW(x(t)) = 1) in some small right neighborhood of
t > 0 is a trivial configuration.

3) This set is defined as the convex hull of the four vectors wi, i = 1, 2, 3, 4.
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Remark 1.9. Assumption 1.8 guarantees that condition (b) in Definition 1.2 is
satisfied and parameters µCW, µCCW from (1.14) in Definition 1.5 are always well
defined whenever x belongs to a neighborhood of Σ where sign pattern conditions
(1.13) and attractivity hold.

2. ANALYSIS OF TRANSITION FROM ATTRACTION THROUGH SLIDING
TO ATTRACTION THROUGH SPIRALING, OR VICE-VERSA

Our interest in this section is to study what happens when attractivity switches from
a sliding regime to spiraling regime, and vice-versa, a situation in which sliding motion
remains well-defined as long as attractivity holds. It is well known (see [10,11]) that
the moments Filippov sliding vector field automatically detects first order exit points
in attractivity through sliding, and it remains well defined also during attractivity
through spiraling. We recall that it is defined as

fM(x) =
4∑

i=1
λM,i(x)fi(x), x ∈ Σ,

where λM (x) is the unique solution to



W (x)
1>

d(x)>


λ =




0
0
1
0


 , x ∈ Σ, (2.1)

where 1 :=
[
1 1 1 1

]> and

d(x) :=
[
‖w1(x)‖ −‖w2(x)‖ −‖w3(x)‖ ‖w4(x)‖

]>
, x ∈ Σ.

The vector λM (x) is said to be admissible (resp. strictly admissible) if λM,i(x) ≥ 0
(resp. λM,i(x) > 0), i = 1, 2, 3, 4, and λM (x) depends smoothly on x ∈ Σ.

Let us also recall that, differently from exit points in sliding attractivity regime,
in spiraling attractivity exits from Σ are not tangential. This implies that we cannot
expect (2.1) to provide any criterion to detect exit points when spiraling attractivity
ceases, as it happens in the sliding attractivity case. In fact, since at an exit point
dynamics could follow any of the fi’s, i = 1, 2, 3, 4 (see [7]), then there must exist
a unique i = 1, 2, 3, 4 such that λi = 1, while λj = 0 for j 6= i. This in turn implies,
from (2.1), that wi = 0, which does not occur.

We introduce a concept useful for studying what happens when attractivity passes
from sliding regime to spiraling regime or vice-versa. In what follows, for r > 0 and
x0 ∈ Rn, let Br(x0) be the ball centered at x0 of radius r.

Definition 2.1. We say that x0 ∈ Σ is an attractivity transition point if and only if
for any ε > 0 there exist x1, x2 ∈ Bε(x0) ∩ Σ \ {x0} such that Σ is attractive through
sliding at x1 and attractive through spiraling at x2.
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In order to analyze what happens at attractivity transition points, we define,
for all x ∈ Rn where the wi’s are well-defined,

φ(x) := min{w2
1(x)w2

2(x), w1
2(x)w1

4(x), w2
4(x)w2

3(x), w1
3(x)w1

1(x)}. (2.2)

Let us note that φ(x) is continuous on Σ.
We are now ready to prove the main results of this paper.

Theorem 2.2. Let x0 ∈ Σ and let N ⊆ Rn be an open neighborhood of x0 such that
Σ satisfies sign pattern conditions (1.13) in N . Then the following characterizations
hold:
(a) Σ is clockwise attractive through spiraling at x0 if and only if φ(x0) > 0 and

µCW(x0) < 1;
(b) Σ is counterclockwise attractive through spiraling at x0 if and only if φ(x0) > 0

and µCCW(x0) < 1;
(c) Σ is attractive through sliding at x0 if and only if φ(x0) ≤ 0 and λM (x0) is strictly

admissible.
Proof. (a) If Σ is attractive through spiraling, then simple computations from Table 1
and Table 2 show that each product in right-hand side of (2.2) is strictly positive,
implying that φ(x0) > 0 and µCW(x0) < 1.

