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Phase-tunable thermoelectricity in a Josephson junction
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Superconducting tunnel junctions constitute the units of superconducting quantum circuits and are massively
used both for quantum sensing and quantum computation. In previous works, we predicted the existence of a
nonlinear thermoelectric effect in a electron-hole symmetric system, namely, a thermally biased tunnel junction
between two different superconductors, where the Josephson effect is suppressed. In this paper, we investigate
the impact of the phase-coherent contributions on the thermoelectric effect by tuning the size of the Josephson
coupling changing the flux of a direct-current superconducting quantum interference device (dc-SQUID). For a
suppressed Josephson coupling, the system generates a finite average thermoelectric signal, combined with an
oscillation due to the standard ac Josephson phenomenology. At large Josephson couplings, the thermoelectricity
induces an oscillatory behavior with zero average value of the current and voltage, with an amplitude and a
frequency associated to the Josephson coupling strength, and ultimately tuned by the dc-SQUID magnetic flux. In
conclusion, we demonstrate the ability to control the dynamics of the spontaneous breaking of the electron-hole
symmetry. Furthermore, we compute how the flux applied to the dc-SQUID and the lumped elements of the
circuit determine the frequency of the thermoelectric signal across the structure, and we envision a frequency
modulation application.

DOI: 10.1103/PhysRevResearch.2.043091

I. INTRODUCTION

The investigation of thermal transport in micro- and
nanoscale systems has attracted growing interest in recent
decades [1–8] and is expected to have an impact on the
performance of modern quantum technologies [9,10]. Heat
dissipation is a key factor and limits the performance of
classical computation platforms, but it is even more crucial
in multiqubit technology, where low operating temperatures
further limit the heat exchange. Hybrid superconducting
junctions [11,12] are ideal platforms for quantum devices
[13–16], due to the well-established fabrication techniques
and a precise modeling of the coherent electronic trans-
port. In particular, they offer a tight control over thermal
currents, with applications to electronic solid-state cooling
[2,3], phase-coherent modulation of thermal currents [17,18],
and quantum sensing [19]. In the past few years, they have
also been extensively investigated for thermoelectricity, when
superconductors are used in combination with ferromagnetic
elements [20–24], and the interplay between thermoelectricity
and the superconducting phase is being established [25–29].
In Refs. [30,31], we predicted an unexpected nonlinear ther-
moelectric effect occurring in a system with electron-hole
(EH) symmetry, paradigmatically a tunnel junction between
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two different Bardeen-Cooper-Schrieffer (BCS) supercon-
ductors. We observed that thermoelectricity arises due to a
spontaneous breaking of EH symmetry which occurs when
the electrode with the larger gap has the higher temperature
[30,31]. In the discussion, we focused only on the quasipar-
ticle transport across the junction and we assumed we would
be able to suppress completely any phase-dependent contri-
bution associated to the Josephson effect [12]. The purpose of
this work is to investigate in detail the impact of the phase-
dependent terms on the thermoelectric behavior. As we will
show below, the generation of a finite thermoelectric voltage
is still possible in the presence of Josephson contributions, but
an additional oscillating behavior is generated in accordance
with the Josephson effect. We demonstrate that the sponta-
neous generation of a thermoelectric voltage and current can
be controlled by tuning the strength of the phase-dependent
terms, which, for the setup we consider, can be modulated
by changing the magnetic flux in a superconducting quantum
interference device (SQUID) [12,32]. Moreover, we discuss
the impact of the Josephson terms on the whole dynamics of
the system. In particular, the frequency and the amplitude of
the thermoelectric-induced oscillations are numerically com-
puted, and approximate expressions are obtained in some
limiting cases.

II. MODEL AND RESULTS

A. Charge transport and thermoelectricity in a
superconducting junction

The charge current in a tunnel junction between two super-
conductors depends both on the phase bias (ϕ) and the voltage
(V ) applied to the junction, as first predicted by Josephson
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[12,33,34]

I (V, ϕ) = Iqp(V ) + I j (V ) sin ϕ + Iint (V ) cos ϕ, (1)

where Iqp is the quasiparticle contribution, I j is associated with
Cooper pairs tunneling, and Iint gives the interference contri-
bution associated with breaking and recombination process of
Cooper pairs on different electrodes of the junction [35]. The
explicit expressions of Iqp, I j, Iint are given in Appendix A, and
are well known in the literature [12,34,36]. The current obeys
the symmetry I (V, ϕ) = −I (−V,−ϕ). Thus, Iqp, Iint are odd
in V and represent the dissipative (or active in the presence
of thermoelectricity) components of the current, whereas the
function I j (V ) is even and corresponds to a purely reactive
contribution [37,38]. Indeed, in the presence of a phase bias,
the junction can support an equilibrium (nondissipative) cur-
rent even for V = 0, I = Ic sin ϕ (dc Josephson effect), where
Ic = I j (V = 0) is called critical current. At a finite voltage
V �= 0, the phase across the junction oscillates in time accord-
ing to the Josephson equation (AC Josephson effect)

dϕ

dt
= 2eV

h̄
, (2)

where h̄ is the reduced Planck constant, and −e is the electron
charge. Namely, for a constant bias V (t ) = V0 the phase-
dependent terms oscillate in time with Josephson frequency
f j = |V0|/�0 and zero average value, where �0 = π h̄/e ≈ 2
fWb is the flux quantum. In this case, the dc response of the
junction is given by the quasiparticle contribution only. For
our purposes, we consider a junction between two different su-
perconductors (S, S′) and introduce an asymmetry parameter
r = �0,S′/�0,S = Tc,S′/Tc,S , where �0,i = 1.764kBTc,i (with
i = S, S′) is the zero-temperature order parameter and Tc,i is
the critical temperature of the i electrode. Figure 1(a) dis-
plays the voltage dependence of the three contributions when
the electrodes have equal temperatures TS = TS′ = T and r =
0.75. In the low-temperature limit T � Tc,S (dashed lines),
both Iqp and Iint are strongly suppressed for |V | < (�0,S +
�0,S′ )/e and finite at higher voltage. Note that Iqp is posi-
tive and monotonically increasing for V > (�0,S + �0,S′ )/e,
where it asymptotically reads Iqp = GT V (GT is the nor-
mal state conductance). On the other hand, Iint is negative
and monotonically decreasing in module for V > (�0,S +
�0,S′ )/e. The Cooper pairs term I j has a more complex evo-
lution: it is monotonically increasing for 0 < V < (�0,S +
�0,S′ )/e, where it diverges (the divergence is smoothed with
the introduction of a finite phenomenological parameter �;
see Appendix A), and it is monotonically decreasing at higher
voltages. In the same plot, we display the evolution also for a
finite value of the temperature, i.e., T = 0.6Tc,S . While the
overall behavior of the curves is similar, Iqp, Iint are now
finite and display a positive conductance Gi = Ii/V > 0, with
i = {qp, int} at subgap voltages |V | < [�S (T ) + �S′ (T )]/e,
showing a nonlinear evolution characterized by a peak for
V = ±Vp = ±|�S (T ) − �S′ (T )|/e, due to the matching of
the BCS singularities in the density of states of the two su-
perconductors [12]. With increased temperature, the Cooper
pairs term is reduced due to the monotonically decreasing
evolution of the superconducting gaps [�i(T ) � �0,i]. For the
same reason, the voltage value where the Cooper pairs term
has the peak and the other contributions have a sharp jump,
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FIG. 1. (a) Voltage evolution of the three contributions Iqp, Iint, Ij

