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ABSTRACT: Biocrusts covering drylands account for major
fractions of terrestrial biological nitrogen fixation and release
large amounts of gaseous reactive nitrogen (Nr) as nitrous acid
(HONO) and nitric oxide (NO). Recent investigations suggested
that aerobic and anaerobic microbial nitrogen transformations
occur simultaneously upon desiccation of biocrusts, but the spatio-
temporal distribution of seemingly contradictory processes
remained unclear. Here, we explore small-scale gradients in
chemical concentrations related to structural characteristics and
organism distribution. X-ray microtomography and fluorescence
microscopy revealed mixed pore size structures, where photo-
autotrophs and cyanobacterial polysaccharides clustered irregularly
in the uppermost millimeter. Microsensor measurements showed
strong gradients of pH, oxygen, and nitrite, nitrate, and ammonium ion concentrations at micrometer scales in both vertical and
lateral directions. Initial oxygen saturation was mostly low (∼30%) at full water holding capacity, suggesting widely anoxic
conditions, and increased rapidly upon desiccation. Nitrite concentrations (∼6 to 800 μM) and pH values (∼6.5 to 9.5) were
highest around 70% WHC. During further desiccation they decreased, while emissions of HONO and NO increased, reaching
maximum values around 20% WHC. Our results illustrate simultaneous, spatially separated aerobic and anaerobic nitrogen
transformations, which are critical for Nr emissions, but might be impacted by future global change and land management.
KEYWORDS: biological soil crusts, reactive nitrogen, nitrous acid (HONO), nitric oxide (NO), microsensors, X-ray microtomography,
fluorescence microscopy

■ INTRODUCTION
Biological soil crusts (biocrusts) are assemblages of lichens,
bryophytes, and microbes that colonize the uppermost layer of
soil in dryland ecosystems and cover ∼12% of the global
terrestrial surface.1−5 About 40% of the global terrestrial
biological N fixation have been attributed to biocrusts,6

sustaining soil fertility in nutrient-deprived dryland ecosys-
tems.7−9 Some of the fixed nitrogen can be re-emitted to the
atmosphere in the form of nitrous oxide (N2O),10,11 ammonia
(NH3),

12,13 nitric oxide (NO), and nitrous acid
(HONO).14−23 The estimated global emissions of reactive
nitrogen (Nr, HONO, and NO) amount to ∼1.7 Tg a−1,
corresponding to ∼20% of Nr from soils under natural
vegetation cover.20,24

Nitrogen oxides (NOx = NO + NO2) and HONO are key
species in the global N cycling and contribute to the
production of tropospheric ozone (O3, short-lived climate
pollutant) and hydroxyl radicals (OH•), which regulate the
oxidizing power and self-cleaning capacity of the atmos-
phere.25−31 N gas emissions from biocrusts, which host a

special type of soil microbiome,32 and soil may be mainly
promoted by the biotic processes N-fixation, nitrification, and
denitrification.7,20,21,23,32−34 Under aerobic and anaerobic
conditions in biocrusts and soil, nitrite (NO2

−) can be formed
during nitrification and denitrification, respectively, and can be
released as HONO to the atmosphere.7,20,21,23,32 Biological
sources of NO include NH3-oxidizing bacteria (AOB), which
mediate the first phase of nitrification and carry out nitrifier
denitrification under oxygen-limited conditions.33,34

NO and HONO emissions are known to be strongly related
to the water content.35 In most studies, emissions from drying
soil and biocrusts were lowest at high water holding capacity
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(100% WHC) and reached maximum values around 20−30%
WHC.18,20,21,23 In another study, emissions of NO and HONO
were shown to also occur at high water contents.36 In former
studies, HONO and NO emissions were analyzed by means of
continuous flux measurements from bulk soil,23 soil bacteria,21

and biocrusts.18,20,37 For biocrusts, a high variability in the total
flux values was observed.18,20,32 A drawback of flux measure-
ments is, however, that they only give the integrated balance of
gas exchange at the sample scale (∼cm), whereas they do not
allow to draw conclusions at the scale relevant to micro-
organisms, substrate concentrations at microsites and
processes occurring at pore scales. In former studies it has
been observed that for example N2O emissions occur in
hotspots during hot moments, but to our knowledge this has
not been described for Nr emissions, and the underlying small-
scale processes have not been analyzed in detail.38−40

