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Abstract. We describe a set of basic succinct data structures which
have been implemented as part of the Succinct library, and applications
on top of the library: an index to speed-up the access to collections of
semi-structured data, a compressed string dictionary, and a compressed
dictionary for scored strings which supports top-k prefix matching.

1 Introduction

Succinct data structures (SDS) encode data in small space and support efficient
operations on them. Encoding is a well studied problem in information theory
and there is a simple lower bound on the required space in bits: if data are
entries from a domain D, encoding each entry with less than dlog |D|e bits cannot
uniquely identify all the entries in D (here logs are to the base 2). Thus any
correct encoding requires at least dlog |D|e bits in the worst case, which is known
as the information-theoretic lower bound. Variants of this concept use some form
of entropy of D or other adaptive measures for the space occupancy, in place of
the dlog |D|e term, but the idea is essentially the same.

Going one step beyond encoding data, SDS can also retrieve data in response
to queries. When data are any given subset of elements, an example of query is
asking if an input element belongs to that subset. Without any restriction on the
execution time of the queries, answering them becomes a trivial task to perform:
simply decode the whole encoded data and scan to answer the queries. The
challenge in SDS is to quickly perform its query operations, possibly in constant
time per query. To attain this goal, SDS can use extra r bits of redundancy in
addition to those indicated by the information-theoretic lower bound.

SDS have been mainly conceived in a theoretical setting. The first results
date back to Elias’ papers of 1974 and 1975 on information retrieval [9,10] with
a reference to the Minsky-Papert problem on searching with bounded Hamming
distance. The power of SDS has been extensively discussed in Jacobson’s PhD
thesis [17], where he shows how to store data such as binary sequences, trees,
and graphs in small space. The design of SDS is also linked to the bit probe
complexity of data structures, see the literature cited in [22,6], and the time-space
tradeoffs of data structures, e.g. [27]. As of now, there are SDS for sets of integers,
sequences, strings, trees, graphs, relations, functions, permutations, geometric
data, special formats (XML, JSON), and so on [19].



What is interesting for the algorithm engineering community is that, after
some software prototype attempts, efficient libraries for SDS are emerging, such
as the C++ libraries libcds [21], rsdic [29], SDSL [31], and the Java/C++ library
Sux [33]. They combine the advantage of data compression with the performance
of efficient data structures, so that they can operate directly on compressed data
by accessing just a small portion of data that needs to be decompressed. The
field of applications is vast and the benefit is significant for large data sets that
can be kept in main memory when encoded in succinct format.

The preprocessing stage of SDS builds an index that occupies r bits (of
redundancy). Systematic SDS have a clear separation of the index from the
compressed data, with several advantages [3]. When this separation is not ob-
tained, the resulting SDS are called non-systematic because many bits contribute
simultaneously both to the index and the compressed data.1

Given data chosen from a domain D, the designer of SDS aims at using
r + dlog |D|e bits to store data+index, with the main goal of asymptotically
minimizing both the space redundancy r and the query time, or at least finding
a good trade-off for these two quantities. Optimality is achieved when r and
query bounds match the corresponding lower bounds. The problem is not only
challenging from a theoretical point of view, where sophisticated upper and lower
bounds have been proposed, e.g. [26,35]. Its practical aspects are quite relevant,
e.g. in compressed text indexing [12,15], where asymptotically small redundancy
and query time quite often do not translate into practical and fast algorithms.

We focus on succinct indexes for semi-structured data and strings but we
believe that many SDS should be part of the modern algorithmist’s toolbox for
all the several data types mentioned so far. We survey a set of fundamental
SDS and primitives to represent and index ordered subsets, sequences of bits,
sequences of integers, and trees, that can be used as building blocks to build
more sophisticated data structures. These SDS have proven to be practical and
mature enough to be used as black boxes, without having to understand the inner
details. The SDS that we describe are all implemented as part of the Succinct
C++ library [32]; we give three examples of its applications in the last section.

2 Basic toolkit for the designer

In this section we define the most common primitives used when designing
SDS, which are also sufficient for the applications of Sect. 4. The details on the
algorithm and data structures used to implement them, along with their time
and space complexities, are deferred to Sect. 3.

