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Abstract
This work focuses on the development of a posteriori error estimates for fourth-order, elliptic, partial
differential equations. In particular, we propose a novel algorithm to steer an adaptive simulation in
the context of Kirchhoff plates and Kirchhoff-Love shells by exploiting the local refinement capabilities
of hierarchical B-splines. The method is based on the solution of an auxiliary residual-like variational
problem, formulated by means of a space of localized spline functions. This space is characterized
by C1 continuous B-splines with compact support on each active element of the hierarchical mesh.
We demonstrate the applicability of the proposed estimator to Kirchhoff plates and Kirchhoff-Love
shells by studying several benchmark problems which exhibit both smooth and singular solutions.
In all cases, we obtain optimal asymptotic rates of convergence for the error measured in the energy
norm and an excellent approximation of the true error.

Keywords: isogeometric analysis, a posteriori error estimator, adaptivity, hierarchical B-splines,
shells, plates.

1 Introduction
IsoGeometric Analysis (IGA) has been a thriving area of research since the first pioneering work
[32] was published in 2005. Employing smooth B-splines, NURBS or variances thereof as basis
functions for the solution field has shown excellent properties in many mathematical and engineering
applications. For instance, in many cases higher global continuity yields a better accuracy per degree-
of-freedom (dof) and it allows to discretize higher-order variational problems in their primal form,
e.g. Kirchhoff plates and Kirchhoff-Love shells [33] or Cahn-Hilliard problems [28]. For a detailed
review of the method and its applications, the reader is referred to [32, 19, 1].

However, in order to make IGA competitive for industrial applications, a crucial feature is the
capability of building locally refined bases suitable for analysis in an efficient and robust manner.
Indeed, we remark that the tensor-product nature of B-splines is broken by local refinement. To tackle
these issues, several alternatives have been proposed such as hierarchical B-splines (HB) [23, 29, 35]
and their recent variant denoted by truncated hierarchical B-splines (THB) [26, 27], T-splines [8, 44, 9]
and locally-refinable splines (LR-splines) [21, 11]. Also the inverse operation of refinement (known
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as coarsening), which plays an important role for the computational efficiency of dynamic problems,
proves to be a non-trivial task and another booming area of research, see for instance [38, 25, 31, 16].
In the framework of this work, we employ hierarchical splines as they provide the most straightforward
construction and an easy implementation in the context of isogeometric analysis.

In order to automate the process of local refinement, a posteriori error estimators have been
successfully used to steer adaptive simulations for standard finite elements, where the literature is
rich and several families of estimators have been thoroughly studied (see for instance [5, 2, 48] and
references therein). We remark that a good estimator should properly capture and resolve local
features of the solution that cause the error to be much larger than in the rest of the computational
domain. In the realm of isogeometric analysis, the field of error estimation is still in its early stages of
development. Adaptivity using T-splines has been presented in the pioneering work [22]. More results
on recovery-based error estimators have been published in [36, 37] where refinement is achieved by
using LR-splines. Additionally, functional-type error estimates have been studied in [34] but not
within a real adaptive loop. More recently, also recovery-based methods for polynomial splines over
T-meshes have been proposed [3]. In the context of (truncated) hierarchical B-splines, we mention
[13, 24] where residual-based element-wise estimators have been analyzed for linear second-order
elliptic problems. These concepts have been extended in [12] for function-based estimators.

The main goal of this paper is to introduce, building upon the work of [6, 49] on multi-level
estimators, a simple a posteriori error estimator for linear fourth-order elliptic partial differential
equations (PDEs) of engineering relevance, such as Kirchhoff plates and Kirchhoff-Love shells, by
making use of hierarchical B-splines. The proposed method is based on the solution of an additional
residual-like problem which is formulated on a so-called bubble space. Given the locality of the
functions in the aforementioned space, the resulting linear system is in general small and easy to
solve. We remark that by exploiting this technique we bypass completely the computational burden
stemming from the evaluation of higher order derivatives and their jumps across edges, which would
be required in classical residual-based error indicators. This is particular advantageous for Kirchhoff-
Love shells, where the terms associated to higher derivatives involve the cumbersome and error-prone
task of taking (nested) covariant derivatives of quantities of interest, see for instance [39]. Indeed, the
use of residual-based error estimators for Kirchhoff-Love shells is computationally expensive and an
efficient implementation is far from being trivial. Moreover, contrary to residual-based techniques, we
do not require the computation of additional integrals which take into account the jumps of derivatives
across element interfaces. These features play again in favor of the computational efficiency and
simplicity of the proposed methodology.

A known drawback of this family of estimators is that their reliability and efficiency is subjected
to the saturation assumption onto the underlying augmented space. As noted in [6], this assumption
is, in general, problem dependent and it can, potentially, become crucial. However, we highlight
that our focus is to find a good indicator for steering adaptive simulations in the scope of structural
mechanics and all our numerical experiments confirm that the proposed estimator performs well in
this task. Furthermore, it is worth noting that in all our tests the estimator provides also an excellent
approximation of the true error.