One method that allows such small-scale analyses is the
application of microsensor techniques. The method of liquid
ion-exchange (LIX) based microsensors has been developed to
detect and analyze the concentrations of different ions, such as
ammonium (NH4

+), NO2
−, nitrate (NO3

−), and H+ (pH).
They have been used to conduct in-depth analyses of dynamic
processes in artificial biofilms (in a porous substrate photo-
bioreactor), as well as in wastewater biofilms and flocs to
investigate the sulfate reduction and denitrification.41,42

Johnson et al.43 utilized LIX microsensors to directly measure
the denitrification and nitrogen export in biocrusts to gain
information on the fate of the fixed N.
In earlier studies, we observed that various, partly contra-

dictory processes, such as N fixation, nitrification, denitrifica-
tion, ammonification, and anaerobic ammonium oxidation
(anammox), occur at the same time within a single piece of
biocrust (see Figure 4c in Maier et al.32). Thus, the objective of
this study was to understand how spatial heterogeneity within
biocrusts and patterns in the local distribution of soil
microbiota affect soil processes and hence gas fluxes at larger
scales. The specific objectives were to (i) investigate the pore
structure, utilizing X-ray microtomography (micro-CT) at
different hydration stages, (ii) study the distribution of
microbes in the microenvironments by means of fluorescence
microscopy, and (iii) analyze the small-scale variation of
physicochemical parameters (i.e., pH, O2, and NH4

+, NO3
−,

and NO2
−) using microsensors under varying water contents.

We aimed to address the influence of localized conditions of
soil water, pH, NO2

−, NO3
−, and NH4

+ on Nr emissions,
especially HONO and NO, within a heterogeneous soil
environment.

■ MATERIAL AND METHODS
Study Area. Samples for the analyses were collected next to

the former BIOTA observatory of Soebatsfontein (30.1865°S,
17.5433°E, 392 m a.s.l), located within the Succulent Karoo
biome, 60 km south of Springbok.44−46 The Succulent Karoo is
a semiarid dryland region, and its biome covers an area of
about 103,000 km2. This region is considered to be a diversity
hotspot of global significance, which is mainly due to a high
diversity of succulent plants, with many species being of major
conservation importance.47,48 At the observatory of Soebats-
fontein, the temperature ranges from 3.5 °C (July) to 42.5 °C
(February) with a mean air temperature of 19.4 °C.37,45,46 The
annual precipitation amounts to ∼131 (97−175) mm and
most of the precipitation occurs between July and August with
∼45 precipitation events per year.37,45,46,49

Sampling. Cyanobacteria-dominated biocrusts with cyano-
lichens were collected in March, at the end of the dry season,
in small Petri dishes (55 mm diameter and 10 mm height). For
sampling, the bottom of the Petri dish was placed upside down
on the biocrust surface, pressed into the substrate, and lifted
with the help of a trowel pushed below. The samples were
turned in an upright position and, in order to minimize
metabolic activity, they were air-dried and subsequently
transported to the Max Planck Institute for Chemistry
(MPIC) in Mainz, Germany, for further analyses. For further
details on the identification of species, refer to the Supporting
Information, Methods.
X-Ray Microtomography. Structural analyses (pore size

distribution and vertical porosity profiles) were performed with
an X-ray microtomograph (micro-CT, Bruker 1272 system)
using a scanning protocol with the parameters presented in
Table S1A. Image reconstruction was conducted with NRecon
software v. 1.7.1 applying the cone-beam algorithm of
Feldkamp with the parameters indicated in Table S1B.
The crust sample chosen for the analysis was weighed (initial

state), then saturated with distilled water and weighed again
(Table S2). The crust structure was analyzed at the two states
of ∼50 and 0% water holding capacity (WHC). For further
details on the methodology, see the Supplementary Methods.
Fluorescence Microscopy. Fluorescence microscopy was

