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ABSTRACT The ranking pipelines of modern search platforms commonly exploit complexmachine-learned
models and have a significant impact on the query response time. In this paper, we discuss several techniques
to speed up the document scoring process based on large ensembles of decision trees without hindering
ranking quality. Specifically, we study the problem of document early exit within the framework of a
cascading ranker made of three components: 1) an efficient but sub-optimal ranking stage; 2) a pruner that
exploits signals from the previous component to force the early exit of documents classified as not relevant;
and 3) a final high-quality component aimed at finely ranking the documents that survived the previous phase.
Tomaximize speedup and preserve effectiveness, we aim to increase the accuracy of the pruner in identifying
non-relevant documents without early exiting documents that are likely to be ranked among the final top-k
results. We propose an in-depth study of heuristic and machine-learning techniques for designing the pruner.
While the heuristic technique only exploits the score/ranking information supplied by the first sub-optimal
ranker, the machine-learned solution named LEAR uses these signals as additional features along with those
representing query-document pairs. Moreover, we study alternative solutions to implement the first ranker,
either a small prefix of the original forest or an auxiliary machine-learned ranker explicitly trained for this
purpose. We evaluated our techniques through reproducible experiments using publicly available datasets
and state-of-the-art competitors. The experiments confirm that our early-exit strategies achieve speedups
ranging from 3× to 10× without statistically significant differences in effectiveness.

INDEX TERMS Query processing, efficiency/effectiveness trade-offs, learning-to-rank.

STATEMENTS AND DECLARATIONS
This manuscript is an extension of our ACM SIGIR 2021
short paper entitled ‘‘Learning Early Exit Strategies for
Additive Ranking Ensembles’’ [4]. In this extension we
investigate different solutions for designing and training an
early-exit component in our document early exit framework.
At the end of the analysis, we propose a solution that
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improves our preliminary model and the heuristic-based
method described by Cambazoglu et al. [5].

I. INTRODUCTION
Query processors on modern search platforms rely on sophis-
ticated ranking pipelines to optimize precision-oriented
list-wise metrics at small cutoffs. Learning-to-rank (LtR)
techniques are widely used to train models that can precisely
re-rank a set of candidate documents in the last stages of the
pipeline. Among the state-of-the-art solutions for candidate
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re-ranking, particular relevance have the models based on
additive ensembles of regression trees learned by gradient
boosting algorithms such asMART [12] and λ-Mart [3], [29].
As such ensembles may include hundreds of regression
trees to be visited for scoring each candidate document,
the tight constraints on query response time typical in
web-scale platforms require suitable solutions able to provide
an optimal trade-off between document scoring time and
ranking effectiveness [6], [26]. Several techniques have been
proposed in recent years to target this efficiency-effectiveness
trade-off [2], [9], [23], [33]. Among them, one line of research
investigates early termination heuristics aimed to reduce, on a
document- or query-level basis, the number of trees traversed
during the scoring process [5], [20]. These works study the
impact of the proposed early termination strategies on scoring
latency and ranking accuracy.

In this paper, we investigate document-level early exit (EE)
strategies for additive ranking ensembles by generalizing
and building upon the state-of-the-art method introduced
by Cambazoglu et al. [5]. Since documents are re-ranked
by traversing the whole ensemble to accumulate the final
scores, [5] proposed some heuristic techniques to speed up
query processing by forcing documents to early exit the
ensemble if they are unlikely to be included in the top-k
results. The techniques rely upon simple thresholding
strategies exploiting the partial scores/rankings computed
at a sentinel point of the ensemble, i.e., after having
evaluated a limited number of trees. Here, we build upon this
simple approach. First, we propose an in-depth investigation
of the partial document scorings/rankings as additional
features to represent query-document pairs. We use this data
representation along a suited ground truth to train LEAR,
amachine learning (ML) solution in charge of decidingwhich
documents should early exit the ranking pipeline because they
will be unlikely ranked among the final top-k results. Second,
we study the advantage of using, rather than an initial portion
of the forest until the sentinel, an auxiliary ranker, i.e.,
an alternative compact ranking forest, specifically trained to
provide high-quality early-exit signals with a reduced scoring
cost. We guess this auxiliary forest can supply more reliable
information at the sentinel, thus allowing a more accurate
pruning of non-promising documents.

Our contribution allows the early exit process to be framed
as a cascade of three components, namely Rankerpre, Pruner,
and Rankerpost, as illustrated in Figure 1. The main goal of
the Rankerpre component, implemented as a small ranking
forest, is to supply scoring/ranking information to the Pruner
component. Specifically, Rankerpre assigns a score S to each
query-document pair (q, d) and passes the triple (q, d, S) to
the next stage Pruner. The goal of Pruner is to maximize
the overall speedup at inference time without hindering the
overall ranking quality of the query processor. To obtain
significant speedups, Pruner aims to reduce the number of
candidates traversing Rankerpost, a computationally expen-
sive forest optimized for high precision. In other terms, the
goal is to minimize the number of query-document pairs

following the continue arrow (see Figure 1) to complete their
scoring by traversing Rankerpost.
This work extends a previous contribution by [4] that

proposes a preliminary machine learning (ML) solution for
early terminating document scoring. In this paper, we build
upon the previous investigation and extend it with the
following novel contributions:

• Given a ranking forest E , we study the possibility of
exploiting a trained ensemble Eaux asRankerpre, where E
thus plays the role of Rankerpost. Moreover, we deepen
the investigation of how to split E into Epre and Epost,
where Epre is a small sub-forest of E , providing toPruner
the scores accumulated up to the sentinel point, whereas
Epost is the remaining part of the whole forest E . We then
study and assess how to fruitfully exploit either Eaux
or Epre as Rankerpre in our cascading framework for
document early exit introduced in Figure 1.

• We study the solution space for designing and training
the Pruner component of our document early exit
framework. To learn the classification model, we exploit
the available representation of query-document pairs
and approximate document scores/ranks, returned by
Rankerpre, i.e., either Epre or Eaux. Pruner predicts
whether a document should exit the ranker because it
will unlikely be ranked among the top-k documents
returned for a given query or it should continue the
traversal of the rest of the cascading ranker, namely
Rankerpost. We provide an in-depth investigation of the
possible solutions for training an effective classifier,
providing a good trade-off between classification quality
and cost.

