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Inflammatory bowel disease 
biomarkers revealed by the human 
gut microbiome network
Mirko Hu 1, Guido Caldarelli 2,3,4,5* & Tommaso Gili 6

Inflammatory bowel diseases (IBDs) are complex medical conditions in which the gut microbiota is 
attacked by the immune system of genetically predisposed subjects when exposed to yet unclear 
environmental factors. The complexity of this class of diseases makes them suitable to be represented 
and studied with network science. In this paper, the metagenomic data of control, Crohn’s disease, 
and ulcerative colitis subjects’ gut microbiota were investigated by representing this data as 
correlation networks and co-expression networks. We obtained correlation networks by calculating 
Pearson’s correlation between gene expression across subjects. A percolation-based procedure 
was used to threshold and binarize the adjacency matrices. In contrast, co-expression networks 
involved the construction of the bipartite subjects-genes networks and the monopartite genes-genes 
projection after binarization of the biadjacency matrix. Centrality measures and community detection 
were used on the so-built networks to mine data complexity and highlight possible biomarkers of 
the diseases. The main results were about the modules of Bacteroides, which were connected in the 
control subjects’ correlation network, Faecalibacterium prausnitzii, where co-enzyme A became 
central in IBD correlation networks and Escherichia coli, whose module has different patterns of 
integration within the whole network in the different diagnoses.

Microbes are ubiquitous. They can be found everywhere, from radioactive waste to the human gastrointestinal 
tract. In and on the human body, they have evolved to co-exist with their host, and it is estimated that the num-
ber of microbes hosted by the human body is of the same order of magnitude as the number of human cells1. In 
particular, the 1014 commensal microbes in the intestinal tract form the human gut microbiota, which has evolved 
to live in symbiosis with its host2. It is widely accepted that this symbiosis begins from birth, and the microbial 
communities stabilize with age until the formation of an adult microbiota3. Its genetic content (called the micro-
biome) characterizes everyone, also raising concerns about identity and privacy issues, specifically when the study 
and the manipulation of the microbiota are considered4. Since the 1840s, when the concept of gut microbiota 
first appeared, the topic has been studied for two centuries5, and, at the moment, it is known that the gut micro-
biota has a fundamental role in shaping the gut barriers6, training the host immune system and regulating the 
metabolism7. When the compositional and metabolic equilibrium of the commensal microbes living in the gut 
is disrupted, different types of diseases arise, such as metabolic disorders or central nervous system disorders8. 
Historically, traditional medicine attempted to re-establish this equilibrium through remedies intervening in 
the digestive system, such as fasting, diets, and the assumption of spring waters or laxatives. A recent procedure 
that was introduced to tackle the Clostridioides difficile infection is the faecal microbiota transplantation (FMT)9 
which consists in repopulating the intestinal tract of an ill subject with the microbiota of a healthy donor.

Inflammatory bowel diseases (IBDs), which comprise Crohn’s disease (CD) and ulcerative colitis (UC), are 
an essential class of diseases that arise from dysbiosis and are being treated with FMT. Typical symptoms of this 
class of diseases are chronic diarrhoea, abdominal pain, rectal bleeding, weight loss, and fatigue10. Although CD 
and UC are both characterized by the inflammation of the intestinal tract, there are several differences between 
the two diagnoses that span from the environmental factors that cause them, e.g., smoking or diet, to the clini-
cal and endoscopic findings in the two diagnoses11. Overall, IBDs are becoming widespread in modern society 
because of lifestyle changes, socioeconomic developments, and environmental causes12. Until now, it has been 
known that IBD is an exaggerated immune response to the gut microbiota of genetically predisposed subjects 
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under the influence of the external environment. This complex interplay between genetics, the microbiota, the 
immune system and the environment makes it particularly hard to understand this class of diseases. Kirsner13 
offered a complete historical review of the IBD until the 1980s, by quoting Hippocrates, who described diarrhoea 
as a symptom of an infectious (or non-infectious) disease to a description of the hypothetical pathogenesis of 
IBD, which the microbiota was not considered, though. A more recent projection predicted the evolution of the 
disease between 2015 and 2025 and updated the possible origins of IBD, including the action of antibiotics on 
the gut microbiota in Western society14. Xavier et al.15 summarized the findings of the origins of IBD, mentioning 
the complexity of the disease. Another historical review focuses on the genetics of the IBD16 identified NOD2 as 
the first CD susceptible gene and then described the evolution of the IBD genetics with the coming of the mod-
ern genome-wide association study. One of the first and most comprehensive works describing the interaction 
of all the aforementioned factors can be found in Ref.17. The systems biology approach to the study of IBD was 
presented by Fiocchi et al.18, which proposed the creation of an IBD interactome, a complex system connecting 
all the potential agents interacting among them that derived from the combination of different omics19.