used to localize and visualize photoautotrophic organisms
(algae, cyanobacteria, cyanolichens) and complex polysacchar-
ides [e.g., chitin, cellulose, and EPS (extracellular polymeric
substances of cyanobacteria)], the latter indicating fungi and
cyanobacterial sheaths in cross-sections of the cyanobacteria-
dominated biocrusts. To assess the spatial distribution of
photoautotrophic organisms, the autofluorescence of chlor-
ophylla was used. Complex polysaccharides were visualized
using ready to use Calcofluor-White (CFW) stain. During
fluorescence microscopy, two distinctive fractions of the
biocrust samples were defined as photoautotrophic and
heterotrophic layers (PL and HL, respectively) where the PL
contains cyanobacteria, lichens, and bryophytes and the HL is
devoid of photoautotrophs, but comprises fungi, bacteria,
archaea, as well as microfauna (protozoa, nematodes and
microarthropods). For further details regarding microscopy,
see the Supplementary Methods.
Microsensor Measurements. Vertical concentration/

saturation gradients were investigated during desiccation of
biocrusts at 25 °C and in the dark, to be congruent with the
conditions during dynamic chamber measurements. LIX
sensors with a tip diameter of 20−30 μm were used for the
determination of pH, NO3

−, NO2
−, and NH4

+ concentrations
and were produced as explained by de Beer et al.,50−52 with
slight adaptions for measurements in biocrust samples. In
order to confer more stability, the sensor tips were thickened
and cut with a diamond knife at the requested diameter of
about 20−30 μm (inner diameter) under the microscope. pH
measurements were obtained with LIX sensors and pH
microelectrodes (pH-100, Unisense A/S, Aarhus, Denmark)
with a tip diameter of 100 μm. O2 saturation was analyzed
using oxygen microsensors (OX-100, Unisense A/S, Aarhus,
Denmark) with a tip diameter of 100 μm.
For the measurements, biocrust samples were saturated with

sterile, artificial rainwater53,54 and drained by gravity to achieve
full WHC. The measurements were conducted during one
desiccation cycle (wetting and subsequent drying). At least 15
vertical profiles were measured in the dark at hourly intervals
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over the course of desiccation. For each sensor type, at least
five replicate measurements were conducted at different
locations within biocrust samples. The sensors were moved
in a vertical manner by means of a motorized micro-
manipulator (MM33, Mar̈zhaüser Wetzlar GmbH & Co. KG,
Wetzlar, Germany) to a depth of 5 mm. A typical desiccation
cycle showed a linear decrease of the water content expressed
as percentage of WHC (Figure S1), referring to the whole
Petri dish serving as reference.
Statistical differences between the PL and the HL layers

were analyzed for the microsensor profiles using the Mann−
Whitney U test, since the data were not normally distributed
(OriginLab Corporation, Northampton, Massachusetts, USA;
Table S4). For more detailed information, see the Supple-
mentary Methods.
Dynamic Chamber Measurements. The analysis of

HONO and NO emissions was carried out in an air-flushed
dynamic Teflon chamber.18,20−23 HONO was detected
spectrophotometrically, using a long path absorption photo-
meter (LOPAP), whereas NO and NO2 were analyzed with a
gas chemiluminescence detector equipped with a blue light
converter.18,20,21,23 Measurements occurred at 25 °C in the
dark to avoid photochemical reactions, and the samples were
fully wetted to 100% WHC, placed in the chamber, and
measured until complete desiccation. Further methodological
information is provided in the Supplementary Methods.

■ RESULTS AND DISCUSSION
X-ray Microtomography. The pore-size distribution and

vertical gradient of porosity of a biocrust sample was
investigated at two hydration conditions, ∼50 and 0% WHC,
by means of X-ray microtomography (Figures 1 and S2). The
obtained images showed that the locations of macropores did
not change upon desiccation, whereas the overall volume of
the crust sample decreased by 8% (from 1.64 to 1.51 cm3;
Figures 1A and S2). Total porosity increased from 23.3% at
∼50% WHC to 29.9% in a dry state, maximum pore size
diameters rose from 710 to 790 μm, and the mean pore size
increased from 212 to 223 μm (Figure 1B). The main changes
in pore diameter occurred between 70 and 350 μm (Figure
1B), while the vertical profile of porosity, measured along the
entire biocrust sample, showed only minute changes (Figure
1C). Porosity was low between ∼2−3 mm depth (∼22% in a
dry and <20% in a wet state), whereas above and below higher
porosities were measured (with maximum values of ∼45 and
∼38% porosity in a dry and wet state, respectively). Local
vertical profiles of porosity measured in a dry state showed
great heterogeneity within the crust sample with the standard
deviation of locally measured porosity values ranging from
∼10% in the upper (until 2.2 mm depth) and lower (below 3.7
mm depth) part of the crust to ∼30% between 2.2 and 3.7 mm
depth (Figure. S3D). In this central layer, minimum and
maximum porosity ranged from 0 to 100% (Figure. S3C),
indicating presence of both solid aggregates and macropores.