2.1 Subsets and bitvectors

Bitvectors are the basic building block of SDS. In fact, most constructions consist
of a collection of bitvectors and other sequences, that are aligned under some
1 In a certain sense, implicit data structures as the binary heap can be seen as a form
of non-systematic SDS where r = O(logn) bits for n elements.
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logic that allows to efficiently translate a position in one sequence to a position
in another sequence; this pattern will be used extensively in Sect. 4.

Formally, a bitvector is a finite sequence of values from the alphabet {0, 1},
i.e. bits. For a bitvector s we use |s| to denote its length, and si to denote its
i-th element, where i is 0-based. Bitvectors can be interpreted as subsets of an
ordered universe U : the ordering induces a numbering from 0 to |U | − 1, so a
subset X can be encoded as a bitvector s of length |U |, where si is 1 if the i-th
element of U belongs to X, and 0 otherwise. Here the information-theoretic lower
bound is dlog

(|U |
m

)
e where m is the number of 1s [28].

Rank and Select The Rank and Select primitives form the cornerstone of most
SDS, since they are most prominently used to align different sequences under the
pattern described above. These operations can be defined on sequences drawn
from arbitrary alphabets, but for simplicity we will focus on bitvectors.

– Rank1(i) returns the number of occurrences of 1 in s[0, i).
– Select1(i) returns the position of the i-th occurrence of 1.

An operation tightly related to Rank/Select is Predecessor1(i), which returns
the position of the rightmost occurrence of 1 preceding or equal to i. Note that
Rank1(Select1(i)) = i and Select1(Rank1(i)) = Predecessor1(i) (Symmetrically,
Rank0, Select0, and Predecessor0 can be defined on occurrences of 0s.)

If the bitvector is interpreted as a subset under the correspondence defined
above, Rank1 returns the number of elements in the subset that are strictly
smaller than a given element of the universe, while Select1 returns the elements
of the subset in sorted order. Predecessor1 returns the largest element that is
smaller or equal to a given element of the universe.

A basic example of how to use Rank1 to align different sequences is the sparse
array. Let A be an array of n elements of k bits each; then, to store it explicitly,
kn bits are needed. However, if a significant number of elements is 0 (or any
fixed constant), we can use a bitvector z of n bits to encode which elements are
zero and which ones are not, and store only the non-zeros in an another array B.
To retrieve A[i], we return 0 if zi = 0; otherwise, the value is B[Rank1(i)]. This
allows to reduce the space from kn bits to n+ k|B| bits, plus the space taken by
the data structure used to efficiently support Rank1.

2.2 Balanced Parentheses and Trees

Another class of sequences of particular interest is given by sequences of balanced
parentheses (BP), which can be used to represent arbitrary trees in spaces close
to the information-theoretic optimum.

BP sequences are inductively defined as follows: an empty sequence is BP; if α
and β are sequences of BP, then also (α)β is a sequence of BP, where ( and ) are
called mates. For example, s = (()(()())) is a sequence of BP. These sequences
are usually represented as bitvectors, where 1 represents ( and 0 represents ).

Several operations operations can be defined on such sequences; as we will
see shortly, the following ones are sufficient for basic tree navigation.
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– FindClose(i), for a value i such that si = (, returns the position j > i such
that sj = ) is its mate. (FindOpen(i) is defined analogously.)

– Enclose(i), for a value i such that si = (, returns the position j < i such
that sj = ( and the pair of j and its mate enclose the pair of i and its mate.

– Rank((i) returns the pre-order index of the node corresponding to the paren-
thesis at position i and its mate; this is just the number of open parentheses
preceding i.

– Excess(i) returns the difference between the number of open parentheses and
that of close parentheses in the first i + 1 positions of s. The sequence of
parentheses is balanced if and only if this value is always non-negative, and
it is easy to show that it equals 2 · Rank((i)− i.

Balanced Parentheses tree encoding (BP) The BP representation of trees
was introduced by Munro and Raman [23]. A sequence of BP implicitly represents
an ordinal tree, where each node corresponds to a pair of mates. By identifying
each node with the position p of its corresponding open parenthesis, several
traversal operations can be reduced to the operations defined above.

Depth-first unary degree sequence (DFUDS) Another tree representation
based on balanced parentheses was introduced by Benoit et al. [5]. Called depth-
first unary degree sequence (DFUDS), it is constructed by concatenating in
depth-first order the node degrees encoded in unary, i.e. a degree d is encoded as
(d). It can be shown that by prepending an initial (, the obtained sequence of
parentheses is balanced.