to the current in a tunnel junction between two BCS superconductors
(SIS′ junction) for TS = TS′ = T and r = 0.75. Dashed curves give
the low-temperature behavior T → 0, whereas the solid curves are
displayed for T = 0.6Tc,S . (b) Subgap voltage evolution of Iqp, Iint, Ij

in the presence of a thermal gradient TS = 0.7Tc,S and TS′ = 0.01Tc,S .
The absolute negative conductance in the quasiparticle and the inter-
ference contributions denotes a thermoelectric behavior. (c) Circuit
scheme of the proposed system. A superconducting ring made of two
different superconductors, interrupted by two Josephson junctions,
is connected in series with an external resistor R and an external
inductor L (RL circuit). A thermal bias is imposed between the two
superconductors. (d) Flux evolution of the Josephson current for two
symmetric junctions.

i.e., V = [�S (T ) + �S′ (T )]/e, is reduced with respect to the
low-temperature limit.

Since we are interested in the description of thermoelectric
phenomena, we consider a situation where a temperature dif-
ference is established between the electrodes, namely TS �=
TS′ . Note that in the absence of a temperature bias, i.e.,
TS = TS′ , the behavior of the junction is purely dissipative,
since (Iqp + Iint cos ϕ)V > 0 for every ϕ [38], as required by
the second law of thermodynamics [30]. Conversely, with a
thermal gradient it is possible to have a thermoelectric power
generation with positive entropy production. In particular, a
thermoelectric behavior is characterized by a positive ther-
moelectric power Ẇ = −IV > 0 produced by the junction.
As discussed above, this definition mainly applies to the
even-ϕ component of the current, i.e., Iqp + Iint cos ϕ, since
the Cooper pairs term I j sin ϕ essentially describes a reac-
tive component. In Ref. [30], we predicted the existence of
a thermoelectric effect at subgap voltages in the quasiparti-
cle component; namely, we demonstrated that we can have
IqpV < 0 for small values of V , provided that the supercon-
ductor with the larger gap is heated up [in our notation TS >

TS′ and �S (TS ) > �S′ (TS′ ), since we assumed �0,S > �0,S′ ].
This is shown in Fig. 1(b), where the subgap evolution of
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Iqp, Iint, I j is displayed for TS = 0.7Tc,S and TS′ = 0.01Tc,S . In
particular, at a low voltage the quasiparticle curve displays
a peculiar negative conductance Gqp(V ) = Iqp(V )/V < 0 and
hence finite thermoelectric power Ẇ = −IqpV > 0. In the
absence of phase-dependent terms, the negative value of Gqp

for V → 0 implies a spontaneous breaking of electron-hole
symmetry. This leads to the generation of a thermoelectric
voltage due to the existence of finite voltage values ±VS where
the current is zero [Iqp(VS ) = 0], as discussed in Refs. [30,31].

Consider now the phase-dependent terms. Interestingly, the
interference term (green) behaves similarly to the quasipar-
ticle term, also showing a negative conductance Gint (V ) =
Iint (V )/V < 0 around the origin [39]. In particular, the zero-
bias value of the differential conductance reads G0,int =
G0,qp�S (TS )/�0,S′ in the limit TS′ → 0 (see Appendix A). The
Cooper pairs term (yellow) is roughly constant for V < Vp =
[�S (TS ) − �S′ (TS′ )]/e, where it sharply decreases, and rises
monotonically at higher voltages. Similar jumps are observed
also in the temperature evolution of the critical current [40].
Note that the size of the Cooper pairs term, which is finite
at V = 0, is quite larger than the quasiparticle contribution.
As a consequence, it is reasonable to expect the Josephson
current to have a potentially crucial impact on the features of
the thermoelectric effect.

B. Circuit dynamics modeling

In order to describe the impact of the phase-coherent con-
tributions on the thermoelectricity of the junction, we consider
a system where the size of I j , Iint can be externally tuned. More
precisely, we investigate the circuit displayed in Fig. 1(c).
The system features a superconducting ring made of two
different superconductors, which are coupled by two tunnel
junctions. This configuration is known in the literature as the
direct-current superconducting quantum interference device
(dc-SQUID) [12,32]. We assume that the superconducting
ring is connected to an external circuit, which constitutes an
idealized model for the electrical environment described in
terms of lumped elements, i.e., an inductance L and a load
R. Each of the two junctions displays the nonlinear current-
voltage characteristic I (V, ϕ) of Eq. (1), so that the total
current in the dc-SQUID reads

ISQ = I1(V, ϕ1) + I2(V, ϕ2) = I (V, ϕ1) + αI (V, ϕ2), (3)

where ϕ1 and ϕ2 are the phase differences across the two junc-
tions and α = GT 2/GT 1 is the ratio between the conductances
of the two junctions in the normal state. For simplicity, in
the theoretical modeling we will consider a fully symmetric
SQUID (α = 1), even if the results can be properly extended
to asymmetric junctions [41]. For a proper description of the
dynamics, we need to consider also the capacitance C of
each of the two junctions. Because of the ring geometry, the
superconducting phase differences across the two junctions
are related by the fluxoid quantization, namely,

ϕ1(t ) − ϕ2(t ) + 2π�/�0 = 2πn, n ∈ Z, (4)

where � is the total flux out of plane of the superconducting
ring. The magnetic flux � coincides with the flux applied
externally, since we assume the self-inductance of the ring is
negligible. By minimizing the free energy of the SQUID with

respect to the superconducting phases ϕ1, ϕ2, and using the
constraint of the fluxoid quantization Eq. (4), we can rewrite
the expression of Eq. (3) as

ISQ = 2Iqp(V ) + 2

∣∣∣∣cos

(
π

�

�0

)∣∣∣∣[I j (V ) sin ϕ̃ + Iint (V ) cos ϕ̃],

(5)
where ϕ̃ = (ϕ1 + ϕ2)/2. The circuit dynamics is finally ex-
pressed by [42] ⎧⎨