The structure of the paper is as follows. Section 2 introduces the fundamental concepts needed for
hierarchical B-splines. Section 3 briefly recalls the Kirchhoff plate and Kirchhoff-Love formulations.
Then, Section 4 discusses the proposed bubble error estimator and a possible algorithm. Section 5
presents several numerical examples. Finally, some conclusions are drawn in Section 6.

2 IsoGeometric Analysis
In this Section, the notation and basic concepts and definitions related to B-splines and NURBS are
reviewed, following closely the derivation in [20]. For further details, the reader is referred to [40, 19],
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and references therein.
A B-spline basis function of degree p is generated starting from a non-decreasing sequence of real

values that corresponds to a set of coordinates in the parameter space referred to as knot vector,
denoted in the following as Ξ. Given a knot vector, a univariate B-spline basis function bi,p can be
defined recursively using the Cox-de Boor algorithm [40]. It is worth mentioning that the smoothness
of the obtained B-spline basis is Cp−k at every knot, where k denotes the multiplicity of the considered
knot, while it is C∞ everywhere else.

The definition of multivariate B-splines is achieved in a straight-forward manner using the tensor
product of univariate B-splines. Indeed, the multivariate B-splines Bi,p are obtained as:

Bi,p =
dr∏

r=1
brir,pr

with r = 1, ..., dr, where dr is the dimension of the parameter space and pr denotes the polynomial
degree in the parametric direction r, respectively. Additionally, the multi-index i = {i1, ..., idr}
denotes the position in the tensor product structure and p = {p1, ..., pr} indicates the vector of
polynomial degrees.

Lastly, let us define a B-spline parametrization S as a linear combination of multivariate B-spline
basis functions and control points as follows:

S =
∑

i
Bi,pPi ,

where the coefficients Pi ∈ Rd of the linear combination are the control points and d denotes the
dimension of the physical space. We remark that all the concepts summarized here can be readily
transferred to NURBS, for further details we refer to [19]. In the rest of the paper, without loss of
generality, the degree p will be considered equal in each parametric direction and will be omitted
from the notation.

2.1 Hierarchical B-splines
In this Subsection, the concept of hierarchical B-spline basis, denoted by HB, is introduced. This
allows us to build a basis that is locally refinable and therefore to overcome the limitations intrinsic
to the tensor-product nature of B-splines and NURBS.

Let V 0 ⊂ V 1 ⊂ · · · ⊂ V N be a sequence of nested spaces of splines defined on a parametric
domain Ω̂, where, to keep the notation simple, we consider the one-dimensional case. Each space
V l, l = 0, . . . , N is spanned by the B-spline basis Bl of degree p, associated to level l and the
corresponding knot vector Ξl.

Our task now is to identify a set of analysis-suitable functions N ⊂
⋃
l Bl. To this end, let us define

as isogeometric elements Q a partition of Ω̂. In particular, given n̂l ∈ N, let Ξ̂l = (ξ̂l0, . . . , ξ̂ln̂l) be the
knot vector composed of non-decreasing knots of Ξl without repetition, and let:

Ql =
{
Qli | Qli = (ξ̂li, ξ̂li+1), i = 0, . . . , n̂l − 1

}

be the set of open intervals constituting the non-empty knot spans of Ξl. The elements of the multi-
level mesh can be any non-overlapping partition Q ⊂

⋃
lQl of Ω̂, such that

⋃
ε∈Q ε̄ = Ω̂. Moreover,

let Ql = Q∩Ql be the elements of level l, and let Ω̂l =
⋃
ε∈Ql ε̄ denote their domain. Furthermore, let

Ω̂l
+ =

⋃N
l∗=l+1 Ω̂l∗ be the refined domain with respect to level l and, analogously, let Ω̂l

− =
⋃l−1
l∗=0 Ω̂l∗

be the coarser domain. Given a set of elements Q, we still need to define a set of basis functions
N ⊂

⋃
l Bl suitable for analysis. To this end, we consider the set of functions with support on the
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elements of level l as the set of active functions Bla =
{
b |b ∈ Bl, supp(b) ∩ Ω̂l 6= ∅

}
⊂ Bl. Among

these, a subset of linearly independent functions has to be chosen. Following [30, 20], we partition
Bla into:

Bl− =
{
b | b ∈ Bla, supp(b) ∩ Ω̂l

− 6= ∅
}
,

Bl+ =
{
b | b ∈ Bla, supp(b) ∩ Ω̂l

+ 6= ∅
}
\ Bl− ,

Bl= =
{
b | b ∈ Bla, supp(b) ⊂ Ω̂l

}
.

Then, the hierarchical B-spline basis HB [49, 35] is defined as follows:

HB =
⋃

l

HBl , (1)

HBl =
(
Bl= ∪ Bl+

)
.