By identifying each node of the tree with the position p of beginning of its
degree encoding, traversal operations can be mapped to sequence operations.
Compared to the BP representation we loose the Depth operation, but we gain
the operation Child which returns the i-th child by performing a single FindClose.

Figure 1 shows an example of a tree represented with BP and DFUDS
encodings. Note that both encodings require just 2 bits per node, plus the data
structures needed to support the operations. It can be shown that the information-
theoretic lower bound to represent an arbitrary tree of n nodes is 2n− o(n) bits,
so both encodings are asymptotically close to the lower bound.

2.3 Range Minimum Queries

Given a sequence A of elements drawn from a totally ordered universe, a Range
Minimum Query for the range [i, j], denoted as RMQ(i, j), returns the position
of the minimum element in A[i, j] (returning the leftmost in case of ties).

This operation finds application, for example, in suffix arrays, to find the
LCP (Longest Common Prefix) of a range of suffixes by using the vector of LCPs
of consecutive suffixes: the LCP of the range is just the minimum among the
consecutive LCPs. Another application is top-k retrieval (see Sect. 4).
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BP ( ( ( ( ) ( ) ( ) ) ( ) ) ( ( ) ) ( ( ( ) ) ( ) ( ( ) ( ) ) ( ) ) )
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

DFUDS ( ((() (() ((() ) ) ) ) () ) (((() () ) ) (() ) ) )
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fig. 1. BP and DFUDS encodings of an ordinal tree.

3 Toolkit implementation

For the operations described in Sect. 2 there exist SDS that can support them
in constant time while taking only r = o(n) bits of redundancy, meaning that
as the input size n grows to infinity the relative overhead per element of the
sequence goes to zero. This fact is the raison d’être for the whole field of SDS: it
means that, in a reasonably realistic model of computation, using SDS instead of
classical pointer-based ones involves no runtime overhead, and the space overhead
needed to support the primitives is negligible.

In practice, however, the constants hidden in the o(·) and O(·) notations are
large enough that these data structures become competitive with the classical
ones only at unrealistic data sizes. Furthermore, CPU cache and instruction-level
parallelism play an important role in the performance of these algorithms, but it
is impossible to appreciate their influence in an abstract model of computation.

In recent years, a large effort has been devoted to the algorithm engineering of
SDS, producing practical data structures that are fast and space-efficient even for
small inputs. When compared to their theoretical counterparts, the time bounds
often grow from O(1) to O(log n), and the space bounds from o(n) to O(n), but
for all realistic data sizes they are more efficient in both time and space.

To give a sense of how these data structures work, we give a detailed explana-
tion of how Rank can be implemented. The other data structures are only briefly
summarized and we refer to the relevant papers for a complete description.

All the SDS described here are static, meaning that their contents cannot be
changed after the construction. While there has been a significant amount of work
in dynamic SDS, most results are theoretical, and the practice has not caught up
yet. The engineering of dynamic SDS is certainly an interesting research topic,
which we believe will receive significant attention in the next few years.
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3.1 The Succinct library

The SDS structures described in this section, which to date are among the most
efficient, are implemented as part of the Succinct library [32]. The library is
available with a permissive license, in the hope that it will be useful both in
research and applications. While similar in functionality to other existing C++
libraries such as libcds [21], SDSL [31], and Sux [33], we made some radically
different architectural choices, which we describe below.
Memory mapping. As in most static data structures libraries, all the data
structures in Succinct can be serialized to disk. However, as opposed to libcds,
SDSL, and Sux, deserialization is performed by memory mapping the data
structure, rather than loading it into memory.

While being slightly less flexible, memory mapping has several advantages
over loading. For example, for short-running processes it is often not necessary
to load the full data structure in memory; instead the kernel will load only the
relevant pages. If such pages were accessed recently, they are likely to be still in
the kernel’s page cache, thus making the startup even faster. If several processes
access the same structure, the memory pages that hold it are shared among all
the processes; with loading, instead, each process keeps its own private copy of
the data. Lastly, if the system runs out of memory, it can just un-map unused
pages; with loading, it has to swap them to disk, thus increasing the I/O pressure.