If φ(x0) > 0 and µCW(x0) < 1, then, without loss of generality, let us assume that
minimum in (2.2) is attained by w2

1(x0)w2
2(x0). Let us examine the case

w2
1(x0) > 0, w2

2(x0) > 0;

the other one is analogous.
Let us first notice that it is necessary to have

w1
2(x0) > 0,

otherwise condition (1.13) would be violated. As a consequence

w1
4(x0) > 0,

and thus it must also be
w2

4(x0) < 0,
otherwise condition (1.13) would not hold.

Now, if by contradiction w1
1(x0) > 0, therefore w1

3(x0) > 0, since by definition it
holds that w1

3(x0)w1
1(x0) ≥ φ(x0) > 0. The case w2

3(x0) < 0 is ruled out by condition
(1.13), and therefore w2

3(x0) > 0, implying w2
4(x0) > 0. Again, w1

4(x0) > 0 would
violate condition (1.13) and so it must be w1

4(x0) < 0; but then w1
2(x0)w1

4(x0) < 0,
which is not the case since φ(x0) > 0. Then, it follows that

w1
1(x0) < 0,

from which
w1

3(x0) < 0.
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Thus, it must also be

w2
3(x0) < 0,

otherwise w2
3(x)0w

2
4(x0) < 0, which is not allowed since φ(x0) > 0.

Looking at Table 2, we conclude that φ(x0) > 0 implies counterclockwise spiraling
attractivity for Σ.

If w2
1(x0) < 0, w2

2(x0) < 0, then with similar arguments clockwise spiraling attrac-
tivity would be inferred.

All other cases are completely analogous.
(b) Proof goes analogously as in previous point.
(c) If Σ is attractive through sliding at x0, then it is not attractive through spiraling

at x0, as observed in Remark 1.7, so that φ(x0) ≤ 0 from previous point.
On the other hand, if φ(x0) ≤ 0 and λM (x0) is strictly admissible, then let us

assume minimum is attained at w2
1(x0)w2

2(x0). We analyze separately the two cases
w2

1(x0)w2
2(x0) < 0 and w2

1(x0)w2
2(x0) = 0.

If w2
1(x0)w2

2(x0) < 0, then two scenarios can occur: the first is w2
2(x0) < 0 < w2

1(x0),
the other w2

1(x0) < 0 < w2
2(x0).

In the first scenario sliding motion on Σ−2 occurs: if ∇h1(x0)>fΣ−
2

(x0) < 0, then x0

is an exit point from Σ, and the third and fourth components of λM (x0) are negative (see
[10], Theorem 2.4), which is not the case. Therefore, it must be ∇h1(x0)>fΣ−

2
(x0) > 0,

which is equivalent, after some computations, to (2−a ) in Definition 1.2. Similar
arguments hold for w3(x0) and w4(x0), so that attractivity through sliding is proven
on Σ at (x0).

In the second scenario, repulsive sliding motion is taking place on Σ−2 , so let us
look at w3(x0) and w4(x0). On the account on Assumption 1.3, it cannot be that
both ∇h2(x0)>fΣ−

1
(x0) < 0 and ∇h2(x0)>fΣ+

1
(x0) > 0, so that either one holds or

none of them. In the first case, x0 would represent a first-order exit point from Σ, and
again λM (x0) would have its second and fourth components negative, against its strict
admissibility. In the second case, condition (1−a ) would hold, providing attractivity
through sliding.