⎩
IL = 2CV̇ + ISQ(V, ϕ̃,�)
V = −LİL − RIL
˙̃ϕ = 2eV/h̄,

(6)

which is an autonomous nonlinear system of differential equa-
tions in the three variables ϕ̃,V, IL . The first equation in
Eq. (6) gives the current conservation in the circuit: The cur-
rent IL which flows in the inductor L and in the load R is the
sum of the currents in the capacitances (first term in the right
side) and in the two junctions (second term in the right side).
The second equation in Eq. (6) gives the Kirchhoff voltage
rule in the circuit: The voltage V across the SQUID is equal
to the sum of the voltage drops in the inductance and in the
load. The last identity in Eq. (6) follows from the Josephson
relation between the phase bias and the voltage bias in a
Josephson junction of Eq. (2). As can be seen from Eq. (5),
the absolute strength of the phase-dependent contributions can
be fully tuned by varying the magnetic flux �, as shown in
Fig. 1(d) for the Cooper pairs term I j at V = 0. In particular,
the evolution of the phase-coherent contributions is periodic
with period �0: The Josephson current is maximum for � =
n�0 (with n ∈ Z) and it is exactly zero for � = (n + 1/2)�0

[43]. For this reason, we will consider the evolution only in a
single period � ∈ [0,�0].

C. Flux modulation of the dc thermoelectricity

We investigate if the thermovoltage can be generated in
the presence of the phase-dependent terms. First, we consider
situations where these terms are suppressed, which mainly
happens for � ∼ (n + 1/2)�0 (with n ∈ Z). Indeed, for � =
(n + 1/2)�0 the phase-coherent contributions are zero. In this
case, the dynamics of the variables V, IL is independent on
ϕ̃. This limit corresponds to the one previously discussed
in Ref. [30]. In particular, the stationary time-independent
solutions are obtained by solving the implicit equation [44]

IL = 2Iqp(V̄ ) = −V̄ /R. (7)

For a dissipative junction, IqpV > 0, and the only solution of
Eq. (7) is V = 0 (and thus IL = 0). However, in the pres-
ence of a thermoelectric effect, the behavior of the system
depends on the size of the load R [30,31]. That is, for R <

Vp/[2|I (Vp)|], the system may display a oscillatory behav-
ior with zero average value of IL and V . Conversely, for
R > Vp/[2|I (Vp)|], the system admits stationary and time-
independent solutions (V, IL ) = (V̄ , 2Iqp(V̄ )), where |V̄ | >

Vp. Note that, due to EH symmetry, each positive solution
V̄ > 0 has a corresponding solution −V̄ < 0. As a conse-
quence, the system approaches either V̄ or −V̄ in the steady
state, depending on the specific initial condition [30].
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FIG. 2. (a) Mean thermoelectric voltage across the SQUID in
the absence of the Josephson effect, as a function of the load R.
The thermovoltage obtained by numerical solution of the system
of Eq. (6) (solid gray) is compared to the self-consistent solution
of Eq. (7) (dashed). (b) Flux evolution of the mean thermoelectric
voltage for selected values of R [marked by the colored points in
panel (a)]. (c) Flux dependence of the frequency of the oscillations in
the steady state. (d) Flux control of the amplitude of the oscillations
in the steady state. Parameters are G−1

T = 1k�, L = 1 nH, C = 100
fF, TS = 0.7Tc,S , TS′ = 0.01Tc,S , Tc,S = 1.6 K, and r = 0.75.

Here, and in the rest of this work, we consider a set of real-
istic parameters, for an aluminum-based SQUID with Tc,S =
1.6 K (and thus �0,S = 1.764kBTc,S ∼ 240 μeV) and GT =
(1 k�)−1. We consider the thermoelectric situation displayed
in Fig. 1(b) for scaled quantities, where r = 0.75 and eVp ∼
0.08�0,S 	 19 μeV. Figure 2(a) displays the absolute value
of the stationary value of the thermoelectric voltage V0 = |V̄ |
(solid) as a function of the load R computed through numer-
ical solution of the system of Eq. (6) (see the discussion in
Sec. II C 2) and the thermoelectric voltage obtained by solving
the implicit equation, Eq. (7) (dashed). Note that the two quan-
tities coincide, except for a very narrow range 150� � R �
200� where the solution of the implicit equation is different
from zero, while the result of the numerical integration is zero.
This small difference in behavior is associated to the stability
of the V = 0 solution of Eq. (7) and will be discussed in more
details after. As discussed above, the thermoelectric voltage is
zero for low values of R and it is finite (and larger than Vp) and
monotonically increasing for R > Vp/[2|I (Vp)|] ∼ 150�. In
the limit R → ∞, the thermoelectric voltage approaches the
Seebeck voltage VS , i.e., the zero-current solution I (VS ) = 0
with finite voltage bias VS �= 0.

1. Small Josephson contribution

In the presence of a small Josephson current, the picture
described above is expected to be slightly modified. Indeed,

in the presence of a finite voltage V̄ , the phase evolves in
time ϕ̃(t ) ∼ 2eV̄ t/h̄ due to the ac Josephson effect and so
an oscillating term δV (t ) with frequency fV̄ = |V̄ |/�0 is
superimposed to the dc thermoelectric voltage, i.e., V (t ) ∼
V̄ + δV (t ). In order to compute the perturbative contribution
δV (t ), we consider the first equation in Eq. (6), V̇ = ˙δV =
(2C)−1(IL − ISQ). In the leading order of the perturbative ex-
pansion, IL ∼ −V̄ /R, and we can approximately set V ∼ V̄
and ϕ̃(t ) ∼ 2eV̄ t/h̄ in ISQ(V̄ , ϕ̃,�). We obtain

˙δV 	 −2
∣∣ cos

(
π �

�0

)∣∣
2C

×
[

I j (V̄ ) sin

(
2eV̄ t

h̄

)
+ Iint (V̄ ) cos

(
2eV̄ t

h̄

)]
. (8)

Since I j (V̄ ) � |Iint (V̄ )|, we can neglect the second term in the
right side of the equation in first approximation, and obtain by
integration