For convenience we implemented a mini-framework for serialization/memory
mapping which uses template metaprogramming to describe recursively a data
structure through a single function that lists the members of a class. The mini-
framework then automatically implements serialization and mapping functions.
Templates over polymorphism. We chose to avoid dynamic polymorphism
and make extensive use of C++ templates instead. This allowed us to write
idiomatic and modular C++ code without the overhead of virtual functions.
Multi-platform 64-bit support. The library is tested under Linux, Mac OS X,
and Microsoft Windows, compiled with gcc, clang and MSVC. Like Sux and
parts of SDSL, Succinct is designed to take advantage of 64-bit architectures,
which allow us to use efficient broadword algorithms [20] to speed up several
operations on memory words. Another advantage is that the data structures are
not limited to 232 elements or less like 32-bit based implementations, a crucial
requirement for large datasets, which are the ones that benefit the most from
SDS. We also make use of CPU instructions that are not exposed to C++ but
are widely available, such as those to retrieve the MSB and LSB of a word, or
to reverse its bytes. While all these operations can all be implemented with
broadword algorithms, the specialized instructions are faster.

3.2 Rank/Select

Like many SDS, Jacobson’s implementation [17] of Rank relies on Four Russians
trick by splitting the data into pieces that are small enough that all the answers
to the queries for the small pieces can be tabulated in small space, and answers to
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queries on the whole input can be assembled from queries on the small pieces and
on a sparse global data structure. Specifically, the input is divided into super-blocks
of size log2 n, and the answer to the Rank at the beginning of each super-block
is stored in an array. This takes O(#blocks · log n) = O(n log n/ log2 n) = o(n).

The super-blocks are then divided into blocks of size 1
2 log n, and the answers

to the Rank queries at the beginning of each block are stored relative to their
super-block : since the superblock is only log2 n bits long, the relative ranks cost
O(log log n) bits each, so overall the block ranks take O(n log log n/ log n) = o(n).

The blocks are now small enough that we can tabulate all the possible Rank(i)
queries: the number of different blocks is at most 2

log n
2 = O(

√
n), the positions

in the block are at most O(log n), and each answer requires O(log log n) bits, so
overall the space needed by the table is O(

√
n log n log log n) = o(n).

To answer Rank(i) on the whole bitvector it is sufficient to sum the rank of
its super-block, the relative rank of its block, and the rank inside the block. All
three operations take O(1) time, so overall the operation takes constant time.

This data structure can be implemented almost as described, but it is conve-
nient to have fixed-size blocks and super-blocks. This yields an O(n)-space data
structure, but the time is still O(1). Furthermore, if the blocks are sized as the
machine word, the in-block Rank can be efficiently computed with broadword
operations, as suggested by Vigna [34], hence avoiding to store the table.

The constant-time data structure for Select is significantly more involved:
its practical alternative is to perform a binary search on the super-block ranks,
followed by a linear search in the block partial ranks and then inside the blocks.
The binary search can be made more efficient by storing the answer to Select1 for
every k-th 1, so that the binary search can be restricted to a range that contains
at most k ones. This algorithm, which is known as hinted binary search, can take
O(log n) time but is extremely efficient in practice.

In Succinct, Rank and Select are implemented in the rs_bit_vector class,
which uses the rank9 data structure [34].

3.3 Elias-Fano representation of monotone sequences

The Elias-Fano representation of monotone sequences [9,11] is an encoding
scheme to represent a non-decreasing sequence of m integers 〈x1, · · · , xm〉 from
the universe [0..n) occupying 2m + m

⌈
log n

m

⌉
+ o(m) bits, while supporting

constant-time access to the i-th integer. It can be effectively used to represent
sparse bitvectors (i.e. where the number m of ones is small with respect to the
size n of the bitvector), by encoding the sequence of the positions of the ones.
Using this representation the retrieval of the the i-th integer can be interpreted
as Select1(i), and similarly it is possible to support Rank1.