If w2
1(x0)w2

2(x0) = 0, then let us assume w2
1(x0) = 0. Therefore, by (1.13),

w1
1(x0) > 0, and then, by strict admissibility of λM (x0), it follows w2

3(x0) > 0. Now,
if w1

3(x0) < 0, straightforward computations provide (1−a ), which proves attractivity
through sliding of Σ at x0; otherwise, there would be crossing on Σ−1 , and we need
to look at what happens on Σ+

2 . If attractive sliding motion occurs on it, then (2+
a )

would hold, and the claim would be proven. If not, only crossing would be allowed by
strict admissibility of λM (x0). Same could be said about Σ+

1 : either (1+
a ) is fulfilled,

or there is crossing on it. In this last case, again resorting to strict admissibility of
λM (x0), the only possibility is that (2−a ) holds, thus proving the claim.

Corollary 2.3. Let x0 ∈ Σ and let N ⊆ Rn be an open neighborhood of x0 such that
Σ satisfies sign pattern conditions (1.13) in N . If x0 ∈ Σ is an attractivity transition
point then φ(x0) = 0; in particular, Σ is attractive through sliding at x0.
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Proof. The fact that φ(x0) = 0 is a simple consequence of Bolzano’s theorem
(see [22]); thus, resorting to Theorem 2.2 yields that Σ is attractive through sliding at
x0, and the claim is proven.

Corollary 2.4. Let x0 ∈ Σ and let N ⊆ Rn be an open neighborhood of x0 such that
Σ satisfies sign pattern conditions (1.13) in N . If x0 is an attractivity transition point
then either µCW(x0) = 0 or µCCW(x0) = 0.

Proof. From Definition 2.1, given an arbitrary ε > 0 there exist x1, x2 ∈ Bε(x0) ∩ Σ \
{x0} such that Σ is attractive through sliding at x1 and attractive through spiraling
at x2. Without loss of generality, let us assume Σ to be clockwise spirally attractive at
x2; the counterclockwise case will go completely analogous.

By smoothness ofW (x) in Bε(x0), we could then deduce that signs of Table 1 apply
to x0, possibly with large inequalities instead of strict ones. Also, on the account of
Corollary 2.3, we have φ(x0) = 0. If, without loss of generality, the minimum in (2.2) is
attained by w2

1(x0)w2
2(x0) = 0, then let us note that it cannot be w2

2(x0) = 0, otherwise
Σ would be counterclockwise spirally attractive around x0, which is not the case; so it
must be w2

1(x0) = 0. As a consequence and on the account of Assumption 1.8, it must
also be w1

1(x0) > 0; moreover it cannot be w2
3(x0) = 0, so that we have w1

3(x0) ≥ 0
and w2

3(x0) > 0. With completely analogous arguments, we deduce that w1
4(x0) < 0,

w2
4(x0) ≥ 0, w1

2(x0) ≤ 0 and w2
2(x0) < 0. Therefore µCW(x0) is well defined and

µCW(x0) = 0, which proves the claim.

Remark 2.5. Let us highlight that when a given dynamics, solution to (1.9) with
an assigned initial conditions x(0) = x0 ∈ Rn, reaches Σ at some t > 0, that is
h1(x(t)) = h2(x(t)) = 0, then Theorem 2.2 allows to leverage parameters φ, µCW or
µCCW and the moments solution λM to check for attractivity on Σ, instead of checking
conditions in Definition 1.2 and Definition 1.5. Thus, if moments sliding vector field is
selected on Σ when attractivity holds, applying Theorem 2.2 simplifies attractivity
condition checking while dynamics is integrated on Σ.

Further, let us stress that while results in [10] provide sufficient conditions regarding
admissibility of moments solution, Theorem 2.2 provides also necessary conditions
for it.

3. NUMERICAL SIMULATIONS

In this section, we exemplify on theoretical results obtained in previous section.
We stress that examples below are not meant to analyze dynamical properties of the
unique solution to (1.9) when it is assigned a specific initial condition; instead, they
show the numerical behaviors of Theorem 2.2, Corollary 2.3 and Corollary 2.4 and
their usefulness in easily detecting when attractivity switches from sliding regime to
spiraling regime or vice-versa.