V (t ) 	 V̄ + h̄

4e|V̄ |C Ij (�) cos

(
2eV̄ t

h̄

)
(9)

where I j (�) = 2I j (V̄ )| cos(π�/�0)| [45] is the amplitude
of the Josephson current of the SQUID. The degree of va-
lidity of the perturbative solution is good when the size
of the correction is much smaller than the leading term,
i.e., h̄I j (�)/(4e|V̄ |C) � |V̄ |. In terms of the Josephson cur-
rent suppression, the previous relation requires I j (�)/I j (� =
0) � 4eC|V̄ |2/[h̄I j (� = 0)]. The typical thermovoltage is
of order V̄ ∼ 0.1�0,S/e, whereas the critical current is
roughly I j (� = 0) ∼ GT π�0,S/e, giving I j (�)/I j (� = 0) �
0.01C�0,S/(GT h̄). Interestingly, this last inequality shows
that the requirement on the Josephson coupling suppression
to generate an average thermoelectric signal depends on the
superconducting gap but not necessarily on the geometric
area of the junction, since both C and GT are proportional
to the area of the junction. For an aluminum-based structure,
characterized by �0,S ≈ 0.2 meV, specific capacitance of the
barrier C/A = 50 fF/μm2, and specific conductance GT /A =
1 mS/μm2, one obtains I j (�)/I j (� = 0) � 0.15. This repre-
sents the worst-case scenario, where the mean thermoelectric
voltage is as small as V̄ ≈ 0.1�0,S/e. We recall that the
value of V̄ , which is obtained by solving self-consistently
Eq. (7), grows monotonically with the load resistor R [see
Fig. 2(a)]. Since the amplitude of the oscillations is inversely
proportional to the mean thermoelectric voltage δV ∝ 1/V̄
(which has to be compared with V̄ ), the range of validity
of the perturbative solution is extended by increasing R. For
instance, for a large resistor R such that the thermoelectric
voltage is doubled, V̄ ≈ 0.2�0,S/e, the previous inequality
reads I j (�)/I j (� = 0) � 0.6. This means that sometimes a
moderate suppression of the Josephson coupling is sufficient
to generate a dc thermovoltage, as confirmed by the numerical
results discussed in the next subsection.

2. Flux evolution of the circuit dynamics

Now we wish to discuss the crossover between � = 0,
where the phase-coherent contribution is maximum, to the
case � = 0.5�0, where it is zero. We consider a few cases
where R > Vp/[2|I (Vp)|], and thus the load is large enough

043091-4



PHASE-TUNABLE THERMOELECTRICITY IN A … PHYSICAL REVIEW RESEARCH 2, 043091 (2020)

to induce a spontaneous symmetry breaking in the absence
of Josephson contributions [see colored points in Fig. 2(a)].
We solved numerically the system of Eq. (6): After a tran-
sient evolution, the steady-state solution is periodic, with a
period Tper which depends both on the load and on the SQUID
magnetic flux. Figure 2(b) displays the average value of the
voltage signal in the steady state V̄ = 1/Tper

∫ t0+Tper

t0
V (t ′)dt ′

as a function of the magnetic flux for the three values of the
load considered. For all the curves, the mean voltage is finite
and very close to the value at � = 0.5�0 for values of the flux
where the critical current is strongly suppressed. These results
show that even in the presence of a small phase-coherent
(Josephson) contribution, the junction may still generate a
breaking of EH symmetry and a net dc thermoelectric con-
tribution. On the other hand, for large values of the critical
current the mean voltage drops to zero. Note that the critical
value of the flux where V̄ switches from zero to a finite value
depends on various parameters, and in particular on the load
resistance. For a large load, the dc thermoelectric voltage is
present even in the presence of a moderate Josephson current,
according to the discussion of the previous subsection. In
order to characterize the dynamics more completely, we com-
puted the frequency f = 1/Tper and the amplitude, defined as
AV = [maxt V (t ) − mint V (t )]/2, of the voltage oscillations
in the steady state. Figure 2(c) displays the flux evolution of
the frequency. In particular, the frequency decreases by reduc-
ing the critical current in the region where the average value of
the voltage is zero, whereas it is larger and it is exactly propor-
tional to the mean value V̄ of the oscillations when V̄ �= 0, due
to the ac Josephson effect. The corresponding amplitude of the
oscillations is shown in Fig. 2(d). In the region where V̄ = 0,
the amplitude slightly decreases upon decreasing the phase-
coherent contributions, and then decreases sharply to a small
value in the proximity of � = 0.5�0, where the amplitude is
well described by the prefactor of the cosine term in Eq. (9)
[see dashed lines in Fig. 2(d)].

D. Load dependence

Here we give a more general discussion of the impact of
the load R on the dynamics of the junctions and hence on
the thermoelectric features. We will consider two extreme
values of the flux: � = 0, where the phase contributions are
maximized, and � = 0.5�0, where they are minimized. Fig-
ure 3(a) displays the frequency of the steady-state oscillations
as a function of the load resistor. The corresponding amplitude
of the voltage oscillations is shown in Fig. 3(b).

1. Small Josephson contribution

Consider first the case � = 0.5�0, where the Josephson
coupling is negligible. We can identify three main regions.
For a small load, i.e., for R � 10�, the voltage bias falls
mainly across the inductor L, i.e., V (t ) ∼ −LİL(t ) and the
system behaves as an LC oscillator of characteristic frequency
f ∼ fLC = (2π

√
2LC)−1 ≈ 11.3 GHz. The steady-state os-

cillations are characterized by a zero mean value of the voltage
bias and a sizable amplitude which can be computed through
the energy balance in the system. In particular, in the steady
state, the total energy dissipated in one cycle in the resistor
(Joule heating) must be equal to the total energy provided by
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FIG. 3. [(a), (b)] Load evolution of the frequency (a) and the
amplitude (b) of the steady-state oscillations for minimal and maxi-
mal phase-coherent contributions. The gray region denotes the area
where the system displays a chaotic behavior for � = 0, which
may result in a relaxation to a zero-current time-independent so-
lution. The plot also displays the approximate expressions for the
frequency and the amplitude of the oscillations in the low-load limit
(double-dot-dashed) and the large-load limit (dot-dashed). (See the
Appendix C for the details of the calculations). Inset: magnification
of the amplitude for � = 0.5�0 in the large-load limit. Parameters
are G−1

T = 1k�, L = 1 nH, C = 100 fF, TS = 0.7Tc,S , TS′ = 0.01Tc,S ,
Tc,S = 1.6K, and r = 0.75.

the superconducting junctions,∫ Tper

0
RIL(t ′)2dt ′ = −

∫ Tper

0
ISQ(t ′)V (t ′)dt ′. (10)

In the steady state, the previous equation is generally valid
irrespectively on the strength of the Josephson coupling. In
the case considered here (� = 0.5�0), the SQUID current
is given by the quasiparticle transport, ISQ(t ′) = 2Iqp(V (t ′)).
In general, the power generated by the thermoelectric ef-
fects in the junction is able to self-sustain an oscillatory
behavior in the steady state. It is relevant to note that the
thermoelectric power is given both by Iqp and Iint (if present).
Assuming a quasisinusoidal oscillatory regime in the steady
state with zero average value, i.e., V (t ) 	 AV cos(2π fLCt ),
IL(t ) 	 AI sin(2π fLCt ) [with AI = −AV /(2π fLCL) since
V (t ) ∼ −LİL(t )], the energy balance Eq. (10) yields an
integral-algebraic equation in AV which can be numerically
solved for each value of R. The result of this approximation
is shown in Fig. 3(b) with a double-dot-dashed curve (lower)
and describes very accurately the amplitude of the steady-
state signal computed through the numerical solution of the
differential equations in Eq. (6).