The scheme is very simple and elegant. Let ` = blog(n/m)c. Each integer xi
is first encoded in binary into dlog ne bits, and the binary encoding is then split
into the first dlog ne − ` higher bits and the last ` lower bits. The sequence of
the higher bits is represented as a bitvector H of dm+ n/2`e bits, where for each
i, if hi is the value of the higher bits of xi, then the position hi + i of H is set
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to 1; H is 0 elsewhere. The lower bits of each xi are just concatenated into a
bitvector L of m` bits. To retrieve the i-th integer we need to retrieve its higher
and lower bits and concatenate them. The lower bits are easily retrieved from L.
To retrieve the upper bits it is sufficient to note that hi = SelectH(1, i)− i. The
implementation is straightforward, provided that Select is supported on H.

In Succinct, we implement it using the darray data structure [24], which
supports Select in O(1) time without requiring a data structure to support Rank.
The class elias_fano implements a sparse bitvector encoded with Elias-Fano.

3.4 Balanced Parentheses

To implement operations on balanced parentheses, variants of a data structure
called Range-Min-Max tree [30] have proven the most effective in practice [2],
despite their O(log n) time and O(n) space. The data structure divides the
sequence into a hierarchy of blocks, and stores the minimum and maximum
Excess value for each block. This yields a tree of height O(log n) height, that can
be traversed to find mate and enclosing parentheses.

In Succinct the class bp_vector implements the basic operations on balanced
parentheses. It uses a variant of the Range-Min-Max tree called Range-Min tree
[14], which only stores the minimum excess, thus halving the space occupancy with
respect to the Range-Min-Max tree. This weakens the range of operations that
the data structure can support, but all the important tree navigation operations
can be implemented.

3.5 Range Minimum Queries

The RMQ problem is intimately related to the Least Common Ancestor (LCA)
problem on trees. In fact, the LCA problem can be solved by reducing it to
an RMQ on a sequence of integers derived from the tree, while RMQ can be
solved by reducing it to an LCA in a tree derived from the sequence, called the
Cartesian Tree [4]. As shown by Fischer and Heun [13], RMQ on an array A can
be reduced to an RMQ on the excess sequence of the DFUDS representation
of the 2d-Min-Heap, which, as noted by Davoodi et al. [7], is an alternative
representation of the Cartesian tree. The RMQ operation on an excess sequence
can be easily implemented by using the Range-Min tree, so since the DFUDS
representation is already equipped with a Range-Min tree to support navigational
operations, no extra space is needed.

In Succinct, RMQ is implemented in the class cartesian_tree. The algorithm
is a minor variation, described in [16], of the scheme by Fischer and Heun [13].

4 Applications

We describe some applications of the Succinct library that involve handling
large collections of semi-structured or textual data. Interestingly, SDS are gaining
popularity in other communities such as bioinformatics, Web information retrieval,
and networking.
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4.1 Semi-indexing semi-structured data

With the advent of large-scale distributed processing systems such as MapReduce
[8] and Hadoop [1] it has become increasingly common to store large amounts of
data in textual semi-structured formats such as JSON and XML, as opposed to
the structured databases of classical data warehousing. The flexibility of such
formats allows to evolve the data schema without having to migrate the existing
data to the new schema; this is particularly important in logging applications,
where the set of attributes to be stored usually evolves quickly.

The disadvantage of such formats is that each record, represented by a semi-
structured document, must be parsed completely to extract its attributes; in
typical applications, the records contain several attributes but each query requires
a different small subset of such attributes, thus reading the full document can be
highly inefficient. Alternative representations for semi-structured data have been
proposed in the literature, many using SDS, that are both compact and support
efficient querying of attributes, but they rely on changing the data format, which
may be unacceptable in some scenarios where compatibility or interoperability
with existing tools is required.

In [25] it was introduced the concept of semi-index, which is a systematic SDS
that can be used to speed-up the access to an existing semi-structured document
without changing its format: the semi-index is stored on a separate file and it
takes only a small fraction of the size of the original data.

The semi-index consists of two components: a positional index, that is an
index of the positions in the document that are starting points of its elements,
and a succinct encoding of the parse tree of the document. The positional index
can be represented with a bitvector and encoded with Elias-Fano, while the parse
tree can be represented with a BP sequence.

For JSON documents [18], the positional index has a 1 in correspondence of
the positions where either of the characters {}[],: occur. For each one of these,
a pair of parentheses is appended to the BP sequence, specifically (( for { and
[, )) for } and ], and )( for , and :. An example is shown in Fig. 2. It can
be shown that the BP sequence is indeed balanced, and that it is possible to
navigate the parse tree of the document by accessing the two index sequences and
a minimal part of the original document. An experimental analysis on large-scale
document collections has shown speed-ups between 2.5 and 10 times compared
to parsing each document, while the space overhead given by the semi-index is
at most ∼ 10%.