• We conduct an extensive experimental analysis of
the effectiveness and the speedup achieved by the
introduction of cascading of three components for early
exit in a query processor exploiting state-of-the-art
ranking models and scoring algorithm [18], [29]. Repro-
ducible experiments conducted on two well-known
public LtR datasets, namely MSN-1 and ISTELLA,
show that our machine-learned solutions for document-
level early exit achieve speedups ranging from 3× to
10×without statistically significant differences in terms
of NDCG@10.

The article is organized as follows. Section II discusses
the relevant related work. Section III formally introduces
the early exit problem. Section IV presents our contribution
addressing the early exit problem while Section V discusses
the results of our experimental analysis on public datasets.
Finally, Section VI concludes the work and drafts some future
work.

II. RELATED WORK
Several techniques have been proposed to target efficiency-
effectiveness trade-offs in query processing. Among the main
contributions in the area, we cite the algorithms for the
efficient traversal of tree ensembles [9], [16], [18], [33].
Alternativemethods are concernedwith strategies for pruning
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FIGURE 1. Our cascading framework.

the ensemble during or after the training phase [19], [22],
[23], budget-aware LtR algorithms [2], [7], [13], [28], [32]
and novel approaches for feature engineering and selection
[14], [21]. A separate line of research investigates early
exit optimizations in modern query processing exploiting
machine-learned ranking models. The first work in this line
is the one by [5], where authors introduce the notion of
sentinel for additive ensembles of trees – a popular learning
to rank technique used in two-stage query processors of
modern search engines. A sentinel is a specific point s
of the ensemble used to compute the partial score of a
document. The authors introduce four heuristics that exploit
the partial score calculated at a given sentinel to decide
whether to early exit or not the score computation during
document ranking. The four heuristics are built upon the
concepts of document score/rank. The main intuition here
is to use these two ingredients to define policies governing
the early exit of documents during ranking. Among the
four heuristics, the best performing strategy is the Early
Exits using Proximity Thresholds (EPT). In EPT the pivot
document rank is permanently fixed to k . The decision
to eliminate a document is based on an offline-computed
score proximity threshold p. The idea is to keep scoring the
documents with a score close enough to the document’s score
at the k-th rank. Therefore, only the documents that are within
the first k ranks, as well as documents that are within a score
proximity of the k-th document’s score, continue to be further
scored. Authors evaluate their performance using a state-of-
the-art machine learning system based on gradient-boosted
decision trees. The proposed strategies achieve considerable
speedups in online execution times of additive ensembles
and, with the EPT approach, the improvement is up to
four times with almost no loss in quality with respect
to a baseline ranker that does not employ early exit
strategies.

Later, Busolin et al. [4] build upon the state-of-the-art
method introduced by Cambazoglu et al. [5] by proposing
query-based and document-based machine-learned tech-
niques for early exit. Authors propose LEAR (Learned
EArly exit Ranking), a machine learning framework (ML) for
early terminating document scoring. LEAR exploits a binary
classifier based on query-document features and document
score/rank computed at a given sentinel to predict if a given
document is likely (unlikely) to be ranked among the top-k
final ones, and it thus need to continue (exit) the traversal of
the rest of the ensemble. Authors show effective techniques
for building early-exiting classifiers and show on public data
that the approach is practical and improves the state of the art
by Cambazoglu et al. A different solution to this problem is
investigated by Lucchese et al., which generalize the problem
to a different level of granularity [20], i.e., on a query
level. In detail, authors investigate the problem of query-
level early exiting that asks for deciding the profitability
of early stopping the traversal of the ranking ensemble for
all the candidate documents to be scored for a query by
returning a ranking based on the additive scores computed
by a limited portion of the ensemble. In doing so, authors
study the contribution of portions of the tree ensemble to
the ranking of the top-k documents scored for a given query.
Experiments on public data show that queries exhibit different
behaviors as scores are accumulated during the traversal of
the ensemble. Moreover, they show that query-level early
stopping can remarkably improve ranking quality with an
overall gain of up to 7.5% in NDCG@10 with a speedup of
the scoring process of up to 2.2×.

Recently, following the growing interest in the field of
Neural Ranking [8], [15], [24], efforts have been devoted
to the study of early exit strategies for pre-trained trans-
formers [17], [30], [31]. Xin et al. propose ‘‘Dynamic Early
Exiting for BERT’’ (DeeBERT), where authors accelerate
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BERT inference by inserting extra classification layers
between each transformer layer of BERT [31]. Classification
layers are jointly fine-tuned along with BERT on a given
downstream dataset. At inference time, after a sample goes
through a transformer layer, it is passed to the following
classifier and returned only if the prediction shows low
confidence; otherwise, the sample is sent to the next
transformer layer. Experiments on six GLUE datasets show
that, when applied to BERT and RoBERTa, DeeBERT can
accelerate model inference by up to 40%with minimal model
quality degradation. More recently, Xin et al. extend the
approach above to other tasks than classification by defining
BERxiT, where authors propose an effective fine-tuning
method that allows to take advantage of the pre-trained
model’s effectiveness fully and a learning-to-exit approach
that generalizes early exiting to other tasks [30]. Experiments
on eight datasets for both classification and regression tasks
show the effectiveness of BERxiT as a way to speed up
the inference on pre-trained transformers. At the same time,
Zhu proposes a novel training mechanism called ‘‘Learned
Early Exiting for BERT’’ (LeeBERT) [34]. Unlike previous
approaches, the central intuition behind LeeBERT is that
different layers extract features of varying granularity. Layers
thus provide different perspectives of the sentence. Zhu
exploits this fact by learning early exits from each other to
improve the expressiveness of lower exits and alleviate the
over-fitting of the later exits. Second, their weights are treated
as parameters and are learned along with model parameters.
The optimization of the learnable weights is formulated
as a bit-level optimization problem and optimized with
gradient descent. Similarly, Soldaini and Moschitti propose a
method to train a cascade model for question answering [25].
In their proposal, the authors build a sequence of increas-
ingly complex re-rankers that process the candidates in a
pipeline. In short, each re-ranker takes the set of candidates
selected by the previous re-ranker and provides a subset of
candidates to the next re-ranker. Naturally, this approach
saves computation time from the more expensive re-rankers
by progressively reducing the number of candidates at each
step.