Namely, HB is the set of B-splines of each level l whose support intersects only elements of level
l̃ ≥ l and at least one element of level l. It was proven in [49] that this set is composed of linearly
independent functions and therefore suitable for the analysis.

3 Formulations
In this section, the Kirchhoff plate and the Kirchhoff-Love shell formulations are stated in the context
of IGA. The reader is referred to [42, 33, 18, 39] for a more comprehensive review of the formulations.

3.1 The Kirchhoff plate formulation
Here, following the derivation in [42], we introduce the Kirchhoff plate problem, governed by the bi-
Laplace differential operator. Let us define an open set Ω ⊂ R2 with a sufficiently smooth boundary
∂Ω, such that the normalized normal vector d is well-defined (almost) everywhere. Additionally, we
assume that the boundary Γ = ∂Ω can be decomposed into Γ = Γw ∪ ΓQ and Γ = Γφ ∪ ΓM , such
that Γw ∩ ΓQ = ∅ and Γφ ∩ ΓM = ∅, respectively. We formulate the strong form of the problem as
follows:

D∆2u = g in Ω (2)
u = uΓ on Γw

−∇u · d = φΓ on Γφ ,

νD∆u+ (1− ν)D d · (∇∇u)d = MΓ on ΓM
D(∇(∆u) + (1− ν)Ψ(u) ) · d = QΓ on ΓQ

where u represents the deflection of the plate, D its bending stiffness, ν is the Poisson ratio, g is
the load per unit area in the thickness direction, uΓ, φΓ, MΓ and QΓ are the prescribed deflection,
rotation, bending moments and effective shear, respectively. The bending stiffness D is defined as:

D = Et3

12(1− ν2) ,

where E is the Young modulus and t denotes the thickness of the plate, which without loss of
generality we suppose to be a constant in Ω. Using variational calculus, the weak form of problem
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(2) reads: find u ∈ V such that

a(u, v) = F (v) ∀v ∈ V , (3)

where V ⊂ H2(Ω) denotes an infinite-dimensional space that depends in general on the boundary
conditions of the problem at hand, for further details we refer to [17]. For simplicity and without
loss of generality, in the following we assume the Poisson ratio ν to be zero and we choose E and t
such that D = 1. Consequently, the bilinear form a : V × V → R can be expanded as follows:

a(u, v) =
∫

Ω
∇(∇v) : ∇(∇u) dΩ ,

and similarly the linear functional F : V → R reads:

F (v) =
∫

Ω
gv dΩ .

It can be shown that (3) satisfies the conditions of the Lax-Milgram theorem, therefore u ∈ V is the
unique solution of the variational problem (3).

Finally, we discretize the weak form (3) employing the Bubnov-Galerkin method and using as basis
the hierarchical B-splines HB. Let Vh ⊂ V be a finite dimensional subspace defined as:

Vh = span {b ◦ S−1| b ∈ HB}.

where S is the spline parametrization defined in Section 2. We remark that due to the requirements
on the discrete admissible space for the deflection, the basis functions must be at least C1 continuous
globally such that the bilinear form is well-defined. This requirement is easily fulfilled within one
patch by the use of (hierarchical) B-splines of maximum continuity (of degree p ≥ 2). Then, the
discrete weak form can be written as: find uh ∈ Vh such that

a(uh, vh) = F (vh) ∀vh ∈ Vh , (4)

where uh represents the discrete solution defined as:

uh =
∑

b∈HB
b cb ,

with cb ∈ R denoting the unknown control variables and b ∈ HB the corresponding hierarchical basis
introduced in Section 2.

3.2 The Kirchhoff-Love shell formulation
In the following, the Kirchhoff-Love formulation in its weak form is briefly introduced, following
closely the derivation and the notation used in [33, 18].

3.2.1 The weak formulation

Similarly to what has been described in Section 3.1 for the Kirchhoff plate, starting from the strong
formulation of the Kirchhoff-Love problem (for further details see [39]) and applying variational
calculus, the weak form reads: find u ∈ V such that

a(u,v) = F (v) ∀v ∈ V , (5)
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where the choice of space V ⊂ H2(Ω) depends on the boundary conditions of the problem at hand.
Moreover, a : V × V → R is a continuous and strongly coercive bilinear form and F : V → R is a
continuous linear functional. They can be expanded, respectively, as follows:

a(u,v) =
∫

Ω
ε(v) : n(u) dΩ +

∫

Ω
κ(v) : m(u) dΩ ,

F (v) =
∫

Ω
v · b dΩ +

∫

ΓN

v · p+ ω(v) · r dΓ ,

where ε, κ denote the membrane and bending strain tensors, respectively, and n, m are their
energetically conjugate stress resultants. Additionally, b is the applied body load, p and r represent
the applied traction force and traction moment, respectively. For a detailed derivation, we refer
to [33, 4]. Note that the weak form (5) satisfies the conditions of the Lax-Milgram theorem and
therefore the solution u ∈ V exists and it is unique.