At intermediate loads, i.e., 10� � R � 200�, the sys-
tem shows a purely dissipative behavior and relaxes to a
time-independent zero-current state. We stress that in the
range 150� � R � 200�, the junction also supports time-
independent solutions with finite voltage [see dashed line in
Fig. 2(a), which represents the solution of the implicit Eq. (7)],
and the time evolution can be either dissipative and lead to the
zero-current solution IL = V = 0 in the steady state or may
produce a finite dc-thermoelectric voltage, depending on the
particular initial conditions.

For large loads, R > 200�, the voltage oscillates around
the thermoelectric solution V̄ [see solid curve in Fig. 2(a)]
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with frequency f = |V̄ |/�0 and a small amplitude. The latter
is better visualized in the inset of Fig. 3(b), which shows
a magnification of the amplitude, which for this example is
of order 1μV. Note that the amplitude is well described by
the coefficient of the cosine term in Eq. (9), displayed in
the inset with a dashed curve. Thus, the frequency increases
monotonically with the load [since the average thermoelectric
voltage V̄ is monotonically increasing; see Fig. 2(a)] and the
amplitude is moderately decreasing.

2. Large Josephson contribution

For a large value of the Josephson current, the evolution is
qualitatively different. In particular, the frequency is monoton-
ically increasing for low values of the load R < 20�, where
it reaches a maximum fmax ≈ 17 GHz, and monotonically
decreasing at larger values. The amplitude of the oscillations
follows the inverse pattern, with a monotonically decreas-
ing evolution for R < 100�, and a growth at larger values.
It is possible to compute numerically with a good degree
of approximation the load evolution of the frequency and
the amplitude of the voltage oscillations [without integrat-
ing explicitly Eq. (6)], both in the low-load limit [roughly
for R � 10�; see the upper double-dot-dashed curves in
Figs. 3(a) and 3(b)] and in the large load limit [R > 200�;
see the dot-dashed curves in Figs. 3(a) and 3(b)]. Here we
give the fundamental elements of the theoretical approach,
and we leave a more detailed discussion of the modeling to
the Appendix C. In the low-load limit, the frequency of the
oscillations is increased with respect to the zero Josephson
coupling case. In fact, the system still behaves approximately
as a LC oscillator, but with a modified inductance Leff , which
is the parallel of the external inductor L and the Josephson in-
ductance [46] Lj = �0/[2π2I j (0)] ≈ 0.55 nH, namely Leff =
(L−1 + L−1

j )−1 ≈ 0.35 nH and characteristic frequency f ≈
19 GHz. Note that the actual value of the frequency is slightly
smaller and dependent on the load R. This behavior is related
to the nonlinear phase dynamics of the junctions, which is
associated with a frequency and amplitude dependence of
the effective inductance of the circuit Leff ( f ,AV ), as shown
in Appendix C. Therefore, the approximate expressions for
f ,AV (upper double-dot-dashed curves in Fig. 3) are obtained
by solving self-consistently for f = [2π

√
2Leff ( f ,AV )C]−1

and the energy balance Eq. (10) in the circuit. In the latter, one
can obtain an integral equation in terms of f ,AV by assuming
a quasisinusoidal regime, similarly to the zero Josephson cou-
pling case. Moreover, the Cooper pairs term I j (V ) plays no
role in the energy balance since it is purely reactive and only
affects the effective inductance of the circuit Leff ( f ,AV ), as
discussed above.

For a large load, the voltage drop occurs mostly in the resis-
tor IL(t ) ∼ −V (t )/R, and we can write the first of Eq. (6) as a
second-order nonlinear differential equation in the phase-bias

C ¨̃ϕ + 2π

�0
I j

[ ˙̃ϕ�0

2π

]
sin ϕ̃ = −πF (ϕ̃, ˙̃ϕ)

�0
, (11)

where the effective external forces are

F (ϕ̃, ˙̃ϕ) = �0

2πR
˙̃ϕ + 2Iqp

[ ˙̃ϕ�0

2π

]
+ 2Iint

[ ˙̃ϕ�0

2π

]
cos ϕ̃. (12)

For |V (t )| = |�0 ˙̃ϕ(t )/2π | � Vp, one can approximate
I j (V ) 	 I j (V = 0) [see Fig. 1(b)], and Eq. (11) yields a
damped pendulum equation with zero-amplitude angular
frequency ω2

0 = 1/(2LjC) and additional nonlinear terms
which involves both damping and power generation in the
presence of the thermoelectric effect. Unfortunately, in
the typical situation considered here, the amplitude of the
voltage oscillations is larger than Vp and the approximation
I j (V ) 	 I j (V = 0) is inaccurate. Hence, the system behaves
as a nonlinear pendulum where the zero-amplitude frequency
depends on V ∝ ˙̃ϕ [in the mechanical pendulum analog,
the length changes during the evolution similar to an elastic
string]. The right-hand side of Eq. (11) contains both the
damping and the driving force of the nonlinear pendulum. In
particular, in Eq. (12) the first term in the right-hand side gives
the damping associated to the Joule heating in the load. The
second term gives the quasiparticle current, which is active
when |V | < VS and dissipative otherwise, where VS �= 0 is the
Seebeck voltage [we recall that at the Seebeck voltage the
quasiparticle current is zero Iqp(VS ) = 0]. A similar behavior,
active at low voltage bias and dissipative at higher voltage
bias, applies also to the interference term.

In order to evaluate f ,AV as a function of the load R,
one has to solve self-consistently the energy balance in the
steady-state Eq. (10) [which involves the terms in Eq. (12)]
and the relation between the frequency and the amplitude in
the nonlinear pendulum [47],

ω = 2π f = π

2
ω0

1

K[sinAϕ̃/2]
. (13)

Above, K[k] is the complete elliptic integral of the first kind,
Aϕ̃ = [maxt ϕ̃(t ) − mint ϕ̃(t )]/2 is the amplitude of the phase

oscillations, and we replaced I j (0) → A−1
V

∫ AV

0 I j (V ′)dV ′ in
ω0 = 1/

√
2LjC. The theoretical modeling exploits an highly

accuracy approximate solution of the nonlinear pendulum
equation [48] which includes the effect of higher harmonics
(see Appendix C for a detailed discussion), and perfectly
describes the motion of the system (see the dot-dashed curves
in Fig. 3). The load evolution of f ,AV can be qualitatively
understood as follows. By increasing R, the dissipation in
the circuit for a given voltage bias V (t ) is reduced, since
RIL(t )2 ∼ V 2(t )/R, producing an increase in the amplitude of
the oscillations. As a consequence, the frequency of the os-
cillations decreases, since in the nonlinear pendulum the
frequency is monotonically decreasing with the amplitude of
the oscillations [see Eq. (13)].