Our work starts from here and attempts to provide tools and methods from network science useful to build 
and study the IBD interactome with a systems biology approach by commencing from the metagenomic data of 
the gut microbiome. This approach is typical of network medicine, a novel discipline that mixes network science 
with systems biology to tackle the challenges offered by the progress of personalized medicine20, which opposes 
the current effective yet drastic procedures like the FMT. Network science is the discipline used to analyse com-
plex systems. It could be suited to understand a complex disease like IBD in which a complex system like the gut 
microbiota plays a fundamental role. Complexity in the intestinal microbial communities arises at different scales; 
from the macroscopic point of view, we have the ecological interactions21,22 that describe the relationships among 
the species in the gut microbiota; among these, we have three different main types of interactions23; positive 
interactions (cooperation, commensalism, cross-feeding), negative interactions (competition, ammensalism), 
and asymmetric interactions (exploitation, predation, parasitism). Going towards a microscopic scale, we can 
find the gene networks, often represented by gene co-expression networks24 and metabolic networks built by 
connecting the substances, known as metabolites, reacting in the same metabolic processes25.

The application of network science for the study of the complexity of the gut microbiome is recent, and one 
of the first research was in the case of C. difficile infection26. The microbiome in this work was represented as a 
boolean network derived from binarized temporal data of the abundance of specific bacteria species in the gut. 
Although the study captured the dynamics of the bacterial species, e.g., negative, positive or neutral interac-
tion, it did not take into account the genetic expression of the microbiome (metagenome), which could better 
explain the complex interplay between the bacterial species. Our study, by contrast, gives a static screenshot of 
the microbial interactions through metagenomics. A more recent study27 analysed the co-abundance network 
built with SparCC28; the need for this tool is due to the necessity of sparsifying the network that would have 
too many correlated nodes because of normalization and a p-value threshold too high29. Based on a topologi-
cal property of the biological networks, the work by Vernocchi et al.24 portrays a weighted gene co-expression 
network analysis by building a network from metagenomic data and removing the weaker edges based on the 
assumption that the final network would be scale-free. In our work, we used thresholding methods that rely on 
the network topology, such as the percolation threshold or the p-value for the projected edges, similar to the later 
research. These methods should overcome the aforementioned problems. Furthermore, the emergence of specific 
network properties (community detection, betweenness centrality) can be used as possible IBD biomarkers. In a 
complex system, such as the gut microbiota, it is hard to observe changes in single biomarkers. Diseases emerge 
from malfunctioning in the collective behaviour of the nodes. Therefore, community detection and between-
ness centralities are important properties to be analysed. The former describes how the pathways are grouped 
in the complex system and the latter represents the pillar pathways among all the interactions that sustain the 
collective functioning of the network.

Results
In the next paragraphs, each pathway is called with a code name composed of the pathway code and the related 
species (e.g., “PATHWAYCODE|SPECIES”) for the sake of brevity and clarity, it is possible to consult the table 
mapping the correspondences between the codes and the complete pathway (Table S1 of Supplementary Mate-
rial). The properties of the main pathways can be found in the same table, the BioCyc30 and the MetaCyc31 col-
lections. The small set of reads that are mapped to proteins and are not associated with pangenomics are labelled 
as “unclassified”32.

Bacteroides and Faecalibacterium prausnitzii
The correlation networks for each diagnosis were obtained by isolating the samples of each diagnosis and then 
calculating the Pearson correlation of the samples to obtain a weighted network that was made binary through a 
percolation threshold of each diagnosis network ( thDIAGNOSIS ). Each correlation network was built by collecting 
the pathways from subjects diagnosed with Crohn’s disease (CD), ulcerative colitis (UC) or healthy non-IBD (NI). 
The pathways were divided into prevalent (if present in more than 75% of the samples), common (if present in 
50% to 75% of the samples) and uncommon (if present in 25% to 50% of the samples). We refer to the Methods 
section for a more detailed description of the methods. In the prevalent pathways, the number of edges in the NI 
correlation network was 3356 ( thNI = 0.453 ), in CD correlation network was 2905 ( thCD = 0.357 ), and in the 
UC correlation network was 3160 ( thUC = 0.364 ). The results showed that the NI metagenome was more con-
nected for prevalent pathways and the percolation threshold was higher compared to the percolation thresholds 
in the CD and the UC correlation networks, translating into more strongly correlated nodes in the NI correlation 
network. The community detection algorithm, which reveals the groups (called modules or communities) of 
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nodes in the network based on their topological similarities, aims to maximise the modularity. The maximised 
modularity is an important descriptor of the network structure; the lower the modularity, the lower the total 
number of modules. We obtained that the lowest modularity (0.538) can be found in the NI correlation network, 
meaning that it was not possible to separate some of the modules and there would be interconnections between 
them, the CD and the UC correlation networks resulted in a modularity of 0.583 and 0.622, respectively.