More general approaches to the same problem have been
developed in the machine learning community. Viola and
Jones introduce a similar algorithm for speeding up real-time
face detection [27] based on a cascade of simple classifiers.
Each classifier of the cascade is executed, and if its prediction
is positive (i.e., a face is detected), then another classifier is
triggered. Otherwise, the execution is short-circuited. This
process continues until all classifiers agree that a face is
detected. This approach is shown to save computational
resources. Another approach based on a similar idea has
been developed in the context of nonlinear support vector
machines. Here, two works have been proposed to reduce
online decision-making cost [10], [11]. Both solutions are
based on the idea that the points that are far away from the
decision boundary can be classified very quickly with high
confidence.

III. THE EARLY EXIT PROBLEM
In this sectionwe discuss and formalize the early exit problem
within the framework of a cascading ranker as introduced in
Section I. For easy reading, we include in Table 1 the list of
symbols used for the rest of this work.

Let E be an additive ensemble of n regression trees
{T1, . . . ,Tn}, trained by algorithm A on a ground-truth
dataset containing query-document pairs (q, d) associated
with multi-level graded relevance labels. Given a test instance
(q, d), we denote by si(q, d) the score contribution induced
by a tree Ti. The final prediction for (q, d) is obtained by
accumulating the score contributions by all the n trees in the
ensemble, and we refer to it as full-model score:

S(q, d) =

n∑
l=1

sl(q, d) (1)

In ad-hoc retrieval tasks we are mostly interested in
precision at small cutoffs [1]; thus, the quality measure
adopted to evaluate ranking effectiveness usually takes into
account only the head of the ranked list, i.e., the top-k
documents according to the ranking induced by the decreas-
ing order of predicted scores. For this work, we adopt
NDCG@k as the reference quality measure to be maximized.
Given a ranked document list, NDCG@k is a normalized
measure that only weights the top-k ranked documents
according to their predicted relevance S(q, d) and discounts
their contribution according to their rank position.

Given a test query q, a set Dq of candidate documents,
and a cutoff value k (e.g., k = 10 in this work) the quality
measure used to evaluate the ranking of Dq is not affected
by the documents ranked in positions greater than k . Let
D+
q ⊂ Dq be the subset of documents ranked in the first k

positions by the ranking ensemble, and let D−
q = Dq \ D+

q
the rest of Dq ranked after position k , thus not affecting the
quality measure. Since computing the scores of documents
in D−

q , by traversing the whole ensemble E , is a waste of
time and computing resources, to improve efficiency without
hindering effectiveness an optimal technique should early
identify the documents in D+

q and D−
q , and force the exit of

documents in D−
q from the ranking pipeline.

Referring to the cascade of Rankerpre, Pruner, and
Rankerpost components illustrated in Figure 1, Pruner can be
modeled as a binary classifier aimed at deciding if candidate
triples (q, d, S) are likely to belong to the set D+

q or to the set
D−
q . To this end, it is crucial for Pruner to precisely identify

the documents in D+
q to avoid discarding potentially relevant

documents and to maximize the efficiency boost deriving
from early exiting irrelevant documents. However, since
discarding relevant documents severely impact effectiveness,
Pruner should implement a conservative strategy, putting in
D+
q all the promising documents that are likely to be ranked

among the first k .
Pruner can exploit both query-document features but also

score-dependent features computed by Rankerpre. The latter
in particular could be extracted in a point-wise fashion, e.g.,
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TABLE 1. List of symbols.

the raw score of each document, or query-wise, i.e., features
derived from an overall evaluation of the scores on a per-
query basis, by looking at all the candidate documents for the
query and taking into account their scores and the induced
ranking.

The document-level early exit problem can thus be thought
as that of co-designing Rankerpre and Pruner to i) minimize
the effectiveness drop resulting from erroneously filtering out
documents inD+

q ; ii)maximize the efficiency gain by filtering
out most of the documents belonging toD−

q ; and iii)minimize
the computational cost of Rankerpre and Pruner as to avoid
overheads wasting the advantages of the early exit strategy
implemented.

In this work, we consider two different options for the
implementation of Rankerpre. One option is that of splitting
the full ranking model E into Epre and Epost, where Epre is
a small sub-forest of E providing relevant scoring features
to Pruner, whereas Epost is the remaining part of the whole
forest E and is used by Rankerpost. This solution, adopted
also by Cambazoglu et al. [5], allows to easily integrate
the original ensemble E in the document-level early exit
strategy. This is simply done by defining the position of a
sentinel point splitting E in Epre and Epost. An orthogonal
option is that of using, rather than an initial portion of the
full forest until the sentinel, an auxiliary model Eaux, i.e,
an alternative compact ranking forest, specifically trained
to provide high-quality early-exit signals with a reduced
scoring cost to Pruner, and finally exploiting the full
ranking model E as Rankerpost. We guess this auxiliary
model can supply more reliable information to Pruner,
thus allowing a more accurate pruning of non-promising
documents.

For both solutions Epre and Eaux, i.e., Rankerpre imple-
mented as either a prefix of the full ensemble or an auxiliary
ranker, Rankerpre must be at the same time computationally
efficient and effective in providing high-quality signals to
the Pruner component. There is thus a trade-off in designing
Rankerpre. Indeed, implementing Rankerpre with a very
compact ranking forest has the effect of providing to Pruner
less informative features. On the other hand, a more precise
model in terms of ranking quality would make the Pruner
more effective, but it would impact negatively on the overall
scoring cost.

In the following, let tpre be the number of trees used by
ranking ensemble Rankerpre and tpost the number of trees
used by Rankerpost. If we use Epre as Rankerpre model, tpre
is the sentinel point, and tpost = n − tpre is the size of Epost.
Alternatively, if we adopt Eaux as Rankerpre model, tpre is the
number of trees of the auxiliary ranker Eaux and tpost = n, i.e.,
Rankerpost exploits the full ranking model E .
We assume that the costs of traversing a single tree of both

E and Eaux are similar, and we denote by θ this averaged cost.
The per-query scoring cost CF of the full ranking model E can
be approximated with:

CF (q,Dq) =

∑
dq∈Dq

∥E∥ · θ = ∥Dq∥ · n · θ (2)

Let D∗
q ⊂ Dq be the subset of promising documents

identified by Pruner. It is worth noting that the perfect EE
strategy would be ensured by an oracle always choosing
D∗
q = D+

q .