Finally, we note that the behavior of the junction is chaotic
at intermediate values of R (see filled regions in Fig. 3). In
particular, the system may relax to a zero-current time inde-
pendent solution, depending on the initial conditions. This can
be understood by inquiring the eigenvalues of the linearized
equations which describe the dynamics of the system close to
the stationary solutions (see Appendix B).

III. CONCLUSIONS AND DISCUSSION

In summary, we have discussed the dynamics of thermally
biased Josephson junctions, in the presence of the nonlinear
thermoelectric effect recently predicted in tunnel junctions
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between two different BCS superconductors. We investigated
a system where the size of the Josephson coupling can be
externally tuned, by modulating the flux inside a SQUID.
The system displays a rich phenomenology, when inserted in
a generic electric circuit, such as an RL circuit. Depending
on the load, we focused on two relevant different regimes.
In the presence of a large load, the system generates a fi-
nite dc-thermoelectric voltage when the Josephson coupling
is strongly suppressed but still finite, due to the sponta-
neous breaking of EH symmetry. In addiction, the system
outputs an ac signal with frequency exactly proportional to
the thermoelectric voltage, due to the ac Josephson effect.
As a consequence, both the thermoelectric voltage and the ac
signal can be ultimately controlled by changing the size of
the load. When the Josephson coupling is stronger, the sys-
tem generates a pure ac-thermoelectric signal. When the load
connected to the system is small, the systems generates an ac
signal, independently on the strength of the Josephson cou-
pling. Interestingly, the modulation of the Josephson current
induces a control of the effective inductance of the circuit
and hence of the frequency of the thermoelectric signal. The
operating ranges depend on the inductance connected to the
circuit and are in the GHz regime for a standard aluminum-
based structures. We may envision different applications for
this system, taking advantage of the different regimes. First,
we note that when the system generates a dc thermoelectric
signal, one has an autonomous system that converts a tem-
perature gradient in a dc voltage signal which is perfectly
tuned (by the Josephson relation) with the frequency of the
ac component. This may find some value when one need

to have a controlled generator that need to be galvanically
disconnected from external circuits. Another application may
involve the detection of radiation: By tuning the system very
close to the transition point where the mean thermoelectric
voltage switches from V̄ = 0 to V̄ � Vp, the system is highly
sensitive to small parameter variations, such as the load or
the temperature difference. Therefore, events such as pho-
ton absorption may trigger the spontaneous breaking of EH
symmetry. Finally, one may envision an application as an
high-frequency oscillator controlled by the flux and feed with
a thermal gradient only. We believe that the discussed system
presents properties and functionalities that can be relevant in
the field of superconducting quantum technologies.
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APPENDIX A: MICROSCOPIC EXPRESSIONS OF THE
TUNNELING CURRENT

The tunneling expressions of Eq. (1) are

Iqp(V ) = GT

e

∫ +∞

−∞
dENS (E )NS′ (E − eV )[ fS′ (E − eV ) − fS (E )], (A1)

I j (V ) = −GT

2e

∫ +∞

−∞
dE

{
Re[FS (E )]Im[FS′ (E − eV )]Tanh

(
E

2kBTS

)
+ Re[FS′ (E − eV )]Im[FS (E )]Tanh

(
E − eV

2kBTS′

)}
(A2)

Iint (V ) = GT

e

∫ +∞

−∞
dERe[FS (E )]Re[FS′ (E − eV )][ fS′ (E − eV ) − fS (E )], (A3)

where Re[. . . ] and Im[. . . ] denote the real and the imag-
inary parts, respectively. In the BCS model, the quasi-
particle density of states reads Ni(E ) = |Re[(E + j�i)/√

(E+ j�i )2−�2
i ]| and Fi(E )=sgn(E )�i/

√
(E+ j�i )2−�2

i
are the anomalous Green’s functions (here i = S, S′ and j
is the imaginary unit). We assumed the electrodes in the
quasiequilibrium regime, and hence the quasiparticle distribu-
tions are the Fermi functions fi(E ) = [exp(E/kBTi ) + 1]−1,
where kB is the Boltzmann constant. The parameters �i

(typically called Dynes parameters) give a phenomenologi-
cal representation of the finite quasiparticle lifetime [49,50]
or the influence of the electromagnetic environment of a
tunnel junction [51]. In all the calculations, we set �i =
10−4�0,i. Equation (1) [with the expressions Eqs. (A1)–
(A3)] is derived in the tunneling limit for a constant voltage
bias V [12,34]. In the presence of a time-dependent volt-
age, the expression of Eq. (1) does not hold generally
anymore and must be generalized to include time-delayed
effects also [12,37]. However, in this work, we consider

the adiabatic regime [12,46], where we can still use the
expression of Eq. (1), replacing V → V (t ). The adiabatic
approximation holds when the voltage signal is small eV (t ) �
�0,S , or the time variations of V (t ) are small compared
to the gap frequency ≈(1 + r)�0,S/h̄ [12,46]. We consider
realistic values of the circuit parameters where both these
conditions are reasonably fulfilled. We expect that the main
predictions are not crucially affected even beyond the adi-
abatic approximation. As discussed in Refs. [30,31], the
quasiparticle current shows a thermoelectric behavior, i.e.,
Iqp(V )V < 0 for TS > TS′ , provided �S (TS ) > �S′ (TS′ ). In the
limit TS′ → 0 and for small values of the bias V → 0, the cur-
rent is approximately linear Iqp ∼ G0,qpV , where the zero-bias
differential conductance reads [30,31]

G0,qp = −2GT �2
0,S′

∫ ∞

�S (TS )
dE

NS (E ) fS(E )(
E2 − �2

0,S′
)3/2 . (A4)

043091-7



MARCHEGIANI, BRAGGIO, AND GIAZOTTO PHYSICAL REVIEW RESEARCH 2, 043091 (2020)

A similar expression can be derived for the quasiparticle
interference term in the same limit, where Iint ∼ G0,intV , with

G0,int = −2GT �0,S′�S (TS )
∫ ∞

�S (TS )
dE

NS(E ) fS(E )(
E2 − �2

0,S′
)3/2 .