It is worth stressing that both Assumption 1.3 and Assumption 1.8 are satisfied in
examples below, as well as sign pattern conditions (1.13).
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Example 3.1. Let us consider (1.9) with initial condition x(0) = x0, for some x0 ∈ R3,
and let fi(x(t)) be such that they provide nodal attractivity through sliding at x0 at
t = 0, and then they suitably rotate, for t > 0, until partial nodal attractivity first
and eventually attractivity through spiraling hold on Σ, as explained below.
First, let us assume that

f1(x0) :=




1
1
1


 , f2(x0) :=




3
2
−1
1


 ,

f3(x0) :=



−5
1
1


 , f4(x0) :=



− 1

5
−1
1


 ,

so that, with Σ1 and Σ2 defined by h1(x) := x1, h2(x) := x2 respectively, from (1.11)
it follows that

W (x0) =
[
1 3

2 −5 − 1
5

1 −1 1 −1

]
,

and Σ is (nodally) attractive through sliding at x0. Now, defining

R(θ) :=
[
cos θ − sin θ
sin θ cos θ

]
, (3.1)

we assume that for t ∈
[
0, π2

]
the projected dynamics around x(t) is given by

w1(x(t)) = R(t)w1(x0), wi(x(t)) = wi(x0), i = 2, 3, 4.

Let us note that at t1 ≈ 1.3 sliding motion on Σ−1 ceases to exist, while attractivity
for Σ is preserved in the sense of Definition 1.2.

Then, for t ∈
[
π
2 , π

]
we assume that

w2(x(t)) = R
(
t− π

2

)
w2(x0), wi(x(t)) = wi

(
x
(π

2

))
, i = 1, 3, 4.

Now, at t2 ≈ 3.5 sliding motion on Σ−2 disappears, but Σ is still partially nodally
attractive.

For t ∈
[
π, 3

2π
]
the projected dynamics is assumed to evolve according to

w4(x(t)) = R (t− π)w4 (x0) , wi(x(t)) = wi(x(π)), i = 1, 2, 3.

At t3 ≈ 5.4 sliding on Σ+
2 disappears and Σ still retains partially nodal attractivity.

For t ∈
[ 3

2π, 2π
]
we assume to have

w3(x(t)) = R

(
t− 3

2π
)
w3 (x0) , wi(x(t)) = wi

(
x

(
3
2π
))

, i = 1, 2, 4.

At t4 ≈ 7.8 the projected dynamics has reached an attractivity transition point, and
attractivity regime switches from sliding to spiraling: here, as depicted in Figure 3,
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we have µ(x(t4)) = φ(x(t4)) = 0, a behavior expected according to Corollary 2.3 and
Corollary 2.4. In agreement with Theorem 2.2, φ(x(t)) > 0 for t > t4: now spiral
attractivity holds around Σ, and such a regime persists until t ≈ 8.2, when µ = 1,
and after which attractivity becomes ill-posed; at this point, dynamics should leave Σ
following either of the fi’s, i = 1, 2, 3, 4.

Let us note that µ(x) could get positive, negative and zero values during sliding
attractivity. Moreover, we can not expect φ(x) to be more than continuous, as clear
from Figure 3.

Fig. 3. Plots of φ(x) and µ(x) relative to Example 3.1. Black circle at time t4 ≈ 7.8 represents
the time at which φ = µ = 0, that is where dynamics has reached an attractivity transition

point from sliding to spiraling attractivity

Further, in Figure 4 it can be noticed how moments solution components remain
well defined even where µ ≥ 1, that is when spiraling sliding motion ceases to be
attractive. Lastly, let us observe here that, since vector fields fi(x), i = 1, 2, 3, 4, lie on
the plane x3 = 1 for all x ∈ Σ, then the resulting sliding vector field is fΣ =