We denote by φq =
∥D∗

q∥

∥Dq∥
the fraction of candidate

documents deemed as relevant for query q by the Pruner’s
strategy, while bc denotes the classification cost paid to apply
Pruner to each candidate documents. The scoring cost CEE
resulting from the introduction of an early exit strategy can
be approximated with:

CEE (q,Dq) =

∑
dq∈Dq

tpre · θ

︸ ︷︷ ︸
Rankerpre cost

+

∑
dq∈Dq

bc︸ ︷︷ ︸
Pruner cost

+

∑
dq∈D∗

q

tpost · θ

︸ ︷︷ ︸
Rankerpost cost

= ∥Dq∥ · (tpre · θ + bc + φq · tpost · θ) (3)

where the first term models the cost for scoring all the
documents by Rankerpre, the second term represents the
classification cost of Pruner, and the third term refers to the
scoring cost of Rankerpost only for the documents not filtered
out by Pruner. The ratio between Equation 2 and Equation 3
models the speed-up achieved by the early exit strategy S
compared to the cost of scoring with the full ensemble:

speed-up(q,Dq) =
CF (q,Dq)
CEE (q,Dq)

(4)

Let us now suppose that the classification cost bc can be
expressed in terms of θ , for example, if the binary classifier
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is implemented as an ensemble of b decision trees, with
characteristics similar to that of the other ranking ensembles
(i.e., similar depth and number of leaves). Thus, we have that
bc = b · θ . The speed-up can consequently be simplified as
follows:

speed-up(q,Dq) =
n

tpre + b+ φq · tpost
(5)

whereas the overall speedup for all the queries in a test setQ
is obtained by macro-averaging as follows:

speed-up(Q) =

∑
q∈Q ∥Dq∥ · n∑

q∈Q ∥Dq∥ · (tpre + b+ φq · tpost)
(6)

We now perform a simple theoretical analysis of the
possible speed-ups we can expect from the introduction of
our EE strategy in the scoring process. We postpone to the
experimental section a detailed discussion on the tradeoff
between efficiency and effectiveness, i.e., the analysis of
the impact of the observed speed-up, obtained the cascading
pipeline in a real deployment, on the quality of the document
ranking.

Considering Equation 5, we can exemplify the effects on
the final speed-up of our ranking cascading by deeming
realistic values for its hyper-parameters, namely tpre, b,
and φq. In this context, speed-up mainly depends on the
proportion φq of promising documents (identified by Pruner)
that must be fully scored by Rankerpost, along with the size
tpre of Rankerpre. In particular, for the case Rankerpre = Epre,
the sentinel position tpre plays an important role in our setting,
as we can trade efficiency (lowering ts) for the effectiveness
of the whole ranking cascading, or vice versa (raising tpre)
to improve the precision of Rankerpre and feed Pruner with
more reliable information. Note that a similar tradeoff also
exists for the alternative setting Rankerpre = Eaux, although
in that case, we have tpost = n, i.e., the size of Rankerpost
remains unchanged.

As an example of speed-up level we can achieve, let
us suppose that the full ranking ensemble E includes
n = 1, 000 trees, while Rankerpre is made up of 100 trees
(e.g., in case of Epre, the sentinel is placed at tree tpre =

100 or, in case of Eaux, it is composed of 100 trees).
In addition, we suppose that Pruner selects 20% of Dq
(φq = 0.2) as promising ones, thus stopping the scoring of
the remainder 80%. When we apply Equation 5, we consider
negligible the cost of classification, as we assume that Pruner
uses a very small number b of trees in comparison to the size
of E , i.e., b ≪ n. We verified that for suitable values of b,
such as b = 10, speed-up values lower of tiny amounts, only
affecting the hundreds of these values.

For this setting, when Rankerpre = Epre, we observe a
speed-up equal to 3.6. The speedup lowers to 3.3× for the
Eaux solution, although it is supposed to make Pruner more
effective, thus possibly lowering the percentage of documents
selected as promising and reversing the gap with Epre.

Finally, let us analyze the effect of adopting a much
smaller model for Rankerpre, specifically tpre = 50 instead of

tpre = 100. We observe that speed-up raises from 3.6× to
4.2× for Epre, and from 3.3× to 4.0× for Eaux, thus pushing
for the adoption of a very compact model for Rankerpre if we
only consider the overall efficiency, without trading-off with
the effectiveness of the solution.

IV. LEAR: LEARNED EARLY EXIT RANKING
The first strategies for document early exit from deep
ranking ensembles were proposed by [5]. They are based
on a heuristic approach and can be used to implement a
very efficient Pruner component in our ranking cascading.
Indeed, we employ a solution inspired by [5] to realize a
baseline for ourML-based solution for implementingPruner.
In this paper, we thus discuss in detail LEAR, an ML binary
classifier used to implement Pruner. The aim of LEAR is
to select a small fraction φq of the candidate documents Dq
for continuing the scoring up to the end of the ensemble.
Indeed, LEAR must precisely identify the documents in D+

q ,
by hopefully discarding all the documents in D−

q . The goal is
to boost the speedup and provide a ranking quality as close as
possible to the one achieved by fully evaluating all documents
inDq. Note that, along with the precision of the classifier, it is
also important to keep its complexity under control to avoid
vanishing the speed-up benefits deriving from document EE.

This design of LEAR poses the following challenges:
(i) how to build the training set for the classifier;
(ii) how to cope with imbalance of selected versus discarded
documents; (iii) how to manage at the best the trade-off
between efficiency and effectiveness.

Building the training set. The examples for training the
binary classifier are generated by exploiting the LtR training
dataset and the scoring information obtained from the full-
model E .We useContinue andExit to label training instances,
i.e., (q, d) pairs. Since the class Continue is the rarest one,
and thus the dataset is unbalanced, in the following, we also
refer to Continue/Exit classes as the positive/negative ones.
We assign theContinue class label to all the documents inD+

q
that are associated with positive relevance labels in the LtR
dataset. The complementary documents assigned to the Exit
class are all those in D−

q , plus the documents in D+
q that are

labeled as not relevant in the LtR dataset, if any. TheContinue
set, which includes only relevant documents, has a cardinality
not larger than |D+

q |, where |D+
q | ≤ k (the cutoff value k

is equal to 10 in our experimental setting). Conversely, the
size of the Exit set is comparatively larger, as |Dq| is typically
much larger that k .