(A5)

Note that the ratio of the two quantities is given by the expres-
sion quoted in the main text,

G0,int

G0,qp
= �S (TS )

�0,S′
� 1 (A6)

since the inequality holds in the thermoelectric regime, where
�S (TS ) � �0,S′ .

APPENDIX B: LINEARIZATION AND STABILITY
ANALYSIS

In order to describe the different regimes of the dynami-
cal system, it is convenient to work in scaled units, namely,
we consider ii = eIi/GT �0,S (with the subscript i = {L, SQ}),
v = eV/�0,S , �̃ = π�/�0 and τ = t/

√
2LC. The frequency

of the oscillations is obtained by multiplying the scaled
frequency ω̃ by fLC = (2π

√
2LC)−1 ≈ 11.3 GHz for our

parameters choice. The system of Eq. (6) in scaled units

reads⎧⎨
⎩

v̇=ε{iL−2iqp(v)−2| cos �̃|[i j (v) sin(ϕ̃)+iint (v) cos(ϕ̃)]}
ε i̇L = −ξ iL − v
˙̃ϕ = κv.

(B1)
Note that the dynamics of the system depends on three
dimensionless parameters: ε, κ, ξ . More precisely, κ =
2�0,S

√
2LC/h̄ is the ratio between the gap frequency 2�0,S/h̄

and the angular frequency of the LC oscillations 2π fLC.
As discussed in Appendix A, the validity of Eq. (1) [with
the expressions Eqs. (A1)–(A3)] is restricted to the adia-
batic regime, where the time variations are much smaller
than the gap frequency, i.e., κ � 1 [in our calculation, we
set κ ≈ 10.5]. The other parameters are ξ = GT R = R/RT ,
which is the ratio between the load and the normal state
resistance RT and ε = GT

√
L/(2C), which is proportional

to the strength of the thermoelectric effect and thus also
characterizes the coupling to the nonlinear terms of the sys-
tem of equations. It is convenient to have a small value
of ε, to avoid strong nonlinearities in the dynamics (in the
calculations, we set ε ≈ 0.07). It is worth noting that the
values of κ and ε adopted are obtained by considering real-
istic values for typical Josephson junctions realized through
standard nanofabrication techniques. The stationary and time-
independent solutions are obtained by setting v̇ = ˙̃ϕ = i̇L = 0
and read v = iL = 0, ϕ̃ = nπ (with n ∈ Z). The stability anal-
ysis can be inquired with a standard linearization procedure,
which leads to the matrix equation

⎛
⎝ v̇

i̇L
˙̃ϕ

⎞
⎠ =

⎛
⎝−2ε[gqp + (−1)ngint| cos �̃|] ε −(−1)n2εi j,0| cos �̃|

−ε−1 −ξ/ε 0
κ 0 0

⎞
⎠

⎛
⎝v

iL
ϕ̃

⎞
⎠ = M

⎛
⎝v

iL
ϕ̃

⎞
⎠, (B2)

where gi = Gi(V = 0)/GT (with i = {qp, int}) is the scaled zero-bias differential conductance and i j,0 = i j (v = 0). In particular,
a necessary condition for the stability of the stationary and time-independent solutions is that the real parts of all the eigenvalues
of the matrix in Eq. (B2) are negative [52]. The eigenvalues λ can be obtained by solving the characteristic equation, obtained
by setting det (M − λI) = 0,

λ3 + [2ε(gqp + (−1)ngint| cos �̃|) + ξ/ε]λ2 + [1 + 2gqpξ + (−1)n| cos �̃|2(gintξ + i j,0κε)]λ + (−1)n2κξ i j,0| cos �̃| = 0,

(B3)

where I is the 3 × 3 identity matrix. The explicit expressions
of the eigenvalues in terms of the various parameters of the
system are obtained by using the cubic formula (not shown
here). Figure 4 displays the load evolution of the real part of
the eigenvalues λ1,2,3 as a function of the load resistor for the
set of parameters used in the main text, both for odd values
[Fig. 4(a)] and even values [Fig. 4(b)] of n. Note that for
odd values of n [Fig. 4(a)] the real part of λ2 (solid red) is
positive irrespectively of R. As a consequence, the stationary
time-independent solutions v = iL = 0, ϕ̃ = nπ (with odd n)
are always unstable. The situation is different for even values
of n [Fig. 4(b)]. In particular, the plot shows that for 60� �
R � 230� (filled region) all the real parts of the eigenval-
ues are negative [the real parts of λ2 and λ3 coincide since
λ2 = λ∗

3 in this case]. As a consequence, in this region the
stationary time-dependent solution characterized by v = iL =
0, ϕ̃ = nπ (with even n) is stable, and the time-dependent
evolution of the system depends on the initial conditions,

as we verified numerically by solving Eq. (B1) for different
values of iL(τ = 0), v(τ = 0), ϕ̃(τ = 0). More precisely, if
the system is slightly perturbed around the stationary solu-
tion, in the evolution, it may relax to iL = v = 0, ϕ̃ = nπ .
For larger perturbations, the system approaches a limit cycle
characterized by a periodic oscillation whose amplitude and
frequency are shown in Fig. 3 of the main text.

APPENDIX C: STRONG JOSEPHSON CONTRIBUTION

In the presence of a strong Josephson current, the
electron-hole symmetry breaking is only obtained in the time-
dependent domain, and both the mean value of the current ī
and the mean voltage v̄ are equal to 0. We focus on two differ-
ent regimes, related to the value of the load. For simplicity, we
consider the case of zero flux, but the results can be extended
to � �= 0.
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FIG. 4. Evolution of the real part of the eigenvalues of the matrix
M in Eq. (B2) for odd values (a) and for even values (b) of n (for
�̃ = 0). The filled region in panel (b) denotes the interval where all
the eigenvalues have negative real part, and so the stationary point
solution is stable.

1. Small load

In the presence of a small load, we look for a perturbative
solution for the current in the circuit

iL(τ ) = i(0)
L (τ ) + ξ i(1)

L (τ ) + . . . , (C1)

where i(0)
L (τ ) is the solution in the absence of the load ξ → 0.

Inserting in the second of Eq. (B1), we can extract by pertur-

bative analysis in ξ

ε i̇(0)
L = −v,

(C2)
ε i̇(1)

L = −i(0)
L .

Upon insertion in the first equation of Eq. (B1), we obtain

ï(0)
L + i(0)

L + ξ i(1)
L = 2iqp(v) + 2i j (v) sin(ϕ̃) + 2iint (v) cos(ϕ̃).

