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Abstract Remote sensing technologies allow for continuous and valu-
able monitoring of the Earth’s various environments. In particular, coastal
and ocean monitoring presents an intrinsic complexity that makes such
monitoring the main source of information available. Oceans, being the
largest but least observed habitat, have many different factors affect-
ing theirs faunal variations. Enhancing the capabilities to monitor and
understand the changes occurring allows us to perform predictions and
adopt proper decisions. This paper proposes an automated classification
tool to recognise specific marine mesoscale events. Typically, human ex-
perts monitor and analyse these events visually through remote sensing
imagery, specifically addressing Sea Surface Temperature data. The ex-
tended availability of this kind of remote sensing data transforms this
activity into a time-consuming and subjective interpretation of the in-
formation. For this reason, there is an increased need for automated or
at least semi-automated tools to perform this task. The results presented
in this work have been obtained by applying the proposed approach to
images captured over the southwestern region of the Iberian Peninsula.

Keywords: Image Processing · Remote Sensing · Mesoscale Patterns ·
Sea Surface Temperature · Machine Learning · Climate change

1 Introduction

To achieve a broader understanding and evaluation of the sea environment, an
improvement in marine observation is required. Among all the relevant under-
lying processes in such a differentiated biological system, mesoscale events such
as upwelling, countercurrents and filaments are of particular interest and con-
stitute the subject of our analysis. These events, which transport deeper, colder
and nutrient-rich waters to the surface, and affect the biological parameters of
the habitat, enhancing the local biodiversity [7], can be observed by analysing
Sea Surface Temperature (SST) recorded in remote sensing imagery.

Identifying and categorising upwelling regimes occurring in a marine ecosys-
tem is an essential achievement for its characterisation. The main objective of
this paper is to propose a method for performing an automatic classification of
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images in place of the usual manual one completed by experts. When the number
of images approaches the thousands, i.e. the typical order of magnitude having
the goal to investigate long term and climate-related changes, the manual pro-
cedure is not manageable anymore. The method is applied to the Iberia/Canary
Current System (ICCS), one of the least studied among the upwelling ecosys-
tems [1]. Despite a general circulation similar to others, in ICCS we have diverse
factors having a profound impact on the whole region.

The method proposed in this work is based on implementing an automatic
procedure for classifying large datasets of images according to the different re-
gimes of observable upwelling patterns. Such classification consists of several
stages: starting from the extraction of quantitative features from a region of
interest in the SST maps, proceeding to the characterisation of specific temper-
ature patterns, which are correlated with the water flows between geographical
points at different temperatures. The latter stage is performed by applying a set
of rules to the computed features, which enable the assignment of a final class
label to the considered region.

This paper follows a preliminary presentation given in [5] and represents a
further extension of the work in [6]. It is arranged as follows: Section 2 provides a
description of the employed dataset and the related ground truth classification;
Section 3 reports on the pipeline used in our methods and describes a study
case; Section 4 concludes the paper by discussing the outcomes of this work and
providing a few considerations about future perspectives.

2 Materials

For the purposes of this work, SST data captured by Metop-A/B (EUMETSAT)
and Aqua (NASA) have been collected and processed. Only data covering the
region of interest were downloaded for each source (whose respective details are
reported in Table 1). In particular, points with latitude between 35° and 40° N
and longitude between 12° and 6° W were considered, resulting in 2–3 images
per day at most.

Table 1. Data specifications

Satellite Sensor Spatial Temperature
Type Resolution (km) Resolution (◦C)

Metop-A/B [3] AVHRR 1 10−2

Aqua [2] MODIS 1 5 · 10−3

Expert oceanographers have preliminarily inspected the collected data to
identify recurring SST patterns based on the detection of relevant mesoscale
features (water filaments, upwelling jets and countercurrents). This way, it was
possible to identify four prevailing patterns, named E1–E4 (see [5] for a detailed
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description). Furthermore, each image was labelled according to the observed
pattern, returning a ground truth dataset that could be used as a reference for
the classifier implementation.

3 SST Analysis

In order to better analyse the different types of upwelling patterns, SST data are
retrieved from the sources described in the previous section and arranged in a
spaghetti plot, which is a simultaneous representation of the different SST trends
for a given geographical area and a time interval. It is obtained by first dividing
the considered area into a grid of small squares (whose size may be equal to or
larger than the image spatial resolution). Then, for each square, the SST spatial
average value is computed for each time sample in the dataset falling within
the considered time window. Finally, the obtained ensemble of averaged SSTs is
plotted versus time within the same diagram.

Figure 1 shows an example of an event classified as E4 in the ground truth
and the spaghetti plots corresponding to the selected areas. Events of type E4
are characterised by the presence of a warm countercurrent originating in the
Gulf of Cádiz and running along the southern Iberian coast, eventually reaching
Cape St. Vincent (see Figure 1c). A cold water filament going westwards is also
recognisable (see Figure 1b), which is a pattern typical for events of type E1. In
this case, the squares’ size and the time interval are 0.25° and 15 days respectively
(notice that the ground truth event occurs at the end of the time window). After
several tests, these specific values have been chosen since they return a better
agreement between the results and the ground truth.