Note that since the Continue set includes only the relevant
documents of D+

q , a perfect Pruner trained on examples
labeled in such a way might drop some irrelevant documents
erroneously placed by E in D+

q , thus possibly leading to a
better ranking accuracy than the full ensemble (without EE).

To train Pruner with Continue and Exit examples, we use
an augmented representation for the query-document pairs,
by including information provided byRankerpre. Specifically,
besides the features used by E for each pair (q, d), we use the
following additional features:
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1) the rank of document d computed by Rankerpre;
2) the score of document d computed by Rankerpre;
3) the per-query min-max normalized score value;
4) the number of candidates for query q, i.e, |Dq|.
This implies that to build a training set for LEAR, we have

to select a portion of our LtR dataset (not used to train E or
Eaux) and feed Rankerpre (either Epre or Eaux) with this portion
of the dataset so as to collect document scores and finally
augment the feature set modeling (q, d).

Handling imbalance. We observe that in the dataset for
training Pruner the Continue instances are less than 10% of
the total examples, resulting in a highly imbalanced dataset,
possibly hindering the performance of the binary classifier.
This depends on the size of Dq in LtR datasets which is
typically in the hundreds, along with the choice of the cutoff
value k = 10 of quality metrics. Moreover, when using
quality metrics such as NDCG@k, documents contribute
differently to the quality of the resulting ranking, as it depends
on document relevance labels and rank positions. We tackle
this issue by exploiting a cost-sensitive policy for training
Pruner, where an instance d , with relevance label rd and
classification label ld ∈ {Continue,Exit}, is associated with
a weight wd = 2rd /fq(ld ), where fq(ld ) is the frequency,
among the candidate documents Dq, of the classification
label ld . This pushes the classifier to prioritize loss reduction
on documents with large relevance judgments (the weight
is proportional to their contribution to the NDCG metric),
and on the infrequent Continue documents (the weight is
inversely proportional to the class frequency). Note that this
weighting scheme is query-based and allows the training
of Pruner to adapt to the characteristics of the different
queries.

Efficiency vs. effectiveness trade-off. Accuracy is not
the metric we target for the classifier. Our goal is in fact
to maximise the recall over Continue documents without
hindering precision. To this end, we fine-tune a threshold
on the probability of belonging to class Continue predicted
by Pruner. By varying this threshold, we can find the sweet
spot between precision and recall. Finally, the quality of the
Rankerpre model impacts the accuracy of the classifier and
the efficiency of the LEAR framework. Less reliable score-
dependent features, coming from very simple Rankerpre
ranking models, potentially harm the classifier accuracy.
On the other hand, they may produce large speedups thanks
to the reduced scoring cost. In the experimental section,
we investigate the impact of varying the complexity of
Rankerpre, both in terms of size and in using Epre vs Eaux,
on the performance of the whole ranking system.

V. EXPERIMENTS
We conduct extensive experiments on two public LtR datasets
to evaluate the impact of introducing LEAR into a state-of-
the-art ranking pipeline, analyzing both the efficiency gain in
terms of speed-up and the implications on the ranking quality.
We also perform various studies to better understand LEAR
and the hyper-parameters driving its performance.

A. EXPERIMENTAL SETUP
Datasets. We conduct our experiments on two publicly
available datasets: the MSN-11 (Fold 1) and the ISTELLA2

datasets. The MSN-1 dataset consists of 31,351 queries and
136 features extracted from 3,771,125 query-document pairs,
while the ISTELLA dataset is composed of 33,018 queries
and 220 features extracted from 10,454,629 query-document
pairs. They thus differ in the number of average documents
per query, ranging from the 120 of MSN-1 to the 317 of
ISTELLA. The query-document pairs in both datasets are
labeled with relevance judgments ranging from 0 (irrelevant)
to 4 (perfectly relevant). ISTELLA comes with about 96%
of non-relevant documents and a normal distribution among
the relevant ones centered on label 2, while MSN-1 shows a
power law distribution with 51% of non-relevant documents.
Both the datasets have been split in four partitions with
proportions 60%-15%-5%-20%:
1) the first partition is used to train the λ-Mart ranking

model, namely the full ensemble E and Eaux;
2) the second is the validation set for tuning the

hyper-parameter of λ-Mart and for training the Pruner
binary classifier;

3) the third is used to fine-tune Pruner for both LEAR and
the competitors EE strategies;

4) finally, the fourth partition is used as test set to evaluate
the efficiency and effectiveness of the ranking solutions
exploiting the full model E as well as the various EE
strategies considered.

Ranking models. The reference ranking models are trained
with λ-Mart. We use the LightGBM framework.3 We
fine-tune its hyper-parameters by maximizing NDCG@10
and using the Bayesian approach provided by HyperOpt.4

The hyper-parameters tuned are: learning rate, minimum
number of instances in leaves, minimum sum of hessian,
minimum gain to split, while the number of leaves and the
max depth are fixed and are set to 64 and 8, respectively.
The training process is early stoppedwhen the ranking quality
measured on the validation set does not show improvements
for the last 100 trees. The resulting ensembles E have
1,129 and 1,481 trees forMSN-1 and ISTELLA, respectively.
For Eaux we further restrict the size of the ensemble to be
composed of at most 50 trees with a patience of 5 trees. The
more compact Eaux ensemble means that, besides the number
of trees, the main difference between the full model and Eaux
is the learning rate, which is 0.05 for E and 0.32 for Eaux, with
all the other parameters being almost identical.

Competitor EE Strategy. We evaluate LEAR against
the EPT heuristic strategy, i.e. the one achieving the best
performance among those proposed in [5] and discussed in
Section II. Consistently with the original proposal for EPT,
we use k = 10. Once Rankerpre has produced the scores for

1http://research.microsoft.com/en-us/projects/mslr/
2http://blog.istella.it/istella-learning-to-rank-dataset/
3https://github.com/microsoft/LightGBM
4https://github.com/hyperopt/hyperopt
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all documents in Dq (for any q ∈ Q), these scores and the
induced ranks are exploited by the EPT strategy. The decision
about EE is made by combining the use of k and a proximity
threshold that is computed offline. Indeed, only documents
that are within the first k ranks as well as documents that are
within a given proximity threshold with respect to the score
of k-th document score continue in Rankerpost. To assess
whether an Early Exit technique has a significant impact
in terms of ranking quality we performed a Paired T-Test
for Equivalence between the whole evaluation and the one
employing Early Exit.