Figure 1. Structure and porosity of one biocrust sample at two hydration states: (A) 3D visualization of the biocrust pores at ∼50% water holding
capacity (WHC) corresponding to ∼80% field capacity (FC) (left) and in a dry state (right), with pore volume size (μm) classified by color scale.
Solid phase is shown in gray color, white spots are mineral grains inside the soil matrix; (B) pore size distribution at ∼50% WHC and in a dry state;
(C) vertical porosity profile of the crust sample at ∼50% WHC and in a dry state.
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In total, only a general shrinkage of the solid phase occurred,
which caused increased pore sizes within the biocrust along
with a reduction of its overall volume. Consecutive micro-
sensor profiling also showed a shrinkage of the biocrust,
indicated by a retraction of the biocrust surface over the course
of desiccation. Similarly, Rodriǵuez-Caballero et al.55 showed
an initial swelling of the biocrust surface upon hydration,
followed by a shrinking during desiccation. They highlighted
that the X-ray microtopography of the biocrust surface
changed during hydration, with an increase in surface height
and roughness (up to 0.24 and 0.20 mm, respectively) for
lichen- and cyanobacteria-dominated biocrusts. There are
several studies using X-ray microtomography to investigate
the biocrust structure after disturbance,56 to compare different
ages of biocrusts,57 or to show changes of the pore structure
during crust succession.58 Similar to our investigations on
biocrust structure, the study of Couradeau et al.59 showed that
sand grains stayed in place, despite the fact that the
microenvironment of EPS shrank during desiccation. This
was mainly because the EPS sheaths did not strongly adhere to
the sand grains. They could also show that EPS sheath material
remained effectively hydrated while the surrounding soil pore
regions were steadily drying. In another study, microbial
extracellular polymeric substances (EPS) were described to
alter soil water retention by reversible swelling of the cross-
linked polymer matrix.60

Fluorescence Microscopy. Cross-sections revealed a
distinctive layer of photoautotrophic organisms in the upper
section of the biocrust, but the organisms were not evenly
spread but rather concentrated in distinct clumps or hotspots
(Figure 2 and S4A,B). In close-up images, a high variability of
organism distribution at μm-scale became visible, and
polysaccharides were closely associated with photoautotrophic

organisms (Figure 2B−E). This was confirmed by occupancy
maps of photoautotrophs and polysaccharides obtained by
image segmentation with cross entropy thresholding (Figure
3A,B). The occupancy maps illustrate that the photo-
autotrophic organisms were mainly detected up to a depth of
0.4 mm (thereby defining the photoautotrophic layer, PL) with
a notable horizontal variability (Figure 3A,C). A similar pattern
was observed for complex polysaccharides, which were mainly
concentrated in the uppermost part of the sample (Figure
3B,D). The Jaccard similarity index as a measure of co-
occurrence of photoautotrophs and polysaccharides was
highest in the PL (Figure 3E).
The heterogeneous distribution of complex polysaccharides,

which also form EPS, suggests that they are involved in
creating the heterogeneous micro-structure within biocrusts.
Previous studies demonstrated that EPS protect micro-
organisms from ultraviolet radiation (UV) and desiccation, as
the EPS matrix may contain UV shielding compounds like
Scytonemin61,62 and dries slower than its surroundings, thus
enhancing their survival in water-deficient environments.63,64

EPS are known to maintain hydration by water accumulation
and regulation of water loss,65−67 thus also contributing to N-
cycling processes.68 Furthermore, they mediate the adhesion to
surfaces, allow an accumulation of nutrients and keep cells in
close proximity, facilitating interactions.63 In an earlier study it
was shown that diazotrophic bacteria can be enriched in the
EPS of a non-nitrogen-fixing cyanobacterium, thus influencing
its N status.69 Our X-ray CT imagery also displayed a strongly
heterogeneous pore size structure (Figure 1A,B), which likely
causes the heterogeneous colonization of the substrate.
The observed decreasing abundance of photoautotrophic

organisms with depth (Figures 2 and 3) is in line with previous
reports.70,71 The distinctive PL in the upper part of the