A spaghetti plot is then processed to extract statistical features, which de-
pend on the SST signal in each square and its neighbourhood. These features
are later used to classify the considered area, which is then associated with one
of the four mesoscale patterns.

Let a be a square in the grid. As said, we have a temporal series of spatial
SST averages in a, say µi, computed at times ti, i = 1, . . . , n. Notice that n
may change from square to square, since it depends on the number of SST
values captured by the sensor. In fact, the SST recording may fail for some parts
of the area of interest (e.g. due to interfering clouds disturbances). Because of
these considerations, the number of samples n can be considered as an index of
reliability for the classification of the square a. The statistics features computed
for a are:

1. the temporal mean µ(a), defined as the mean of the values µi;
2. the standard deviation σ(a), defined as the standard deviation of the values

µi;
3. the linear regression coefficient θ(a), defined as the slope of the straight line

that better interpolates the values (ti, µi).

The values µ, σ and θ are computed for every square in the grid. Figure 2
shows these values for our case study (event of 7 October 2017; see Figure 1).
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Figure 1. Event of 7 October 2017 at around 21:00 UTC. (a) SST map at the date
of the event; (b) detail of the SST in the reference area for spaghetti plot I (latitude
between 37.25° and 38° N, longitude between 10.75° and 10° W); (c) detail of the SST in
the reference area for spaghetti plot II (latitude between 36.5° and 37.25° N, longitude
between 8.75° and 8° W); (d) reference grid for both plots (dimension of squares 0.25°);
(e,f) generated spaghetti plots.
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Figure 2. Maps representing the values of the statistics for each square, computed for
the event of 7 October 2017 using data from the period between 23 September and
7 October.

The next step is to apply a set of rules to obtain, for each square a, an array of
four scores (e1, e2, e3, e4), with ej ∈ [0, 1]. The value ej represents a belief index
for the event of type Ej to have occurred inside a at the end of the considered
time interval. The implementation of the rules is a crucial component for the
classifier. Indeed, they are handcrafted so that the score ej is boosted only if
the behaviour of the features µ, σ and θ, inside and in the neighbourhood of the
square a, matches the one observed in the case of an Ej pattern. Figure 3 shows
the scores for each square of the grid for the event of Figure 1, computed using
the values of the statistics depicted in Figure 2.

The classification of a square is finally completed by considering the max-
imum score em = max{e1, e2, e3, e4}: if em is above a certain threshold, empir-
ically defined, then the square is labelled “Em”; otherwise no label is assigned.
Figure 4 represents a heatmap with the classification results applied to the event
of Figure 1 using the scores of Figure 3, with each square coloured with the cor-
responding classification label. Also, each square is labelled with the numerical
percentage of the related SST data, which is proportional to the n value as
discussed above.
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Figure 3. Array of the four maps with the scores of the squares relative to the event
of 7 October 2017.

4 Discussion and Conclusion

In this work, a methodology for classifying upwelling events based on the ana-
lysis of SST time series has been proposed. Preliminary tests proved that the
proposed method succeeds in classifying different mesoscale events. A few con-
siderations can be pointed out concerning the presented case study (Figure 1).
First, it is worth noticing that the labelling returned by the classifier agrees with
the ground truth: among the squares located in the area where E4 events usually
occur, those that fulfilled the previously mentioned data abundance constraints
have been correctly labelled (Figure 4). Second, it is to remark that the occur-
rence of a mesoscale event is a phenomenon that depends on both space and
time. In this work, the criterion adopted to formulate the classification rules is
to estimate how much an SST pattern, observed within a given spatial and tem-
poral neighbourhood, is close to a theoretical one. For the presented case study,
these rules have been applied to the computed SST statistics (see Figure 2),
eventually yielding the score maps in Figure 3. Each score map represents the
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Figure 4. Labels given to each square of the grid, depending on their scores.

closeness between the SST signal and each possible mesoscale event. Moreover,
the extracted features take into account not only the SST final observation, cor-
responding to the ground truth label, but also the SST variations captured in
the preceding time window. This is the reason behind the presence of squares
classified differently from E4, in apparent conflict with the ground truth. Since
the proposed approach takes into consideration the SST signal over an extended
range of time, it is reasonable that more than one label is assigned, in agree-
ment with the multiple observed mesoscale events. It is even more so considering
that inside the presented case study’s dataset, different ground truth labels have
been assigned to images captured very close in time. For example, on 6 Octo-
ber, two distinct events are observed: one classified as E1 in the ground truth
approximately at 10:00 UTC, and a second one around 21:20 UTC classified as
E4.

The test and validation of the proposed algorithm are carried out and will
continue as part of the activities of the EU H2020 project NAUTILOS [4].
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