{"a": 1, "b": {"l": [1, null], "v": true}}
100010010000101000101010000011000010000011

(( )( )( )( (( )( (( )( )) )( )( )) ))

Fig. 2. Semi-index of a JSON document.
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4.2 Compressed string dictionaries

A string dictionary is a data structure that maps bijectively a set of n strings to
the integer range [0, n). String dictionaries are among the most fundamental data
structures, and find application in basically every algorithm that handles strings.

In many scenarios where the string sets are large, the strings are highly
redundant ; a compressed string dictionary exploits this redundancy to reduce
the space usage of the data structure. Traditionally, string dictionaries are
implemented by using tries, which are not only fast, but they also offer some
degree of compression by collapsing the common prefixes. Tries represented with
SDS offer even higher space savings, but the performance suffers a large slow-
down because tries can be highly unbalanced, and navigational operations in
succinct trees can be costly. Furthermore, prefix compression is not effective for
strings that might share other substrings besides the prefix.

In [14] it was introduced a succinct representation for tries that makes use
of path decompositions, a transformation that can turn a unbalanced tree into a
balanced one. The representation also enables compression of the trie labels, thus
exploiting the redundancy of frequent substrings.

A path decomposition of a trie T is a tree T c whose nodes correspond to
node-to-leaf paths in T . The tree is built by first choosing a root-to-leaf path
π in T and associating it with the root node uπ of T c; the children of uπ are
defined recursively as the path decompositions of the subtries hanging off the
path π, and their edges are labeled with the labels of the edges from the path π
to the subtries. An example is shown in Fig. 3. The resulting tree is then encoded
using a DFUDS representation, and the sequence of labels is compressed with a
simple dictionary compression scheme.
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Fig. 3. Path decomposition of a trie. The αi denote the labels of the trie nodes, ci and
bi the branching characters (depending on whether they are on the path or not).

Depending on the strategy used to choose the decomposition path π, different
properties can be obtained. If we start from the root and recursively choose the
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child with most descendents, the resulting path is called a centroid path, and the
resulting centroid path decomposition has height O(log n), regardless of whether
the trie is balanced or not. Alternatively, we can choose recursively the leftmost
child; the resulting decomposition is called lexicographic path decomposition
because the numbers associated to the strings of the set respect the lexicographic
ordering, but for this decomposition no height guarantees can be given.

In the experiments, large-scale collections of URLs, queries, and web page titles
can be compressed down to 32% to 13% of their original size, while maintaining
access and lookup times of few microseconds.

4.3 Top-k completion in scored string sets

Virtually every modern application, either desktop, web, or mobile, features some
kind of auto-completion of text-entry fields. Specifically, as the user enters a
string one character at a time, the system presents k suggestions to speed up
text entry, correct spelling mistakes, and help users formulate their intent.

This can be thought of as having a scored string set, meaning that each string
is assigned a score, and given a prefix p we want to find the k strings prefixed by
p that have highest score. We call this problem top-k completion. Since the sets
of suggestion strings are usually large, space-efficiency is crucial.

A simple solution is to combine the lexicographic trie of Sect. 4.2 with an
RMQ data structure. The strings in the string set are stored in the trie, and their
scores are stored in lexicographic order in an array R. The set of the indexes of
strings that start with a given prefix p is a contiguous range [a, b].

We can then compute r = RMQ(a, b) to find the index r of the highest-scored
string prefixed by p. The second string is either the highest-scored one in [a, r−1]
or in [r + 1, b], and so on. By using a priority queue it is possible to retrieve the
top-k completions one at a time.

It is however possible to do better: we can use again the tries of Sect. 4.2, but
with a different path decomposition, where the chosen decomposition path π is
the path from the root to the highest-scored leaf. It can be shown that in the
resulting max-score path decomposition it is possible to find the top-k completions
of a given node by visiting just k nodes; since, as noted before, navigational
operations are costly in succinct representations, performance is significantly
better than the RMQ-based solution.

On large sets of queries and URLs, experiments have shown compression
ratios close or better than those of gzip, with average times per completion of
about one microsecond [16].
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