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Abstract: Systems of particles interacting with long range interactions present generically ”quasi-stationary states”
(QSS), which are approximately time-independent out of equilibrium states. In this proceedings, we explore
the generalization of the formation of such QSS and their relaxation from the much studied case of gravity
to a generic pair interaction with the asymptotic form of the potential v (r) ∼ 1/rγ with γ > 0 in d dimensions.
We compute analytic estimations of the relaxation time calculating the rate of two body collisionality in a
virialized system approximated as homogeneous. We show that for γ < (d − 1)/2, the collision integral is
dominated by the size of the system, while for γ > (d − 1/2), it is dominated by small impact parameters.
In addition, the lifetime of QSS increases with the number of particles if γ < d − 1 (i.e. the force is not
integrable) and decreases if γ > d − 1. Using numerical simulations we confirm our analytic results. A
corollary of our work gives a ”dynamical” classification of interactions: the dynamical properties of the
system depend on whether the pair force is integrable or not.
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1. Introduction

Long range interacting particle systems are usually de-
fined (see e.g. Ref. [1]) such that the interparticle po-
tential v (r) is not integrable because of its large scale
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behavior, i.e., in d dimensions

lim
R→∞

∫ R
ddr v (r) → ∞. (1)

It implies that asymptotically v (r) behaves as

v (r → ∞) ∼ 1
rγ , (2)

with γ < d. There are many such systems in nature, like
gravitational ones, two-dimensional vortices, cold atoms,
etc. Using an appropriate N → ∞ prescription (see Sec-
tion 2 for a discussion about the different prescriptions to
perform this limit), it is possible to compute the thermal
equilibrium properties of this systems [2]. They present
unusual features compared to short range systems, like
ensemble inequivalence, negative specific heat in the mi-
crocanonical ensemble, non-homogeneous spatial distri-
butions, etc.
However, on the timescales of typical interest (e.g. the
formation and evolution of galaxies in astrophysics), the
system has usually not reached thermal equilibrium [3].
Actually, the scenario of their evolution is peculiar com-
pared to short range systems: in a characteristic time τmf,
there is the generic formation of long lived states which
are not in thermal equilibrium, called Quasi Stationary
States (hereafter QSS), and in a much longer timescale
τcoll, the relaxation towards thermal equilibrium. For ex-
ample, for a gravitational system in d = 3 dimensions,
if we choose our units in such a way that τmf ∼ 1, then
τcoll ∼ N/ log(N). Indeed, in the N → ∞ limit, the sys-
tem becomes mean field and it remains trapped in the
QSS (which becomes stable). Finite N effects are totally
suppressed, which are the mechanism (as in short range
systems) which lead the system to thermal equilibrium [3].
The appropriate equation to describe such systems is the
Boltzmann equation

∂f
∂t + v(r, t) · ∂f

∂r + F[f ] · ∂f
∂v = CN [f ], (3)

where f (r, v, t) is the one-point distribution function, i.e.,
the probability to find a particle at the position r with
velocity v at time t. The term F[f ] is the mean field force
which, for an interaction potential of the form (2), is

F[f ] = g
∫ f (r′, v, t)

|r − r′|γ+2 (r − r′)dr′dv. (4)

In order that a mean-field (or collisionless limit) exist —
which leads to the scenario described above — the r.h.s.
of Eq. (3) should satisfy

lim
N→∞

CN [f ] = 0, (5)