Figure 2. Fluorescence microcopy of biological soil crusts: (A) exemplary illustration of merged fluorescence micrographs of one cross-section of a
cyanobacteria-dominated biocrust sample. The red channel shows photoautotrophic organisms; pedological features (e.g., sand grains, stones) are
shown in green color. Scale represents 2.5 mm. (B,C,D,E) represent a subsection of a cyanobacteria-dominated biocrust. (B) Merged fluorescence
image; (C) red channel, representing photoautotrophic organisms; (D) green channel, showing soil pedological features (e.g., sand grains, stones);
and (E) blue channel, showing polysaccharides like chitin, cellulose, and the cyanobacterial extracellular polymeric substances (EPS). Scales
represent 600 μm. For additional images, see Figure S4.
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biocrust (<0.4 mm depth) indicates the penetration depth of
light, which leads to the high abundance of chlorophylla. Not
only light, but also other factors play a role in the vertical
distribution of the photoautotrophs, such as nutrients, water,
temperature, and pore structure.72 Biocrusts from Utah were
colonized by the bundle-forming, filamentous cyanobacterium
Microcoleus vaginatus Gomont, mainly occurring at 200−500
μm depth, whereas the network of sheaths extended to depths
of 3−4 cm.71 Also in our study, the polysaccharide
concentration decreased somewhat less steeply with depth,
but mainly reached to 1 mm depth.
For soils, it has been shown that they generally represent a

heterogeneous and dynamic physicochemical environment.
They are subject to temporal and spatial variation in the
availability of water and nutrients, and the temperature
fluctuates in spatially constrained pore spaces. These soil
characteristics create microenvironments, differing in water
volume, liquid−gas interfacial area, and nutrient availability,
resulting in a heterogeneous, patchy distribution of microbes,
for instance nitrifiers, in the soil.73−86 Similarly, microbial
populations are inhomogeneously distributed within biocrusts,
mostly as a consequence of vertical gradients in light, oxygen,
nutrients as well as water availability, soil properties (texture,
pH), and temperature variations.87,88 These reports are in
accordance with our findings, as we observed a high

heterogeneity in the spatial distribution of photoautotrophic
organisms in the uppermost soil layer and a high heterogeneity
in biogeochemical processes as explained below.
Biogeochemical Heterogeneity and Fluxes. Oxygen

saturation, pH, and N compound concentrations (NO2
−,

NO3
−, and NH4

+) were measured using microsensors over the
course of desiccation (Figures 4, 5 and S5). In Figure 4,
vertical profiles at 100, 75, 50, and 25% WHC are presented,
whereas in Figure 5 representative profiles assessed at hourly
intervals over the course of a desiccation cycle are shown.
Generally, the microsensor measurements revealed that

profiles taken at different locations within biocrust samples
differed to a large extent, irrespective of the measured
parameter.
At full WHC, oxygen contents showed high spatial

heterogeneity, displaying steeply declining oxygen contents
with increasing depth, reaching a mean saturation minimum of
18 ± 22% at 0.8 mm depth. Towards deeper layers the values
increased slowly again, reaching a mean saturation maximum
of 54 ± 27% at 4.2 mm depth (Figure 4A). Already at 75%
WHC, the mean saturation value had increased to an overall
value of ∼91 ± 2% with no major differences along depth,
indicating an oxygenation of the entire sample that persisted
during the subsequent desiccation (Figure 4A and 5A−C).
The O2-sensors showed lowest O2 saturation at high WHC,
likely due to the respiration activity of photoautotrophic and
heterotrophic microorganisms in combination with the
increased diffusion resistance of water as compared to air-
filled pores (Figure 4A, 5A−C and 6A). Anoxic conditions in
soil occur when the oxygen consumption rate exceeds the
oxygen production/transport rate. Especially after hydration,
the solubilization of nutrients and the onset of metabolic
activity after desiccation stimulate respiration and subsequently
result in such anoxic regions.89 Our results suggest that the
microbial respiration was sufficient to create anoxic regions,
even in the upper region close to the interface with the
atmosphere. This was similarly observed in earlier studies,
where anoxic areas occurred from the surface to several
millimeters depth in fully saturated biocrusts.71 Such events of
full water saturation with anoxic conditions do not occur
frequently in drylands, but mesoclimate data assessed during
the BIOTA project (www.biota-africa.org) and during
measurements of ourselves (B. Weber, unpublished) show
that daily precipitation reaching 10−20 mm normally occurs
on several occasions per year. During these occasions, we
expect at least nearly full water saturation to be reached over
short time-spans. As soil dries, gaseous diffusion is facilitated
and allows oxygenation of the soil.76 We observed that both
the photoautotrophic and heterotrophic layers became fully
oxygenated when the biocrust sample dried to ∼70% WHC
(equivalent to a water content of 0.09 g * g−1; Figure 6).
However, in this context it has to be considered that, because
of the measurement conditions (darkness), no photosynthesis
occurred. In former studies, photosynthesis in illuminated
biocrusts recovered within minutes after hydration, resulting in
the formation of an oxygen-supersaturated zone close to the
surface and anoxic zones at 1−3 mm depth.90