Employing the IGA paradigm, we utilize the same (hierarchical) B-splines and NURBS basis
functions for the geometry description and for the field approximation. Let us recall the definition
of the discrete space:

Vh = span {b ◦ S−1| b ∈ HB} ,

by employing the Bubnov-Galerkin discretization of (5), we get the following discrete weak formula-
tion of the Kirchhoff-Love shell problem: find uh ∈ Vh such that

a (uh,vh) = F (vh) ∀vh ∈ Vh . (7)

Again, it is worth noting that due to the requirements on the discrete admissible space for the
displacement field, the basis functions must be at least C1 continuous globally such that the bending
operator is well-defined.

Finally, we remark that in most cases, due to efficiency, the parametrization S can be expressed in
terms of tensor product B-splines of the coarsest level B0 instead of the hierarchical basis HB [25].

4 A posteriori error estimator for Kirchhoff plates and Kirchhoff-Love
shells

In the following Section we introduce a variant of the error estimator analyzed in [6] and we extend
its isogeometric version, proposed in [22], to fourth-order PDEs of mechanical relevance, such as
Kirchhoff plates and Kirchhoff-Love shells. We choose these models since, due to the Kirchhoff
hypotheses, we avoid a priori the negative effects related to shear locking. Then, later in the Section,
we show a possible implementation of the proposed indicator in the context of hierarchical B-splines.

4.1 The bubble error estimator
This family of a posteriori estimators was introduced in [6] in the context of the p-version of the Finite
Element Method and has been successfully applied to T-splines in [22] for second-order boundary
value problems. To introduce the concept in the context of hierarchical IGA, let us define the finite
dimensional solution space V p

h as the span of hierarchical B-splines basis functions of order p, where
we restrict our analysis to the case p > 2 (see Remark 2 for the case p = 2). Then, let us recall
the discrete solution uh ∈ V p

h , where without loss of generality we make no distinction between the
plate or the shell problem. We now assume there exists a larger space V p

h ⊂ Ṽ p
h ⊂ V such that the
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following decomposition holds:

Ṽ p
h = V p

h ⊕W
p+1
h ,

where W p+1
h is the space in which we seek a good estimation of the error eh ≈ e = ‖u− uh‖, in a

suitable norm ‖·‖. In particular, recalling some definitions provided in Section 2, let us characterize
W p+1
h as follows:

W p+1
h =

N⋃

l=0
W p+1
h,l ,

where

W p+1
h,l = span {b ◦ S−1| b ∈ Bla,p+1 ∩ C1(Ω̂l) and ∃ ε ⊆ Ω̂l : supp(b) = ε}.

In words, W p+1
h,l is the space spanned by active B-splines (or better in this case, Bernstein polynomials)

of level l and degree p + 1 such that their support is compact and overlaps exactly with one active
element ε of level l, e.g. see Figure 1 where one level is depicted. We are now ready to define the a
posteriori error estimate as: find eh ∈ W p+1

h such that

a(eh, bh) = F (bh)− a(uh, bh) ∀bh ∈W p+1
h , (8)

where bh is referred to in the following as bubble functions. We remark that we require these functions
to be at least C1 on their support such that the corresponding bilinear form a is well-defined. Notice
that due to the compact support of bh, the linear system corresponding to the discrete error weak
form (8) is block diagonal and in general easy to solve. Moreover, we highlight that the evaluation
of the bilinear form a appearing in (8) follows the same steps as the original plate/shell problem,
where different test functions bh are used. Hence, setting up the bubble problem requires only minor
changes into an existing isogeometric code.

Once we have found the unknown coefficients eh, we define the element-wise error estimator ηε as
follows:

ηε = Ca ‖eh‖E(ε) ∀ε ∈ Q , (9)

where we recall that ε is an isogeometric element of the hierarchical mesh Q and ‖·‖E(ε) denotes the
energy norm restricted to element ε. Additionally, we introduce Ca as an empirical constant which,
considering all our numerical experiments, we claim is independent from the chosen degree and from
the problem at hand. In the following, we set Ca = 3 once and for all in order to shift the estimator
above the true error.

At this point, it is worth highlighting that the proposed error estimator is computationally in-
expensive, easy to implement and is embarrassingly parallelizable due to the choice of the disjoint
bubble space W p+1

h . A possible algorithm to estimate the error is summarized in Algorithm 1, where
we design the code to solve the additional problem (8) level-wise over the hierarchical mesh Q.
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Algorithm 1 Bubble error estimator algorithm
1: procedure Estimate error (numerical solution uh, hierarchical mesh Q)
2: Initialize vector η
3: for each level l of Q do
4: Build bubble space W p+1

h,l

5: Given uh, get ulh of level l
6: Given ulh, set up and solve the additional system (8)
7: for each ε ∈ Ql do
8: Compute the element-wise indicator ηε (9)
9: Store ηε in η

10: end for
11: end for
12: Return η
13: end procedure

Remark 1 (Inhomogeneous boundary conditions). On one hand, we highlight that whenever inhomo-
geneous boundary conditions of Neumann-type are applied to the problem at hand, problem (8) must
also contain the corresponding additional terms in the right-hand-side. In these cases, we augment
the bubble space W p+1

h with suitable boundary bubbles to properly capture the error on the imposition
of natural boundary conditions. An example is depicted in Figure 1 for bubbles of degree p = 4, 5. On
the other hand, we make the assumption that the error on the imposition of inhomogeneous Dirichlet-
type boundary conditions is negligible and therefore no additional shape functions are needed for these
cases.