where the prescription to perform the limit will be de-
scribed in Section 2. Under this hypothesis, the l.h.s.
of Eq. (3) describes the N → ∞ dynamics of the sys-
tems (the mean-field part), while the r.h.s. finite N effects
(which is commonly called “collision term”). In this limit,
the Boltzmann equation is called Vlasov equation. It be-
comes apparent at this stage that the limits t → ∞ and
N → ∞ do not commute: the limit t → ∞, N → ∞ leads
the system to thermal equilibrium, while N → ∞, t → ∞
maintains the system in the QSS forever.
In this proceedings we explore the conditions under which
the condition (5) is satisfied (and, more specifically, how
it depends on the exponent γ of the power law of the
interaction potential (2)). It would depend on the colli-
sional dynamics described by the term CN [f ], which is in
general a very complicated function of the N-point parti-
cle density. It is assumed, (e.g. Ref. [3]), however, that its
dominant contribution comes from two body collisions. We
will use this assumption when estimating the collisional
relaxation rate in Section 3.
At this point, we would remark that in long range inter-
acting systems, QSS exist because τmf ≪ τcoll, which is
a dynamical property of the system. However, the defini-
tion of long range interacting systems (1) is based on the
integrability property of the interaction potential, which
is not directly related to the dynamics. For instance, the
integrability condition for the force is γ > d−1 in Eq. (2),
which is not the same than the one for the potential. As
the dynamics is related to the force, we can suspect that
the existence of the QSS would be conditioned by the
non-integrability of the force. We will provide evidence
in this proceedings that it is indeed the case, which will
lead to a dynamical classification of interactions.
In this proceedings we present an extension of Ref. [4].
It is structured as follows: in the next section we will
describe the appropriate N → ∞ limit for long range in-
teracting systems. In the next section we will describe a
generalization of the Chandrasekhar approach to estimate
the collisional relaxation rate of particle systems interact-
ing with the potential (2). Using the scaling dependence
of this estimate, we will present a dynamical classifica-
tion of interacting systems, and show numerical evidence
of our results. We will then give some conclusions and
directions which we would like to investigate in future.

2. The N → ∞ limit in long range
systems
In order to study the thermal equilibrium properties of a
system of interacting particles, the important quantity to
keep constant performing the infinite N limit (up to finite
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N effects), is the (potential) energy of the particles, in
order that the total energy is extensive. Let us compute
the potential energy ϕ per particle of a particle located
inside a sphere of radius R with typical density n0 and
interaction potential (2):

ϕ ∼
∫ R

ℓ
ddrn0

g
rγ ∼ gn0

(
Rd−γ − ℓd−γ)

, (6)

where we have approximated a sum over all the particles
by an integral, and ℓ is some small characteristic scale.
For short range systems (γ > d), Eq. (6) is dominated
by the second term of its r.h.s. In this case, the limit
N → ∞ is performed taking V → ∞ and keeping N/V =
constant, where V is the volume of the system. This is
an appropriate manner to perform the limit because the
scale ℓ is kept invariant performing the limit, and hence
the potential energy ϕ remains constant (up to finite N
effects). For long range systems, the integral is dominated
by the first term of the r.h.s. If the limit is performed in
the same way1, the potential energy ϕ diverges with N ,
as we can explicitly see using that R ∝ N1/d in Eq. (6).
Then:

ϕ ∼ gn0N1−γ/d. (7)

The usual way to overcome this problem (see e.g Ref. [1])
consists in scaling the coupling constant with an appro-
priate power of the volume or, equivalently, of the number
of particles:

g → gn0Nγ/d−1. (8)

This is an extension of the Kac prescription [6], and some-
times also called the dilute limit. The energy becomes
then extensive. However, if we are interested in the dy-
namics of the system, the force should be independent of
N (up to finite size effects). The typical force f is:

f ∼
∫ R

ℓ
ddrn0

g
rγ+1 ∼ gn0

(
Rd−γ−1 − ℓd−γ−1)

. (9)

If we use the rescaling of the coupling constant (8), the
force (9) becomes

f ∼ n0N−1/d, (10)

1 In the case of an infinite system, the problem is more
subtle. One has to subtract the contribution to the force
and to the potential of the average distribution (the so-
called Jeans swindle). For a detailed analysis of the prop-
erties of the convergence of the force, see Ref. [5].

and then in the infinite N limit,

lim
N→∞

f = 0, (11)

which means that the dynamics disappears. If one decides
to scale the coupling constant with N in such a way that
the force (9) becomes independent of N , then the poten-
tial would be badly defined, and the system would relax
to a badly defined configuration. The conclusion of this
analysis is that it is not possible to find an appropriate
scaling of the coupling constant which makes the potential
and the force independent on N at the same time, when
we scale the system with the procedure given above2.
In this work, we will consider the so-called Vlasov limit,
in which the N → ∞ limit is taken keeping R constant. It
corresponds exactly to the limit in which, for gravitational
systems, the relation (5) holds, maintaining constant the
mean-field dynamical time τmf. In this limit, it is possible
to rescale g in such a way to maintain both the typical
potential and force independent of N , for any value of
γ. The physical meaning of this limiting procedure is the
following: imagine a QSS with fixed typical size R (e.g.
a galaxy) which we would like to describe more and more
precisely, with larger and larger number of particles. Let
us compute the typical energy and force over a particle i:

ϕi = g
N∑

j ̸=i

1
|ri − rj |α

∝ gN , (12a)

fi = g
N∑

j ̸=i

ri − rj

|ri − rj |α+2 ∝ gN. (12b)

Because the size of the system is fixed, both sums are
proportional to the number of terms in the sum. In order
to both the potential and the force be independent of N
it suffices to scale the coupling constant using

g → g
N . (13)

2 Note that this is not the case for systems of spins on
a lattice, such as the so-called α − HMF and related
models [1], in which the potential and the force decay
with the same power of the distance, by construction of
the model.
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3. A generalization of the Chan-
drasekhar estimate of the relaxation
rate
Chandrasekhar introduced a very successful way to esti-
mate the relaxation rate in gravitational systems [7]. We
will summarize below the main ingredients, including also
an improvement which takes into account the boundaries
of the system, similar to the one due to Hénon [8].
Consider a homogeneous system of particles, in which a
test particles crosses the system in a typical time τmf. Let
us begin our analysis studying the scattering of the test
particle with another particle with impact factor b, for the
well-known case γ = 1 (which corresponds to Rutherford
scattering). The change in velocity of the test particle
because of multiple scattering will give rise to a random-
ization of the velocities, which is assumed to be the dom-
inant relaxation process towards thermal equilibrium. It
has been shown (see e.g. Ref. [3]), that the main contri-
bution to the change of the velocity is the perpendicular
component of the relative velocity V0 between the two par-
ticles. Assuming that the particles have the same mass m,
a simple calculation gives (e.g. Ref. [3]):

|∆v⊥| = 2mbV 3
0 /g

1 +
(
mbV 2

0 /g
)2 , (14)

where V0 = |V0|. There is a natural cutoff for small impact
factors at

bmin = g
mV 2

0
. (15)

A very good approximation to Eq. (14) consists in using
the so-called weak collision approximation

|∆v⊥| ≃ 2g
mbV 2

0
(16)

and neglecting the collisions with impact factor b < bmin.
It is not possible to calculate analytically a generalization
of Eq. (14) for any γ ̸= 1, but it is possible to obtain a gen-
eralization of the Chandrasekhar estimate using the weak
collision approximation and a cutoff for the minimal impact
factor. Such a generalization is computed assuming that
the collision is sufficiently weak in order the deflection of
the test particle to be negligible. The component of the
force perpendicular to the trajectory can be calculated as

F⊥ = γgb
(b2 + x2)γ/2+1 = γg

bγ+1

[
1 +

(
vt
b

)2
]−(γ/2+1)

, (17)

where we have assumed in the last equality that the par-
ticle velocity is constant. By Newton’s law, we have

0.1 1 10 100 1000
x

0.01

1

100

y

PSfrag replacements
b/bmin

|∆v⊥|/γV0

Figure 1. Numerical computation of |∆v⊥| after a collision, for γ =
1/2 (plain curve), γ = 1 (dashed curve) and γ = 3/2
(dashed-dotted curve). The weak collision approximation
for each case is represented with dotted lines, which co-
incides perfectly with the exact calculations for b ≫ bmin.

|∆v⊥| =
∫ ∞

−∞
dt F⊥

m =
∫ ∞

−∞
dt γg

mbγ+1

[
1 +

(
vt
b

)2
]−(γ/2+1)

= γg
mbγv

∫ ∞

−∞
ds(1 + s2)−(γ/2+1). (18)

In Eq. (18) the integration limits are approximated to s =
vt/b = ±∞ (instead of being s ≃ ±R/b, where R is the
size of the system), in order to be able to compute the
integral analytically. This is a very good approximation if
b ≪ R (which is typically the case), because the integral
converges rapidly. Performing the integration we obtain:

|∆v⊥| ≃ Aγg
mvbγ , (19)

with

Aγ = γ
√

π
Γ

(
1+γ

2

)