The microsensor measurements also revealed not only
vertical but also horizontal microscale heterogeneity. Spatially
restricted areas and limited periods of oxygen-limited
conditions over the course of desiccation (Figure 4A and
5A−C) are likely caused by the patchy distribution of
microbial cells and EPS (Figure 2) causing variations in

Figure 3. Depth profiles of a cyanobacteria-dominated biocrust cross-
section. The red and blue channels of the fluorescence microscopy of
the biocrust were used for occupancy maps of (A) photoautotrophic
organisms (red) and (B) polysaccharides (blue) based on the
minimum cross entropy thresholding. The colored patches indicate
the occurrence and extent, the contour lines show the substrate depth.
(C,D) The occupancy probability of both parameters were aggregated
along soil depth in 50 μm steps. (E) Jaccard similarity index was used
to quantify the degree of co-occurrences of photoautotrophs and
polysaccharides. The grey shaded area in the profiles indicates the
photoautotrophic layer (PL, depth ∼0.4 mm), the area below is
considered as the heterotrophic layer (HL, depth >0.4 mm).
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oxygen production/consumption and transport. Previous
studies of desert biocrusts have also shown that respiration
in cyanobacterial crusts started within minutes upon hydration,
and, in line with our observations, it was concluded that
disparate chemical microsites had formed,71,90,91 which were

also suitable for anaerobic processes, such as anaerobic
methanogenesis in crusts from the Negev Desert92 and
denitrification in crusts from Oman.10

Average pH values increased from 100 to 75% WHC with a
mean maximum of 8.4 ± 0.4 at 0.4 mm depth. During
subsequent desiccation, the mean values decreased again,
maximum values shifted towards deeper layers (∼2−3 mm
depth), and at 25% WHC the near-surface pH (7.2 ± 0.3) was
lower than the initial value at full WHC (7.7. ± 0.8; Figure
4B). During individual microsensor measurements, the pH
values ranged between ∼6.5 and ∼9 at different locations and
desiccation stages (Figure 5D−F and S5). Whereas in some
locations pH values decreased considerably over the course of
desiccation (from ∼9.0 to ∼6.9; Figure 5D), in other spots
nearly no changes in pH were observed over the course of
desiccation (Figure 5F). We detected locations with high pH
values at the beginning of the measurement that decreased
over the course of desiccation, which may be caused by
chemical reactions and biological processes. In former
measurements, variable pH values were reported for bulk
samples of different dark cyanobacteria-dominated biocrusts
from the Succulent Karoo and Cyprus, ranging from 6.8 to 8.0
and 6.8 to 7.3, respectively.18,20

Mean NO2
− concentrations revealed an increase and a

subsequent decrease from 86 μM at 100% WHC to 212, 174,
and 133 μM at 75, 50, and 25% WHC, respectively (Figure
4C). At 100% WHC, highest mean NO2

− concentrations of
136 μM were reached at 1−1.6 mm depth, whereas
subsequently the highest mean values occurred at the surface.
Lowest standard deviations were observed at 100% WHC at
1.8 mm depth and below, whereas the highest value occurred
at the surface at 25% WHC. Individual measurements showed
large variation, as some of them were characterized by
increasing concentrations at specific depths (Figure 5G),
others showed increased concentrations towards the biocrust
surface, with a stable pattern throughout the desiccation
process (Figure 5H), and a third group displayed no major
changes in deeper layers and only somewhat higher
concentrations close to the surface (Figure 5I). The initial
increase in NO2