[
0 0 1

]>,
and it is independent on the particular convex combination chosen to determine it.
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Fig. 4. Plots of moments solution components relative to Example 3.1. It can be appreciated
here that, as expected, these components are as smooth as W (x) and stay between 0 and 1

even for t > 8.5, that is when µ > 1

Example 3.2. Let us again consider (1.9) with initial condition x(0) = x0, for some
x0 ∈ R3, and let us again assume that the fi(x(t))’s, i = 1, 2, 3, 4, suitably rotate from
a regime of counterclockwise spiral attractivity at x0 to sliding attractivity, until it
eventually ceases to hold, as detailed below. First, let us set, at t = 0,

f1(x0) :=



− 1

2
1
1


 , f2(x0) :=




1
1
1


 ,

f3(x0) :=



−1
−1
1


 , f4(x0) :=




1
−1
1


 ,

so that, with Σ1 and Σ2 defined by h1(x) := x1, h2(x) := x2 respectively, from (1.11)
it follows that

W (x0) =
[
− 1

2 1 −1 1
1 1 −1 −1

]
,



A note on attractivity for the intersection of two discontinuity manifolds 699

and Σ is counterclockwise spirally attractive at x0. For t > 0 we assume that

w2(x(t)) = R(t)w2(x0), wi(x(t)) = wi(x0), i = 1, 3, 4,

where R(t) is the rotation matrix defined in (3.1). It then can be seen that at t1 ≈ 3.7
attractivity regime around Σ switches from spiraling attractivity to sliding attractivity,
as clear from Figure 5. At this attractivity transition point the function φ(x(t)),
which was non-negative for t ∈ [0, t1], becomes zero and then changes sign together
with µ(x(t)).

For t > t1, sliding motion on Σ takes place, which remains well defined until t2 ≈ 9,
when the moments solution components λM,3 and λM,4 become negative, providing
a smooth exit point on Σ (see [10]), with a sliding motion on Σ−2 .

Let us stress that we have again chosen vector fields lying on the plane x3 = 1
for all x ∈ Σ, so that the resulting sliding vector field is independent on the convex
combination of the four fi’s, i = 1, 2, 3, 4. In fact, what matters here is the behavior of
λM (x), as x ∈ Σ, rather than the selected Filippov sliding vector field on Σ, in order
to analyze and check which kind of attractivity is occurring during sliding motion.

Fig. 5. Plots of φ(x) and µ(x) relative to Example 3.1. Black circle at time t1 ≈ 3.7 represents
the time at which φ = µ = 0, that is where dynamics has reached an attractivity transition

point from spiraling to sliding attractivity
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Fig. 6. Plots of moments solution components relative to Example 3.2. These components
are as smooth as W (x) and stay between 0 and 1 for t ∈ [0, t2]; at t = t2 dynamics reaches
an exit point on Σ, and keeps evolving according to the unique sliding motion on Σ−

2 given
by fΣ−

2
, since third and fourth components turn negative at t2

4. CONCLUSIONS AND FUTURE WORKS

We have introduced a new parameter which is useful, together with moments vector
λM solution of (2.1) and µCW, or µCCW, as in (1.14), to characterize attractivity for
a co-dimension 2 discontinuity manifold in piecewise smooth differential systems: this
parameter is non-positive whenever Σ is attractive through sliding and is positive when
it is attractive through spiraling, becoming continuously zero when attractivity regime
is at an attractivity transition point. Moreover, we have proven that, at attractivity
transition points, the spiraling bifurcation parameter introduced in [7] becomes zero
as well. We have then exemplified our construction with some examples, corroborating
results and definitions proposed in the paper.

As future research directions, we want to leverage the parameter φ to explore
attractivity in co-dimension higher than 2, and prove that moments solution still
remains well defined in these settings, extending results is [11] to cover all possible
cases under attractivity conditions. Further, since Theorem 2.2 is easier to verify than
Definition 1.2 and Definition 1.5 for checking attractivity on a co-dimension 2 manifold,
it can be used within numerical solvers for discontinuous ODEs in order to simplify
their implementation.
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