Remark 2 (The case p = 2). We remark that isogeometric Kirchhoff-Love elements notoriously
suffer from membrane locking phenomena, specially for low degree discretization [33], and it can
be considered common practice to use the coarsest (and lowest degree) description of the geometry
that is still exact while employing a k-refined space for the solution field to mitigate these effects.
Nevertheless, for the sake of completeness, we should highlight that the construction of the bubble
space W p+1

h is not straightforward in the case where the underlying B-splines are quadratic. We
propose as possible remedies:

1. Construction of an additional sub-grid obtained as dyadic refinement of the original hierarchical
mesh and definition of the bubble functions on the corresponding space defined by the new grid.

2. Introduction of suitable edge functions in the bubble space.
Notice that, although both approaches could be feasible, they add a non-negligible complexity to the
method. In the first case, a new, finer hierarchical grid has to be created at every iteration of the
adaptive loop and numerical integration of (8) has to be performed over it. In the second case,
the definition of which edge bubbles have to be considered in the hierarchical case is not unique and
considerably worsen the simplicity of the method. Indeed, the corresponding linear system would
become more difficult to solve since the element-wise locality of the bubble functions would be lost.
Therefore, in light of these considerations, we will not address further the case p = 2 in the scope of
this work.

Remark 3 (Jumps in the residual). In the last remark, we notice that, although the residual ex-
hibits jumps across element edges for the discretization of degree p = 3, in all our computations the
estimator behaves still optimally even if the corresponding jump terms are not accounted for in (8).
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Ω̂

(a) Bubble basis p = 4.

Ω̂

(b) Bubble basis p = 4 with boundary functions.

Ω̂

(c) Bubble basis p = 5.

Ω̂

(d) Bubble basis p = 5 with boundary functions.

Figure 1: Example of construction of bubble functions bh as tensor product of univariate functions
for the case p = 3, 4, where on the left-side only internal functions are depicted whereas on
the right-side also boundary functions are plotted.

4.2 Marking and refine strategies
Here, we briefly recall that once an estimate of the error element-wise is available, there exist several
strategies proposed in the literature to mark elements for refinement. In all our numerical examples
we use the so-called maximum strategy, which can be summarized as follows. Let γ ∈ (0, 1) be a
user-defined threshold, all elements such that

ηε > γ η̃ε , where η̃ε = max
ε∈Q

ηε ,

are marked for refinement. In the following, if not stated otherwise, we will always use γ = 0.5.
Additionally, since for basis functions of order p their support usually spans up to p+ 1 elements, we
try to reduce the number of isolated marked elements. Indeed, in general, isolated refined elements
do not improve the solution space V p

h (they do not add any additional degree of freedom) but only the
associated numerical integration is refined. To avoid that, we slightly modify the maximum strategy
marking algorithm such that once an element ε of level l is marked for refinement, the algorithm also
marks all the neighbors of ε ∈ Ql, where Ql is the set of active elements of level l. Finally, we remark
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that our marking algorithm is also designed to preserve the admissibility (as defined in [15]) of the
hierarchical mesh between consecutive iterations of the adaptive loop. We recall that admissible
meshes are guaranteed to have a bounded number of basis functions acting on any element of the
mesh, such that interaction between very fine and very coarse functions is avoided. If not stated
otherwise, we will set the class of admissibility m to be m = p − 1 in all our numerical examples.
For the sake of brevity we do not discuss the details here, the reader is referred to [15, 14, 10] for a
comprehensive review of the concept of admissibility.

5 Numerical Examples
All the numerical experiments presented in the following section have been implemented in the open-
source and free Octave/Matlab package GeoPDEs [47], which is a software suite for the solution of
partial differential equations specifically designed for isogeometric analysis.

5.1 Kirchhoff plate
In this Section we present several adaptive computations in the context of Kirchhoff plates, thought
to give a first assessment of the performance of the proposed error estimator. We demonstrate
the applicability of our method both for problems which exhibit smooth and singular solutions. In
all cases presented here, the proposed error estimator shows excellent performance in steering the
adaptive simulation, yielding the expected optimal rates of convergence in the asymptotic regime.

5.1.1 Smooth solution on a square plate

In the first example, we analyzed the behavior on the bubble error estimator compared to a classical
residual-based type error estimator. We define the computational domain to be the unit square
Ω = [0, 1]2 and we impose the following homogeneous boundary conditions:

u = 0 on ∂Ω .