Assessing the efficiency. We drive the selection of
the parameters for our EE ranking solution with the cost
estimation model introduced in section III (see equations 2, 3
and 4). In the last evaluation phase, however, we assessed
experimentally the efficiency of the various EE settings using
QuickScorer (QS) [9], [18], the state-of-the-art algorithm
for the traversal of ensembles of regression trees. To this
purpose, we integrate in the QS scoring process the LEAR-
based and EPT-based EE strategies, exploiting the three
cascading components Rankerpre (either Eaux or Epre), Pruner
(either LEAR or EPT), and Rankerpost (either E or Epost).
We performed all experiments5 on a single machine equipped
with two Intel Xeon Platinum 8276L CPUs clocked at
2.20GHz for a total of 112 virtual cores. Memory-wise, the
system has three layers of cache: 32 KB of distinct data and
instruction memory for L1, 1024 KB for L2, and 3942 KB
for L3, alongside 504MB of general RAM. In section V-B
are reported and discussed the efficiency results computed
by considering the total latency of the whole scoring process,
i.e., the time needed to score the documents with Rankerpre
(either based on Epre or Eaux models) and Rankerpost plus the
time required to Pruner to decide about document EE.

B. RESEARCH QUESTIONS
Our experiments aim to answer the following research ques-
tions by evaluating the performance of LEAR under different
and incremental testing scenarios so as to have a better
understanding of the characteristics and hyper-parameters
driving its utility:

• RQ1: Which is the best binary classification model for
the Pruner?

• RQ2: Considering the case Rankerpre = Epre, which
is the best position in the ensemble where to place
the sentinel? It is worth recalling that the earlier the
placement of the sentinel, the highest will be the
observed speed-up (see Equation 5), but on the contrary,
the lower will be the expected classification accuracy.
How does a solution based on which Rankerpre =

Eaux, where Eaux is a small ensemble of trees of the
same size as the smallest Epre, behave with respect
to the alternative solution using a prefix of the whole
ensemble E , i.e., Rankerpre = Epre?

5code available at https://github.com/hpclab/earlyexit-ltr

• RQ3: How does LEAR compare to existing state-of-
the-art algorithm for ensemble traversal, namely EPT,
in terms of observed speed-up and possible drop in
ranking quality?

RQ1: WHAT IS THE BEST BINARY CLASSIFICATION MODEL
TO ADOPT BY PRUNER FOR DOCUMENT EE?
Several options are available for building a binary classifier,
e.g., Logistic Regression (LR), Support Vector Machine
(SVM), Neural Network (NN), Gradient Boosted Decision
Trees (GBDT), and many others. Note that the classification
task performed for each document is a potential overhead that
we introduce, according to the cost bc modeled in Equation 3.

To answer this RQ, we limited our tests to a specific
instance of our cascading ranker, where Rankerpre = Epre
and Rankerpost = Epost, and the sentinel is placed at tree
tpre = 50. In this context, we trained different classifiers
of small complexity, suitable for our scenario, where the
per-document overhead at inference time should be minimal
for not impacting significantly on the overall efficiency.
We used the features discussed in section IV with the
same setup described in paragraph V-A. For each trained
model, we also performed a grid search to find the best
hyper-parameters of each model. Table 2 summarizes the
performances of four different binary classifiers by evaluating
them in terms of both Precision and Recall (typical of a clas-
sification problem), but also in terms of NDCG@10 (typical
of a ranking problem). Precision and Recall are measured on
the validation set by considering the Continue class as the
positive (rare) one, and the Exit class as the negative one.
On the other hand, NDCG@10 measures the effectiveness of
the cascading ranker on the validation set, where Pruner is
implemented as one of four classifiers. To produce the final
ranking of documents in Dq before applying NDCG@10,
we combine the scores provided by Epre on the documents
that early exit the pipeline, along with the scores provided
by the Epost on the documents that continue on the pipeline.
Indeed, we produce two separate ranked lists for documents
marked as either Exit or Continue; then, the ranked list of
the Exit documents is appended to the list of the Continue
ones before computing the NDCG@10 metric. We note
that, from the classification perspective, the Neural Network
achieves the best Precision/Recall trade-off among the four
methods tested. However, when we consider the ranking
metric NDCG@10, the GBDT ensemble performs better.

This controversial result also derives from the training
process that uses a dataset where a positive/continue class
label is assigned to all relevant documents appearing in
the top-k results returned by E , without considering their
degrees of relevance. In contrast, these different degrees
are used to weigh the instances in the training dataset.
Conversely, the NDCG metric fully exploits this information
of nuanced relevance to evaluate a given ranking. So, due to
the slightly lower recall of the NN solution in comparison to
GBDT, NN forces some highly relevant documents to exit
the cascading ranker, thus inducing a high penalization in
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TABLE 2. Performances on the validation set of different choices for the LEAR classifier.

TABLE 3. Performances on the validation set of several LEAR classifiers trained without weight balancing.

the NDCG metric. Finally, table 3 reports the performances
of the same four classifiers, trained without the weighting
schema of the instances, as discussed in Section III. We thus
perform an ablation study, aimed at understanding the
contribution of this strategy to the overall performance. Note
that Precision/Recall as well as NDCG get much worse.
For dataset ISTELLA, we observe a total collapse towards
classifiers that predict only the Exit (majority) class. Hence,
Precision (and F1 as a consequence) cannot be computed
and we observe a Recall equal to 0.00 with respect to the
positive/minority class Continue, as well as a much smaller
NDCG. Since for this dataset all four classifiers, trained
without imbalancemitigation, cause all the documents to exit,
NDCG is equal to the one observed at the sentinel tpre, but the
speed-up is obviously maximum.