Γ
(
1 + γ

2
) , (20)

if γ ≠ 1. The cutoff is now at

bmin =
(

mV 2
0

g

)1/γ

. (21)

We checked numerically that Eqs. (19), (20) and (21) are a
very good approximation, comparing an exact calculation
of |∆v⊥| with the weak collision approximation, as shown
in Fig. 3.
The equation (19) gives an expression for the change in
velocity due to one collision. We have now to integrate
over all the possible collisions, i.e., over all the impact
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z

Figure 2. The QSS is approximated by a perfectly spherical distribu-
tion of particles with radius R .

parameters b. In order to be able to obtain an analyti-
cal expression we will do further approximations: (i) the
system is a perfect d dimensional homogeneous sphere of
radius R , (ii) we consider a test particle with zero angular
momentum, and (iii) because we do not know the veloc-
ity distribution of the QSS, we approximate the relative
velocity of the particles with the average velocity over all
the particles of the system. The mean change in velocity
is zero because the perturbations are randomly oriented,
whereas the mean square velocity is non-zero (it is a ran-
dom walk in velocity space). We will then calculate the
average of the change of the square velocity. In order to
perform the integration over all the impact parameters we
divide the system in disks of thickness dz, sketched in
Fig. (3). We perform the integration over all the impact
parameters in each disk, and then the integration over
the variable z. We can estimate that crossing a disk of
thickness dz the particle suffers

δn = BdN
Rd bd−2 db dz (22)

encounters with impact parameter between b and b + db,
where Bd is a factor which depends on the dimension d
(e.g. B2 = 2/π, B3 = 3/2). Therefore, the average change
in square velocity is, in d = 2 or d = 3:

⟨|∆v2|⟩
|v2| ≃ NA2

γBd

( g
mv2Rγ

)2
∫ 1

−1
dy

∫ √
1−y

bmin/R

dx
x2γ−d+2 .

(23)
The behavior of the integral depends on the value of γ
and d, giving for d > 1

⟨|∆v2|⟩
|v2| ≃ NA2

γBd

( g
mv2Rγ

)2
[

Cγ,d

(
R

bmin

)2γ−d+1

+ Dγ,d

]
,

(24)

where Cγ,d and Dγ,d are two constants of order unity
(which depends on γ and d), which can be calculated an-
alytically. We see therefore that if γ < (d−1)/2, the inte-
gral (23) is dominated by the size of the system, whereas if
γ > (d − 1)/2, it is dominated by the minimum impact pa-
rameter. We can simplify Eq. (24) making use of the virial
theorem, which states that, for a stationary distribution

2K + γU = 1, (25)

where K is the total kinetic energy and U the total po-
tential energy. Hence, by dimensional analysis:

g
mv2Rγ ∼ 1

N
gN2

(mNv2)Rγ ∼ 1
N

U
K ∼ 1

N . (26)

4. Estimation of the relaxation rate
We can simply estimate the relaxation rate Γ by computing
the normalized change in square velocity due to collisions,
in units of τmf:

Γτmf ≃ ⟨|∆v⊥|2⟩
v2 , (27)

which gives, using Eq. (24) and (26) the following scaling:

Γ τmf ∼





N−1 if γ < (d − 1)/2

N−1
(

R
bmin

)2γ−d+1
if γ > (d − 1)/2,

(28)

where we have dropped all the factors of order unity. This
is the first main result we present in this proceedings: for
γ < (d − 1)/2, the relaxation is dominated by the maxi-
mum impact parameter (which is of the order of the size
of the system), whereas for γ > (d − 1)/2 it is dominated
by the minimum impact parameter. We can control the
relaxation rate in the latter case by putting a softening in
the potential, obtaining in this case:

Γτmf ∼ N−1
(

R
ε

)2γ−d+1

. (29)

In this case, and for any γ < d, we obtain

lim
N→∞

Γ τmf = 0, (30)

which signifies that, for any value γ, the QSS may last
an infinite amount of time in this limit, provided that a
sufficiently large softening ε > bmin is used for γ > d − 1.
However, considering unsoftened potentials, we can see
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from Eq. (21) and the virial relation (25) that the mini-
mum impact parameter depends indeed on the number of
particles N . We obtain therefore:

Γ τmf ∼
{

N−1 if γ < (d − 1)/2
N−(d−1−γ)/γ if γ > (d − 1)/2. (31)

This is the second main result presented in this proceed-
ings: studying the zero of the exponent of the relaxation
rate for γ > (d − 1)/2, another threshold appears at
γ = d − 1. The relaxation rate becomes divergent for
γ > d − 1, which corresponds to an integrable force, and
not an integrable potential.
We can therefore give the following dynamical classifica-
tion of interactions, as a function of the existence of QSS
in the infinite N limit:

1. Dynamically long range systems, in which the pair
force is non integrable, i.e., γ < d − 1, for which
limN→∞ Γτmf = 0 for unsoftened potentials, i.e., the
QSS becomes stable in this limit. For finite N sys-
tems, the relaxation rate decreases increasing N .
Furthermore, we have that

• If γ < (d − 1)/2 (i.e. more long range than
gravity in d = 3), the relaxation is dominated
by the maximum impact parameter (i.e. the
size of the system), and, for unsoftened po-
tential, Γτmf ∼ N−1.

• If (d − 1)/2 < γ < d − 1, (i.e. less long
range than gravity in d = 3), the relax-
ation is dominated by the minimum impact
parameter bmin, and, for unsoftened potential,
Γτmf ∼ N−(d−1−γ)/γ .

2. Dynamically short range systems, in which the
pair force is integrable, i.e., γ > d − 1, for which
limN→∞ Γτmf = ∞ for unsoftened potentials, i.e., the
QSS is immediately destroyed, the dynamics being
dominated by collisions. For finite N systems, the
relaxation rate increases increasing N .

5. Comparison with numerical sim-
ulations
We carefully compare the theoretical scalings with molec-
ular dynamics simulations in d = 3. To do so, we use a
modification of the publicly available code GADGET2 [9],
performing the appropriate modifications to integrate any
power-law force. The potential was softened at the scale ε
using a repulsive soft core, which does not modify the po-
tential for r > ε and goes smoothly to v (0) = 0 for r < ε.
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Figure 3. Upper: evolution of the total kinetic energy K for simu-
lations with N = 8000 particles and different softening
length ε in the potential v (r) with γ = 5/4. Lower: evo-
lution of the estimator R (t) for the simulations.

We use soft reflecting boundary conditions in cubic box of
size L, i.e., when the ith spatial coordinate of a particle lies
outside the simulation box, we invert the ith component of
the velocity. The initial condition is a uniform spherical
distribution of particles with random velocities normalized
in order to satisfy the virial relation (25). This choice of
normalization implies that the initial condition is close to
a QSS, as it can be seen in the simulations. We show an
example of the evolution of the total kinetic energy K (t)
for a set of simulations with N = 8000 particles, γ = 5/4
and different values of the softening parameter ε, in the
left panel of Fig. 3. For the first few τdyn, the evolution of
K (t) is independent of ε, which corresponds to the mean-
field evolution (violent relaxation). Then, K (t) exhibits a
“plateau”, whose slope depends on the value of ε. This is a
manifestation of the collisional relaxation, which depends
on ε, as predicted in Eq. (28).

A particle moving in a mean-field potential (e.g. the one
correspondent to the mean-field force (4)) conserves its
total energy. A common way to estimate the collisional
relaxation consists then in measuring the change in en-
ergy of the individuals particles with time. We use the
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Figure 4. (a) Relaxation rate estimated using the estimator (32) for
N = 8000, γ = 5/4 and different values of the softening ε.
(b) The same plot but for γ = 3/2. (c) Relaxation rate for
ε/L = 0.01, γ = 5/4 and different number of particles N.
(d) The same plot but for γ = 3/2.