νD∆u+ (1− ν)D d · (∇∇u)d = 0 on ∂Ω

Additionally, the applied load g is constructed such that it fulfills the following manufactured solution
uex = sin(2πx) sin(2πy). Namely, g reads as follows:

g = 64π4 sin(2πx) sin(2πy).

The structure, physical parameters and the exact solution are depicted in Figure 2. Notice that, as
predicted by classical a priori error estimates (see for instance [17, 41] or in the context of IGA [7])
and since uex is sufficiently regular, we expect the following convergence rate:

‖uex − uh‖Hs(Ω) ≤ Ch
p+1−s ‖uex‖Hp+1(Ω) p+ 1 > s , (10)

where p denotes the polynomial degree of the hierarchical basis and h represents the maximum mesh
size, namely:

h = max
ε∈Q

hε.

Additionally, in all our numerical examples, we choose s = 2. Moreover, for simplicity and without
loss of generality, we measure the error in the H2 semi-norm, which corresponds to the energy norm
of the problem at hand. It is worth noting that in most cases we will use the number of degrees-of-
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load g = ∆2uex

(a) Geometry description of the problem.
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(b) Exact solution uex = sin(2πx) sin(2πy).

Figure 2: Geometry, physical parameters and exact solution contour of the square plate example.

freedom (dofs) instead of the mesh size h, since we can relate these two quantities via h ≈ dofs−1/d,
where d denotes the dimensionality of the problem.

For the sake of comparison, in the case of Kirchhoff plates only, we drive the adaptive method by
means of both the residual-based and the bubble-based estimators. To test our implementation, we
perform at first uniform refinement for different degrees p = 3, 4, 5 and check the convergence rate of
the error in the energy norm and both estimators against the element size h, as depicted in Figure 3
for the bubble and residual-based, respectively. In all the presented cases an optimal asymptotic rate
of convergence is observed, both for the error and the estimator. Furthermore, we remark that the
bubble estimator is much closer to the real error compared to the residual-based.

Finally, we run the same example letting the bubble and residual-based estimators drive auto-
matically the adaptive simulation. The results are reported in Figure 4, where the error in energy
norm and the estimator are plotted against the square root of the number of dofs. We observe anal-
ogous results to the uniform refinement case, where for p = 3, 4, 5 the expected asymptotic rates of
convergence are achieved. Then, let us define the effectivity index θ as:

θ =

√∑
ε∈Q η2

ε

‖uex − uh‖E(Ω)
,

where the optimal value of θ is 1. Also in the adaptive example, the bubble estimator provides
a better estimate of the real error compared to a classical residual-based estimator, yielding an
effectivity index much closer to the optimal value, as shown in Figure 5. This statement holds in an
analogous way for all the presented examples and shows numerically the efficiency of the proposed
method.
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(b) Residual-based estimator.

Figure 3: Study of the convergence of the error measured in the H2 semi-norm, bubble and residual-
based estimators against the mesh size h for different p on a smooth plate problem (uex =
sin(2πx) sin(2πy)). Uniform refinement.
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(a) Bubble estimator.
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(b) Residual-based estimator.

Figure 4: Study of the convergence of the error measured in the H2 semi-norm, bubble and residual-
based estimators against the square root of the number of dofs for different p on a smooth
plate problem (uex = sin(2πx) sin(2πy)). Adaptive refinement based on the maximum
strategy (γ = 0.5).
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(b) Residual-based estimator.

Figure 5: Effectivity index θ for the bubble and residual-based estimator against the square root of
the dofs for different p = 3, 4, 5 on the plate problem with smooth solution. Notice the
difference of two orders of magnitude in the scale used for the y-axis.

5.1.2 Singular solution on a square plate

In the next example, we consider again the computational domain to be a unit square Ω = [0, 1]2, see
Figure 6. However, this time the manufactured solution uex = xαyβ with α = β = 2.8 is constructed
such that a singularity is present along the bottom and the left edges of the plate. In particular,
it holds uex ∈ H3(Ω) \ H4(Ω). The applied load g is again constructed such that it fulfills the
manufactured solution uex and it is given as follows:

g =α(α− 1)(α− 2)(α− 3)x(α−4)yβ + β(β − 1)(β − 2)(β − 3)xαy(β−4)+

2
[
αβ(α− 1)(β − 1)x(α−2)y(β−2)

]
.

The boundary conditions are also constructed from the exact solution as:

u = uex on ∂Ω ,

νD∆u+ (1− ν)D d · (∇∇u)d = Mex on ∂Ω

where Mex denotes the exact bending moment. The reduction in regularity of the solution limits the
rate of convergence in case of uniform refinement, even for increasing p. From [17, 41], the result on
a priori convergence for uniform refinement is in this case a more general version of (10) and reads:

‖uex − uh‖Hs(Ω) ≤ Ch
l−s ‖uex‖Hr(Ω) r > s ,

where r represents the regularity of the exact solution (for this example we have r ∈ ]3, 4[) and l is
defined as l = min (r, p+ 1). This effect can be clearly seen in Figure 7 for p = 3, 4. Figure 7 also
shows the results for an adaptive simulation driven by the bubble estimator, where optimal rates of
convergence are recovered by our method and a significant increase in accuracy per degree-of-freedom
is achieved. Additionally, the obtained mesh at different iterations of the adaptive algorithm are
depicted in Figure 8, where it can be seen that the singularities are accurately detected and resolved
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(b) Exact solution uex = xαyβ with α = β = 2.8.