− was probably due to the onset of spatially
localized microbial activity upon hydration. Recent work has
shown that soil bacteria respond within hours to days to an
increase in soil water availability after prolonged drought.93−95

The quick microbial response is associated with CO2
emissions93 and an increase in transcript copies of bacterial
rpoB genes, encoding bacterial RNA polymerase, indicating
resumption of transcriptional activity.96

Average NO3
− concentrations were lowest at full WHC (337

± 108 μM) and highest at 75% WHC (1572 ± 766 μM)
(Figure 4D). With progressing desiccation, there was a slight
reduction in maximum values, and generally mean concen-
trations were high close to the surface and showed a strong
decrease towards deeper strata. Such high surface values were
also observed in individual measurements, but only in one
representative sample, this stratification lasted until desiccation
(Figure 5K), whereas in another sample a stratification
dissolved below 70% WHC (Figure 5J). Also for NO3

− there
were measurements where no major changes were observed
along desiccation (Figure 5L).
Ammonium concentrations were lowest at full WHC and

increased over the course of desiccation, accompanied by
increasing standard deviations (Figure 4E). Generally, the
highest concentrations occurred close to the surface, but at

Figure 4.Microsensor profiles of biocrusts assessed at 100, 75, 50 and
25% water holding capacity (WHC) at different locations: (A) oxygen
saturation [%]; (B) pH; (C) nitrite (NO2

−) concentration [μM]; (D)
nitrate (NO3

−) concentration [μM]; (E) ammonium (NH4
+)

concentration [μM]. Error bars indicate standard deviation. For
additional information on locations, please refer to Table S3.
Locations without changes during desiccation are not included.
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50% WHC slightly increased concentrations were also
observed at ∼2.4 mm depth. In some individual sensor
measurements, the increasing ammonium concentrations along
desiccation could be nicely observed (Figure 5M), whereas in
others increased values occurred mainly towards the surface,
but were otherwise fairly stable (Figure 5N). In other
measurements, increased values were only observed towards
the end of desiccation (Figure 5O).

Generally, soil water content has been identified as the main
variable that controls the pore space, hence shapes diffusion of
oxygen and other nutrients.97 The small-scale structural
heterogeneity of the substrate and its pore space, which has
been observed during X-ray microtomography, thus explains
the variability of oxygen and nutrient contents at the micro-
scale. This availability of oxygen and nutrients to micro-
organisms has been shown to influence the rates and patterns

Figure 5. Vertical microsensor profiles (up to a depth of 5 mm) of biocrusts assessed at varying water holding capacity (WHC). (A−C) Oxygen
saturation [%], (D−F) pH, (G−I) nitrite (NO2

−) concentration [μM], (J−L), nitrate (NO3
−) concentration [μM], (M−O) ammonium (NH4

+)
concentration [μM] in representative biocrust profiles (with the three columns showing measurements at three different locations/puncture sites,
reflecting the range of variability) over the course of drying. Profiles were performed at hourly intervals and WHC refers to the whole Petri dish.
Additional information on locations measured with different sensor types is given in Table S3. Further measurements are shown in Figure S5.
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of biogeochemical processes, which could cause emissions of
CO2, N2O, and CH4 from soil aggregates.80,98−100 During
desiccation, we observed that only the concentration of
ammonium showed an increase, whereas that of NO2

− and
NO3

− remained fairly stable, indicating a conversion of both
nitrogen species. An explanation for the NO2

− loss could be its
emission as HONO or NO from the biocrust.20 The loss of
NO3

− could be due to denitrification.
Microsensor Data Related to Dynamic Chamber

Measurements. Although the microsensor technique allowed
measurements only until 30% WHC (but not below), these
data still could be related to online chamber flux measurements
that showed increasing Nr emissions at 30% WHC (Figure 6).