On the other hand, by analyzing the different models at
inference time from an efficiency perspective, as already
mentioned in Section V-A, we have very efficient algorithms
to traverse ensembles of regression trees, so the cost bc of
running the classifier is very limited even for moderately
sizedGBRT ensembles. Furthermore, employing a tree-based
classifier has the added benefit that it can be easily added
to the scoring pipeline that always uses the same algorithm,
namely QuickScorer in our scenario. To answer RQ1,
we adopted a GBDT ensemble of b = 10 regression trees for
classification purposes, given its higher recall/ranking quality
and lower impact on the classification cost. In particular,
as already observed from the analysis of Equation 5, with
b ≪ n, where n > 1,000 is the size of E , the
classification cost is almost negligible with respect to the final
speed-up achieved by the whole ranking pipeline introduced
by LEAR. The classification model adopted by Pruner
was trained by optimizing the logistic loss and using the
same implementation framework of λ-Mart (LightGBM +

HyperOpt).

6 Column set to N.D. due to undefined Precision.

RQ2: WHAT IS THE BEST POSITION IN THE ENSEMBLE
WHERE TO PLACE THE SENTINEL? HOW DOES A CASCADING
RANKER EXPLOITING A SMALL TREE ENSEMBLE EAUX
BEHAVE WITH RESPECT TO THE ALTERNATIVE SETTING
BASED ON AN ENSEMBLE EPRE OF COMPARABLE SIZE?
The first question of RQ2 still refers to a cascading ranker,
which entails that Rankerpre = Epre and Rankerpost = Epost.
It aims at evaluating how the placing of the sentinel at
different positions, with tpre ∈ {50, 100, 200}, impacts
on both LEAR and EPT. Indeed, by evaluating different
sentinel positions, we aim to find the best tradeoff between
speed-up and ranking quality. Regarding LEAR, for each
tpre, we build a different training set and train a GBDT
classification model that fully exploits the rank-based and
score-based features provided by Epre. For the same positions
tpre, we also evaluated EPT. Figure 2 and Figure 3 reports
the performance of EPT and LEAR, respectively, in terms of
speed-up (x-axis) and ranking quality NDCG@10 (y-axis).
We recall all the tests, including the ones conducted for RQ1,
were performed by exploiting the validation set because we
first tune the hyper-parameter p of the ranking cascading
technique before evaluating using the test set. Observe that
the plots report a distinct curve per each tpre. To obtain the
plots for LEAR and EPT, we vary the classifier confidence
and the proximity thresholds of the heuristic techniques using
20 evenly spaced points, in range [0.1, 0.9] and [0.3, 1.5] for
LEAR and EPT respectively. In detail, going from left to right
in the curves, we change confidence and threshold values to
make both LEAR and EPT stricter in selecting the documents
that have to continue: this implies that more documents early
exit the cascading ranker, including relevant documents, thus
reducing the ranking quality, butmainly increasing the overall
speedup.

On the MSN-1 dataset (see Figure 2.a), the baseline
heuristic EPT achieves the best performance by placing the
sentinel at tpre = 200, since for all the other options
we observe a rapid degradation of ranking quality, even
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FIGURE 2. Estimated impacts on the validation set of different sentinel positions for EPT on MSN-1 and ISTELLA. Points are marked with a circle if there
is statistical equivalence between the NDCG values of the EE solution and those from the baseline and with a diamond otherwise.

FIGURE 3. Estimated impacts on the validation set of different sentinel positions for LEAR on MSN-1 and ISTELLA. Points are marked with a circle if
there is statistical equivalence between the NDCG values of the EE solution and those from the baseline and with a diamond otherwise.

with speedups less than 2@. On the ISTELLA dataset (see
Figure 2.b) the best candidate appears to be tpre = 100, since
in the first part of the curve, for several threshold points,
we are able to achieve good speedups (greater than 6x) with
no significant difference in terms of NDCG compared to the
baseline, in contrast with the other choices for tpre. The LEAR
technique on the MSN-1 dataset (see Figure 3.a) achieves
the best performance by placing the sentinel at tpre = 50,
while on the ISTELLA dataset (see Figure 3.b) we observe a
significant overlap between tpre = 50 and tpre = 100, with
the latter again showing some threshold choices that induce
no significant loss in NDCG.

We can now explore the second part of this research
question, i.e., the possible advantages in quality/speedup of a
solution based on Eaux compared with the alternative setting

TABLE 4. Summary of parameter selection.

based on Epre. For EPTaux (see Figure 2), on MSN-1 we
can observe no significant degradation of NDCG up to a
speedup of about 4.75@, while on the ISTELLA dataset
the maximum speedup without significant degradation raises
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TABLE 5. Precision, Recall and F1 of EPT and LEAR, exploiting either Eaux or Epre, on MSN-1 and ISTELLA.

TABLE 6. Best strategies in [5] vs Full and LEAR (PREFIX and AUX) on MSN-1. Equivalent measures with Full are highlighted (p-value = 0.05).

to 10.36@. The same methodology for LEARaux (see
Figure 3) allows to observe a speedup of 4.71@on MSN-1
and 9.05@on ISTELLA.

In general, the auxiliary model Eaux permits larger
speedups without hindering too much the ranking quality,
proving the benefit of adopting an alternative compact
ranking forest as a Rankerpre model for both the EPT and
LEAR EE strategies. This is due to the better stability of
the sub-optimal Eaux scores compared to the ones produced
by Epre.
To complete the answer to RQ2 and conclude the

discussion on Pruner placement and threshold selection,
we report in Table 4 the thresholds (either of proximity or
confidence) that will be used for the remainder of this paper.
The values chosen are the ones that resulted in the highest
NDCG among the ones described in Figures 2 and 3.

RQ3: PERFORMANCE OF LEAR COMPARED TO EPT AND
STATE-OF-THE-ART TRAVERSAL ALGORITHMS
Table 5 reports the performance in terms of precision, recall
and F1 measures of the LEAR and EPT classifiers trained
using Epre and Eaux respectively on the two datasets. Although
EPT is not tuned to guess the Exit/Continue labels as LEAR,
and thus is not properly a classifier, this allows us to contrast
the performance of LEAR against EPT in the early-exit
setting.