Figure 6: Geometry, physical parameters and exact solution contour of the singular square plate
example.

by the estimator.
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Figure 7: Study of the convergence of the error measured in the H2 semi-norm and bubbles estimator
against the square root of the number of dofs for different p (and associated pb for the bubble
space) on the square plate problem with singularity (uex = xαyβ with α = β = 2.8).
Adaptive refinement based on the maximum strategy (γ = 0.5).

5.1.3 Point load on a rectangular plate

In this example, we test the performance of the proposed error estimator when a point load is applied
as an external force. We perform again our computation on a unit square Ω = [0, 1]2 and we suppose
that the plate is simply supported on the entire boundary ∂Ω. Additionally, we apply the external
point load at the center of the structure. There exists an analytical solution for the deflection under
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(a) Solution u and mesh at itera-
tion k = 3.

(b) Solution u and mesh at itera-
tion k = 5.

(c) Solution u and mesh at itera-
tion k = 8.

(d) Solution u and mesh at itera-
tion k = 10.

(e) Solution u and mesh at iteration k = 14 and zoom on the bottom right corner. Notice the very fine level
of refinement achieved close to the singularity.

Figure 8: Mesh and solution contours at different steps of the adaptive loop driven by the bubble error
estimator for the square plate with singular solution. Solution obtained using hierarchical
B-splines of degree p = 3. 15



the load, given as [43]:

uex = 4gL2

Dπ4

∞∑

n=1,3,...

∞∑

m=1,3,...

1
(m2 + n2)2 , (11)

where g represents the applied external force, L is the length of the plate and D denotes its flexural
stiffness. We set g = −1, L = 1 and the physical parameters such that D = 1. Computing (11)
with an adequate number of terms for the double Fourier series yields a reference value of uex =
−0.011600839735872 . . . for the deflection. In Figure 9a the convergence of the normalized deflection
is plotted against the number of degrees-of-freedom, where the former is defined as |1 − uh/uex|.
Moreover, the obtained solution and hierarchical mesh obtained after k = 9 steps of the adaptive
algorithm are depicted in Figure 9b. Here, the advantages of using an adaptive scheme are clearly
highlighted, in terms of efficiency and accuracy per degree-of-freedom. For instance, at around 2500
dofs the adaptive strategy is already two orders of magnitude more accurate compare to the results
obtained by uniform refinement.

Remark 4 (Regularization of the Dirac delta). It is worth noting that a point load is modeled
as a Dirac delta, which rigorously speaking is a distribution. Therefore, for the evaluation of the
residual in a strong sense, needed in the residual-based estimator, we cannot directly use it inside
our computations but instead we must regularize it. In our example, this is achieved with a steep
Gaussian function. A considerable amount of literature has been written on how to regularize and
correctly integrate the Dirac delta according to the corresponding application (e.g. we refer to [46]
and references therein) and although our approach might not be optimal we feel it suits the purpose
of our test case while at the same time it proves to be easily implementable.
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(a) Study of the convergence of the displacement under
a point load on the square plate example, adaptive
refinement vs. uniform refinement using hierarchi-
cal B-splines of degree p = 3.

(b) Mesh at iteration k = 9 and corresponding solution
obtained by adaptive refinement driven by the bub-
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Figure 9: Convergence study and numerical solution for the square plate problem subjected to a point
load applied at the center of the plate.
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Figure 10: Geometry description and physical parameters of the pinned roof example (only part of
the load is depicted for visualization purposes).

5.2 Kirchhoff-Love shell
In this Section we demonstrate the applicability of the bubble error estimator to the Kirchhoff-
Love formulation. Again, in all our numerical experiments the estimator performs well in driving
adaptive computations. Once more, it is worth highlighting that with the proposed method we avoid
the evaluation of higher order derivatives (this time defined on a manifold) which turns out to be
particularly challenging and computationally involved in the framework of Kirchhoff-Love shells, see
for instance [39].