Oxygen saturation values of fully wetted samples increased
strongly until 80% WHC, with higher values in the PL as
compared to the HL, and stayed similarly high until
desiccation (Figure 6A). This was different for the pH,
which first increased until a WHC of ∼70% and then showed a
strong decrease again, reaching a mean pH of ∼7.6 (Figure
6B). This final decrease of pH coincided with increasing
HONO and NO emissions (Figure 6F). This is in line with the
mechanistic soil model predictions of Kim and Or,100 who
suggested that changes in aqueous film thickness and a local
decrease in pH during desiccation drives the emission of
HONO.100,101 The model prediction also supports our findings
by demonstrating that mean water content and bulk soil pH

Figure 6. Mean microsensor readings in the photoautotrophic (PL) and heterotrophic layer (HL) and HONO- and NO emissions of biocrust
samples as related to the water holding capacity (WHC). (A) Oxygen saturation, (B) pH, (C) nitrite (NO2

−), (D) nitrate (NO3
−), (E) ammonium

(NH4
+) content. Measurements were conducted on biocrusts over the course of desiccation and contain several replicates (O2: 8; pH: 6; NO2

−/
NO3

−/NH4
+: 5). Photoautotrophic layer (PL) covers 0−400 μm depth (200 μm steps obtained by vertical profiles), the heterotrophic layer (HL)

starts at 600 μm until the maximum measurement depth; WHC covers the indicated values ± 2.5% (see Methods Section for details). Microsensor
profiles without changes during desiccation are not included. Asterisks show significant differences between PL and HL (Statistical results are
shown in Table S4) and error bars indicate standard deviation. (F) Average reactive nitrogen emission flux (FN) of NO and HONO as a function of
water holding capacity (WHC). Lines indicate the mean fluxes and shaded areas the standard deviation.
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values may not capture the nuances at microscale associated
with efflux patterns, like the HONO emissions from alkaline
soils or the concurrent emissions of NH3 and HONO during
desiccation cycles.100

Also the mean NO2
− concentrations increased until ∼70%

WHC (PL up to 350 μM and HL up to 200 μM), which was
followed by a slight decrease in the PL and constant values in
the HL (Figure 6C). Mean NO3

− concentrations were highest
at high water contents of ∼80−90% WHC (PL up to 3500 μM
and HL up to 1500 μM) and subsequently they stabilized at
values around 2000 μM in the PL and around 750 μM in the
HL (Figure 6D). For both NO2

− and NO3
− the values were

mostly significantly higher in the PL as compared to the HL
(Figure 6C,D). Mean ammonium concentrations increased
with progressing desiccation accompanied by increasing
standard deviations (Figure 6E). Mean HONO and NO
values showed a maximum flux of 112.57 ± 113.32 ng m−2 s−1

HONO−N and 205.34 ± 34.27 ng m−2 s−1 NO−N,
respectively, at ∼20% WHC (Figure 6F). Thus, the
concentrations of N-compounds were also highly variable in
space and time, but generally the lowest values occurred at full
WHC and increased towards 75% WHC with subsequently
decreasing NO2

−, increasing ammonium, and stable NO3
−

values (Figure 6C−E). This fits to the observation that lower
pH values are associated with decreased rates of ammonia
oxidation (AO), leading to a decrease in NO2

− at lower
WHC.102 Interestingly, concentrations of NO3

− were generally
higher than those of NO2

−, which is in line with NO2
− and

NO3
− contents obtained for complete biocrust samples.32 The

highly variable measurement results indicate that biotic
processes, such as nitrification and denitrification, with NO2

−

as an intermediate product and precursor of HONO, are
spatially restricted. Microsites with high reaction rates
compared to the surrounding area have been observed in
soil, where a nonhomogeneous distribution of denitrification
activity has been identified.103,104 In future studies, it would be
desirable to investigate the same samples with different
techniques, for example X-ray CT and fluorescence micros-
copy, in order to have a direct link between structural and
organismic composition, or fluorescence microscopy and
microsensor measurements, in order to link organismic and
nutrient composition.
Overall, our study revealed that the biocrust substrate

structure consisted of a stable mix of pore size classes, the
distribution of organisms was patchy, and the ion concen-
trations occurred in strongly heterogeneous patterns. Our
results suggest that the highly variable biocrust structure allows
the formation of spatially separated microhabitats, where
different, highly dynamic and even contradictory soil N
transformations occur simultaneously within millimeter dis-
tances during drying. This knowledge needs to be considered
in future global change and land management scenarios.
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