By comparing the two LEAR variants exploiting Epre and
Eaux, we observe that both exhibit a high recall for the
Continue class, with the latter outperforming the former
(95% vs. 97% on MSN-1, and 99% vs. almost 100% on
ISTELLA, respectively for LEARprefix and LEARaux). This
implies that both classifiers are able to correctly identify

almost all documents that should continue the forest traversal,
as they will be included in the top-k results. We remind that
having a large recall on the Continue class is necessary for a
high-quality final ranking.

The second objective of the LEAR classifiers is to
minimize the number of false positives, i.e., the number
of Exit documents incorrectly classified as Continue. These
misclassified documents do not contribute to the final
top-k results and only add to the overall evaluation cost.
In this regard, the recalls on the Exit class are 87% and
88% for MSN-1 and 93% and 94% for ISTELLA in the
case of LEARprefix and LEARaux, respectively. This finding
highlights that both LEAR variants early exit the vast
majority of the irrelevant documents. We remind you that
in both datasets, the irrelevant documents are more than
90% of the total. In Table 5, we compared the classification
performances of EPT and LEAR. Interestingly, both EPT
variants show similar results to LEAR, with the AUX
approach showing the best performances on both datasets.
In particular, we can observe that EPTaux is the best classifier
among the four options, achieving the highest F1 scores for
the two classes in both MSN-1 and ISTELLA.

We now compare the performance of LEAR and EPT by
assessing the trade-off between efficiency and effectiveness
when both solutions are employed within a state-of-the-
art traversal algorithm. Table 6 reports results for MSN-1
and Table 7 for ISTELLA. In both tables, the fourth column
indicates the theoretical speedup calculated using Equation 6.
In contrast, the fifth column shows the speedup observed
when implementing Early Exit within QuickScorer (QS). The
reduced speedups observed in the real-world scenario can
be attributed to the omission of hardware-related overhead
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TABLE 7. Best strategies in Cambazoglu et al. [5] vs Full and LEAR (PREFIX and AUX) on ISTELLA. Equivalent measures with Full are highlighted
(p-value = 0.05).

costs in the initial estimates. The last two columns, namely
µq and σq, highlight respectively the average number of
Continue documents selected by the classifier and its standard
deviation. We remind that by increasing the LEAR confi-
dence threshold, the EE strategy becomes more aggressive.
This translates into higher speedups at the cost of higher
degradation of the ranking quality. On the other hand, the
proximity threshold of EPT has an opposite behavior, i.e., its
increase implies a more conservative strategy that results in a
better preservation of the ranking quality at the expense of a
higher evaluation cost.

Results reported in Table 6 related to the MSN-1 dataset
show that LEARprefix and EPTprefix behave similarly regard-
ing NDCG. However, the LEAR solution is almost two times
faster, with a measured speedup of 3.14@versus 1.74@of
EPT. On the other hand, the LEAR approach exploiting Eaux
shows a statistical equivalent NDCGwith the baseline with an
observed speedup of 3.50@, approximately 0.4@faster than
its counterpart using the PREFIX approach. EPT however
balances a slightly lower effectiveness with a slight gain
in efficiency. Table 7 reports the results on the ISTELLA
dataset. We observe all the solutions behave similarly in
terms of effectiveness, with a marginal drop with respect to
the baseline. However, both the LEAR and EPT approaches
exploiting Eaux achieve much higher speedups, with an
increase of 2.5@between LEARprefix and LEARaux and of
3.8@between EPTprefix and EPTaux. The reason for this big
efficiency gap is to be found in the reduced number of
Continue documents selected by the classifiers exploiting
Eaux compared to Epre. To answer RQ3, on the MSN-1
dataset LEAR consistently outperforms EPT, showcasing a
1.5@higher speedup when using Epre and resulting in an
equal measure of NDCG. On the other hand, when employing
Eaux, we observe close values of efficiency gains, but we
LEARaux achieves statistically equivalent NDCG values to
the Full ranking evaluation. In contrast, when we shift our
focus to the ISTELLA dataset, we observe that EPT slightly
outperforms LEAR with both PREFIX and AUX strategies.
The main novelty however is that the introduction of Eaux
is always beneficial, regardless of which Early Exit strategy
is used. Specifically, on the MSN-1 dataset we observe an
increase of speedup ranging from 0.36 for LEAR up to 2.04
for EPT, with equal or better performances in terms of
NDCG. Conversely, on ISTELLA we observe a considerable
increase in speedups, with gains ranging from 2.56 for LEAR

to 3.86 for EPT, similarly to MSN-1 we again observe little
to no change of NDCG.

Finally, Figure 4 reports the feature importance analysis
of the LEAR classifier, including the rank- and score-
based features, exploiting Epre and Eaux, respectively. In both
analyses, the feature that contributes the most in terms of
gain is the normalized score, while the most used is the
rank. Both these observations suggest that information about
the quality of a document is fundamental for detecting the
top-k documents. Another interesting aspect is that three out
of four added features appear in the top-10 most important
features, with only the query size being left out, confirming
their invaluable importance for the classification capabilities
of LEAR.

FIGURE 4. Feature importance for the LEARprefix (top) and the LEARaux
(bottom) classifiers on MSN-1.

VI. CONCLUSION
Results from this study have led to a deeper understanding
of early exit strategies applied to document scoring through
additive ensembles of regression trees. We have investigated
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the early exit problem in the framework of a cascading
ranker made of three components, where the middle one,
Pruner, is in charge of the early exit strategy. One of
the main results of this paper is that training and using a
specialized ranker AUX for the first stage of the cascade
allows to provide Prunerwith good signals to make decisions
about document early exit. We have also discussed in-depth
alternative solutions for Pruner. In particular, we showed
how to fine-tune EPT and train LEAR, a machine-learned
classifier aimed to precisely identify documents that are
unlikely to be ranked among the final top-k results, and thus
that should early exit the ensemble to improve efficiency.

Experiments on two public datasets have shown that the
early exit strategies studied achieve speedups ranging from
3× to 10×, with a ranking quality measured in NDCG @10
statistically equivalent to the one of the baseline completing
the scoring process for all the candidate documents. Our
experiments showed that LEAR works better than EPT
when we adopt Epre, a prefix of the original tree ensemble,
as the first stage of the cascading ranker. Additionally,
we highlighted that using AUX, an auxiliary machine-
learned ranker explicitly trained to feed Pruner, significantly
improves the performances of both LEAR and EPT.
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