5.2.1 Gravity load on a pinned roof

In this example, we study the behavior of a structure subjected to its self-weight where pinned sup-
ports are applied to the entire boundary. The geometry, boundary conditions and physical parameters
are given in Figure 10, where the problem setup (except for the boundary conditions) is taken from
the classical Scordelis-Lo benchmark [45]. The boundary conditions are modified in order to avoid
numerical issues during the computation of the reference solution and corresponding error, since the
original problem definition of the Scordelis-Lo roof is not well-posed, see for instance [33]. To the
best of the authors’ knowledge, there is no closed-form global solution available in the literature for
the problem at hand. Therefore, all the convergence studies presented in the following assess the
behavior against a reference solution uref

h , which was computed using B-splines of degree p = 8 on a
fine uniform mesh with ' 200 000 degrees-of-freedom. In particular, we define an approximation of
the error in the energy norm as:

||ẽ||E(Ω) =
√
a(uh − uref

h ,uh − uref
h ) ,

where the numerical integration of this quantity is performed on the fine mesh.
In Figure 11 the convergence behavior of ||ẽ|| is depicted for the case of uniform refinement and

adaptive refinement driven by the bubble estimator, against the number of dofs. We notice that
since the true solution of the problem is regular enough, we obtained the optimal asymptotic rate of
convergence, both for the error in energy norm and the estimator. This example is thought as a first
assessment of the performance of the proposed estimator on shell geometries. We remark that in
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(a) Uniform refinement.
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(b) Adaptive refinement.

Figure 11: Study of the convergence of the error in the energy norm for the bubble estimator em-
ploying hierarchical B-splines of degree p = 3, 4 on the pinned roof example. Adaptive
refinement based on the maximum strategy (γ = 0.5).

standard shell benchmarks adopted in the literature, convergence is usually tested against a reference
value for the displacement in some points of interest of the structure. While this information is rele-
vant in many engineering applications, we feel that a deeper look into the behavior of derived global
quantities, like for instance the error in energy norm used here, can be useful and mathematically
more rigorous.

5.2.2 Point load on the Scordelis-Lo roof

The next example is meant to demonstrate once again the higher accuracy per-degree-of-freedom
achievable using local refinement. The geometrical setup and physical parameters are taken as
defined in the Scordelis-Lo benchmark and are given in Figure 12a, where we change the boundary
conditions. Indeed, as external loading, we apply a point load of magnitude 105 in the middle of the
structure, directed in the negative vertical direction. The convergence behavior of the displacement
under the point load is depicted in Figure 12b, where a reference value of −0.206794699852788 . . .
has been obtained with an overkill solution, which was computed using B-splines of degree p = 4 on a
fine uniform mesh with ' 200 000 degrees-of-freedom. It can be seen that the solution obtained with
an adaptive simulation based on the bubble estimator is several orders of magnitude more accurate
compared to performing uniform refinement of the patch, for the same number of dofs. Finally,
in Figure 13, the obtained displacement in the z-direction, hierarchical mesh and Von Mises stress
distribution are presented at different steps of the adaptive loop where we remark that once again
the estimator properly captures and resolves the sharp features of the solution.
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Figure 12: Problem setup and convergence plot for the Scordelis-Lo roof example under a point load.
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(a) Solution uz and mesh at itera-
tion k = 3.

(b) Solution uz and mesh at itera-
tion k = 5.

(c) Solution uz and mesh at itera-
tion k = 9.

(d) Von Mises at iteration k = 3. (e) Von Mises at iteration k = 5. (f) Von Mises at iteration k = 9.

(g) Solution uz and mesh at iteration k = 11.

Figure 13: Mesh, solution uz and Von Mises stress at different steps of the adaptive loop driven by
the bubble error estimator for the Scordelis-Lo roof subjected to a point load, solution
obtained employing hierarchical B-splines of degree p = 3.
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6 Conclusions
We have introduced a novel a posteriori error estimator in the context of linear fourth-order partial
differential equations, namely we have successfully applied it to adaptive simulation, based on the
use of hierarchical B-splines, of isogeometric Kirchhoff plates and Kirchhoff-Love shells. This can
be seen as an extension of similar approaches present in the literature, e.g. we refer to [6, 49]. The
evaluation of the estimator is based on the solution of an additional, residual-like variational problem
formulated in the so-called bubble space, which is composed of Bernstein polynomials defined locally
on active elements. We remark that, thanks to this choice of the aforementioned space, the resulting
linear system is in general small, block-diagonal and easily-invertible. Moreover, this method is
suitable for parallelization and straightforward to implement into existing isogeometric codes. More
importantly, it is computationally cheap compared to classical residual-type estimators since it avoids
the computation of the residual in a strong sense. On one hand, this is a major advantage particularly
for Kirchhoff-Love shells, since the evaluation of covariant derivatives is a tedious task, becomes very
quickly computationally expensive and, for all practical purposes, almost intractable from a numerical
standpoint. On the other hand, with this technique we also avoid the computation of integral terms
involving the evaluation of the jump of the derivatives across element boundaries. Finally, we have
also observed that in all our experiments the proposed estimator acts as an excellent approximation
of the true error.

To conclude, we have numerically demonstrated the applicability and robustness of the proposed
error estimator to steer an adaptive simulation of a wide range of problems of engineering relevance,
where superior efficiency and accuracy per-degree-of-freedom have been achieved thanks to the local
refinement capabilities of hierarchical B-splines.
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