following estimator R (t) (see e.g. Ref. [10]),

R (t) = ⟨(e(t) − e(t0))2⟩
4K (t0)2 , (32)

where e(t) is the total energy of a single particle at time
t, ⟨. . . ⟩ and average over all the particles, K (t) the total
kinetic energy and t0 a reference time for which the system
had time to form the QSS. In the right panel of Fig. 3 we
show the evolution of R (t) for the same set of simulations
as the one in the left panel. We estimate the relaxation
rate Γ computing the slope of the linear fit of R (t), for the
range in which it is linear. In Fig. 4 we plot the scaling
measured in a set of simulations. In the upper panel the
relaxation rate Γ is plotted for simulations with different
softening ε and constant number of particles N . There is
a very good agreement with the theoretical scaling (28)
for a wide range of ε. For the smallest value of ε, the
relaxation rate is smaller than the one predicted by the
scaling: it corresponds to values of ε < bmin. For the
largest values of ε, the mean field dynamics is altered by
the softening, giving a different relaxation rate than the
one predicted by the theory. In the lower panel of Fig. 4
we see the scalings obtained from a set of simulations
taking ε/L = 0.01 and varying the number of particles,
for γ = 5/4 and γ = 3/2. We see again a very good
agreement with the theoretical scaling (28).

6. Conclusion
In this proceedings, we have generalized the Chan-
drasekhar estimate for the collisional relaxation rate for
a system of particles with power-law pair interaction
v (r → ∞) = 1/rγ in d dimensions. The main result we
have found is that the relaxation rate expressed in units
of the mean field dynamical time τmf converges only if the
pair force is integrable, i.e., γ < d − 1. This leads to the
following dynamical classification of interactions:

1. The interactions is dynamically long range if τmf ≪
τcoll for a sufficiently large number of particles, and
in particular limN→∞ Γτmf = 0, which occurs for γ <
d − 1. In addition, we have identified that for γ <
(d − 1)/2, the relaxation is dominated by collisions
with the maximum allowed impact parameter by the
system (in our case the size of the system R ), and
if γ > (d − 1)/2, the relaxation is dominated by
collisions with minimum impact parameter bmin, in
the absence of softening.

2. The interaction is dynamically short range if τmf ≫
τcoll for a sufficiently large number of particles, and
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in particular limN→∞ Γτmf = ∞, which occurs for
γ < d − 1.

As anticipated in the introduction, this classification dif-
fers from the one according to the thermal equilibrium of
the system, in which the important quantity is the inte-
grability of the potential. There is therefore a range of γ,
d − 1 < γ < d, in which the interaction is dynamically
short range, but long range according to its thermal equi-
librium properties. In this case, if the system has a large
enough number of particles, the QSS would not form (as in
short range systems), but however the thermal equilibrium
state will presents the features of a long range system.
In the near future, we will present elsewhere a more de-
tailed report of numerical simulations, including simula-
tions with different cores (such as attractive ones) and the
study of systems which are more long range than gravity
in d = 3, such that the systems with γ < 1 in d = 3 or
gravity in d = 2.

Acknowledgments
We acknowledge many useful discussions with F. Sicard.
This work was partly supported by the ANR 09-JCJC-
009401 INTERLOP project. Numerical simulations have
been performed at the SIGAMM cluster hosted at “Ob-

servatoire de Côte d’Azur”, Université de Nice – Sophia
Antipolis.

References

[1] A. Campa, T. Dauxois, S. Ruffo, Phys. Rep. 480, 57
(2009)

[2] I. Ispolatov, E. G. D. Cohen, Phys. Rev. E 64, 056103
(2001)

[3] J. Binney, S. Tremaine, Galactic Dynamics (Princeton
University Press, 1994)

[4] A. Gabrielli, M. Joyce, B. Marcos, Phys. Rev. Lett.
105, 210602 (2010)

[5] A. Gabrielli, M. Joyce, B. Marcos, F. Sicard, J. Stat.
Phys. 141, 970 (2010)

[6] M. Kac, G. E. Uhlenbeck, P. C. Hemmer, J. Math.
Phys. 4, 216 (1963)

[7] S. Chandrasekhar, Chicago, The University of
Chicago press (1942)

[8] M. Hénon, Annales d’Astrophysique 21, 186 (1958)
[9] V. Springel, Mon. Not. R. Astron. Soc 364, 1105

(2005)
[10] J. Diemand, B. Moore, J. Stadel, S. Kazantzidis, Mon.

Not. R. Astron. Soc. 348, 977 (2004)

683

Brought to you by | Universita Degli Studi Di Napoli Parthenope
Authenticated

Download Date | 11/13/15 4:30 PM