(C3)

We are interested in the steady-state oscillatory evolution of
the system, characterized by an unknown angular frequency
ω̃ = 2π/T̃per (here T̃per is the scaled period). By assuming a
quasisinusoidal oscillation in the voltage, neglecting higher
harmonics of the oscillations, one gets

v(τ ) = ÃV sin(ω̃τ ),

˙̃ϕ = κv → ϕ̃(τ ) =−κÃV

ω̃
cos(ω̃τ ) = ϕ̃(τ ) = −Ãϕ̃ cos(ω̃τ ),

ε i̇(0)
L (τ ) = −v(τ ) → i(0)

L (τ ) = ÃV

εω̃
cos(ω̃τ ),

ε i̇(1)
L (τ ) = −i(0)

L (τ ) → i(1)
L (τ ) = − ÃV

ε2ω̃2
sin(ω̃τ ),

(C4)

where we defined Ãϕ̃ = κÃV /ω̃. In order to compute ÃV , ω̃,
we insert these expressions in the current conservation equa-
tion Eq. (C3) and obtain

ÃV

εω̃
(−ω̃2 + 1) cos ψ − ξÃV

ε2ω̃2
sin ψ = 2[iqp(ÃV sin ψ ) − i j (ÃV sin ψ ) sin(Ãϕ̃ cos ψ ) + iint (ÃV sin ψ ) cos(Ãϕ̃ cos ψ )], (C5)

where we defined ψ = ω̃τ . We obtain two coupled equations
through multiplication by either cos ψ or sin ψ and integrating
over a period. We get

ξπÃV

2ε2ω̃2
+

∫ 2π

0
[iqp(ÃV sin ψ )

+ iint (ÃV sin ψ ) cos(Ãϕ̃ cos ψ )] sin ψdψ = 0, (C6)

ω̃2 = 1 + 2εω̃

ÃV π

∫ 2π

0
i j (ÃV sin ψ ) sin

(
Ãϕ̃ cos ψ

)
cos ψdψ,

(C7)

where we have divided the either active or dissipative com-
ponents of the current (related to iqp and iint, in phase with
the voltage bias) by the reactive component i j (shifted by
π/2 with respect to the voltage bias), exploiting the different
symmetries in ϕ̃, v of the three contributions.

Equation (C6) is related to the energy balance in the sys-
tem, since at the steady-state the energy dissipated in the load
during a period must be equal to the total energy produced
in the junction for each cycle. In fact, it can be rewritten in
general as

∫ T̃per

0
ξ i2

L(τ )dτ =
∫ T̃per

0
[−iSQ(τ )v(τ )]dτ, (C8)

which is exactly Eq. (10) in scaled units. Equation (C7) gives
the relation between the frequency and the amplitude of the
oscillation. The Josephson current affects the effective induc-
tance of the circuit and produces an increased frequency of the
oscillatory behavior with respect to the case where i j ≈ 0. The
second term in the right side of Eq. (C7) can be interpreted as
the frequency-dependent correction of the circuit inductance
due to the Josephson term (in units of 1/L). In fact, for small
values of the phase oscillations ÃV , κÃV /ω̃ � 1 (which is
never properly met in our case), the integral gives a frequency-
independent result:

2εω̃

ÃV π

∫ 2π

0
i j (ÃV sin ψ ) sin(Ãϕ̃ cos ψ ) cos ψdψ

	 2κεi j,0 = L

Lj
, (C9)

where Lj = �0/[2π2I j (0)] is the Josephson inductance,
and we used Ãϕ̃ = κÃV /ω̃. Finally, the amplitude and the
frequency of the oscillation are obtained by solving self-
consistently Eqs. (C6) and (C7).

2. Large load

In the presence of a large load, we can neglect the voltage
drop across the inductor and write iL(τ ) ∼ −v(τ )/ξ . Upon
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substitution in the current conservation equation, we can write
down a pendulum-like equation with self-forcing and dissipa-
tion [Eq. (11) in scaled units]

¨̃ϕ

2κε
+ i j ( ˙̃ϕ/κ ) sin ϕ̃

= −
[ ˙̃ϕ

2κξ
+ iqp( ˙̃ϕ/κ ) + iint ( ˙̃ϕ/κ ) cos ϕ̃

]
. (C10)

As discussed in the main text, the mechanical analog of this
equation is a pendulum where the pendulum length depends
on the phase derivative ˙̃ϕ and it is subjected to driving and
dissipative forces (right-hand side of the equation). Since the
sine term changes with time during the evolution, we replace
i j (v) with a value averaged over the dynamics, i j (v) → ī j =
ÃV

−1 ∫ ÃV

0 i j (v)dv. We approximate the frequency by using
its relation to the amplitude of the phase oscillations Ãϕ̃ by the
well-known expression for the standard nonlinear pendulum
[Eq. (13) in scaled units]

ω̃ = 2π

T̃per
= π

2
ω̃0

1

K[sin Ãϕ̃/2]
, (C11)

where ω̃0 =
√

2κε ī j and K[k] is the complete elliptic integral
of the first kind. We verified numerically that the frequency
of the steady-state oscillations is well described by this ex-
pression also for our case, upon inserting the values of Ãϕ̃

obtained from the numerical computation. The amplitude is
still related to the energy balance in the circuit in each cycle
(C8). In order to properly describe the oscillations even for

large values of Ãϕ̃ , we exploit the high-precision approximate
solution of the pendulum equation with initial amplitude Ãϕ̃

[48]

ϕ̃(t ) = (c1 − c2Ã2
ϕ̃ )Ãϕ̃ cos(ω̃t )

c1 − (20 + c2)Ã2
ϕ̃ + 20Ã2

ϕ̃ cos2(ω̃t )
, (C12)

where c1 = 960 and c2 = 49. The energy balance equation
becomes∫ 2π

0

[ ˙̃ϕ

2κξ
+ iqp( ˙̃ϕ/κ ) + iint ( ˙̃ϕ/κ ) cos ϕ̃

]
˙̃ϕdψ = 0, (C13)

with ψ = ω̃t . With the use of Eq. (C12) in Eqs. (C11)
and (C13), Ãϕ̃ , ω̃ are obtained by solving self-consistently
Eqs. (C13) and (C11). The approximations for the amplitudes
of the voltage oscillations, displayed in Fig. 3 of the main text,
are obtained from Ãϕ̃ using the expression

ÃV = Ãϕ̃ ω̃

κ

[
1 + 20Ã2

ϕ̃

c1 − (
(c2 + 20)Ã2

ϕ̃

)
]
, (C14)

which is derived by differentiating Eq. (C12) and using v =
˙̃ϕ/κ . Note that, in the sinusoidal limit, the second term in
the square brackets is much smaller than 1 and the relation
between the phase and the voltage oscillations reduces to
ÃV 	 Ãϕ̃ ω̃/κ , as in the analysis of the previous section. In
the main text, we discussed how these approximate expres-
sions compare with the solutions obtained through the direct
numerical integration of Eq. (6).
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