As we can see in Fig. 1, the pathways in the NI correlation network were divided into three large modules, 
one module was isolated, by contrast, the other two modules were communicating strictly through several 
nodes. The isolated module was composed of Phocaeicola vulgatus and Bacteroides uniformis pathways, this 
meant that in control subjects the two species co-variated and were interdependent through specific pathways 
(on the frontiers of the species modules, it was possible to find nodes PWY-6387|BACTEROIDES_UNIFORMIS, 
PWY-6151|BACTEROIDES_UNIFORMIS, PEPTIDOGLYCANSYN-PWY|BACTEIROIDES_UNIFORMIS, 
PWY-5667|BACTEROIDES_UNIFORMIS on the B. uniformis side and nodes PANTO-PWY|PHOCAEICOLA_
VULGATUS, PWY-6700|PHOCAEICOLA_VULGATUS, PWY-7220|PHOCAEICOLA_VULGATUS, PWY-
7222|PHOCAEICOLA_VULGATUS on the P. vulgatus side). The light purple module, on the other hand, 
contained Faecalibacterium prausnitzii, whereas the remaining large module contained the Bacteroides ovatus 
pathways, Eubacterium rectale pathways, and the unclassified species pathways. The nodes with the highest 
betweenness centrality (Table 1), the importance given by the number of shortest paths crossing the node, among 
the unclassified pathways in the two connected modules were connected through: 

1.	 node PWY-6527|UNCLASSIFIED;
2.	 node GLYCOGENSYNTH-PWY|UNCLASSIFIED;
3.	 node PWY66-422|UNCLASSIFIED;
4.	 node PWY-6317|UNCLASSIFIED.

Whereas, the nodes with the highest betweenness centrality among the F. prausnitzii pathway module that was 
connected to the unclassified pathway module were: 

1.	 node PWY-5659|FAECALIBACTERIUM_PRAUSNITZII;
2.	 node PWY-6277|FAECALIBACTERIUM_PRAUSNITZII;
3.	 node PWY-6121|FAECALIBACTERIUM_PRAUSNITZII;
4.	 node PWY-6122|FAECALIBACTERIUM_PRAUSNITZII.

To notice that pathway of node PWY-5659|FAECALIBACTERIUM_PRAUSNITZII correlated with only 4 E. 
rectale pathways.

In the CD correlation network, there were fewer connections, and the network was divided into 6 mod-
ules. Each module corresponded to the species groups of pathways. The smallest module was composed of E. 
rectale pathways. The largest (light purple) module comprising F. prausnitzii was connected to the unclassi-
fied (green) module using node COA-PWY|UNCLASSIFIED similar to the UC correlation network. Moreo-
ver, an additional bridge connecting node was node SER-GLYSYN-PWY|FAECALIBACTERIUM_PRAUS-
NITZII, which was linked to nodes PWY-6527|UNCLASSIFIED and ILEUSYN-PWY|UNCLASSIFIED, to 
mention two high betweenness centrality nodes among the unclassified pathways. High betweenness central-
ity nodes DTDPRHAMSYN-PWY|UNCLASSIFIED and PWY-5659|BACTEROIDES_OVATUS connected 
unclassified species module with B. ovatus module, node PWY-6124|BACTEROIDES_OVATUS, in turn, was 
connected to node PWY-7219|BACTEROIDES_UNIFORMIS linking B. ovatus module to the B. uniformis 
module. Finally, similarly to the NI correlation network, P. vulgatus and B. uniformis were connected though 
(nodes PWY-3841|PHOCAEICOLA_VULGATUS, PWY-7221|PHOCAEICOLA_VULGATUS, and PWY-
7228|PHOCAEICOLA_VULGATUS on the former side and nodes PWY0-845|BACTEROIDES_UNIFORMIS 

Table 1.   Top 10 pathway nodes with the highest betweenness centrality in the non-IBD (NI) correlation 
network with prevalent pathways.

Node Pathway Betweenness centrality

821 PWY-6527|UNCLASSIFIED 0.094492

466 PWY-5659|FAECALIBACTERIUM_PRAUSNITZII 0.031006

610 PWY-6122|FAECALIBACTERIUM_PRAUSNITZII 0.026071

724 PWY-6277|FAECALIBACTERIUM_PRAUSNITZII 0.026071

177 GLYCOGENSYNTH-PWY|UNCLASSIFIED 0.024356

579 PWY-6121|FAECALIBACTERIUM_PRAUSNITZII 0.017164

1225 PWY66-422|UNCLASSIFIED 0.015345

751 PWY-6317|UNCLASSIFIED 0.014598

1090 PWY-7242|FAECALIBACTERIUM_PRAUSNITZII 0.010309

499 PWY-5667|UNCLASSIFIED 0.007929
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and 1CMET2-PWY|BACTEROIDES_UNIFORMIS on the latter side). The pathways with the highest between-
ness centralities can be found in Table 2.

The pathways in the UC correlation network were divided into 5 modules. The smallest module (coral red) was 
composed of E. rectale pathways scattered around the network. The dark green nodes mixed with the turquoise 
nodes were B. ovatus pathways mixed with B. uniformis pathways, respectively. The green module comprised of 
unclassified species pathways, whereas, the light purple module comprised of F. prausnitzii pathways. The green 
and the light purple modules were strictly connected similarly to the NI correlation network, the pathways con-
necting them were the node COA-PWY|UNCLASSIFIED, which was linked to several nodes of both modules and 
node PWY-6121|FAECALIBACTERIUM_PRAUSNITZII, which was linked to nodes PWY-724|UNCLASSIFIED 
and THRESYN-PWY|UNCLASSIFIED. Even E. rectale behaved as a bridge between the two large modules 
through a few connections. Furthermore, there was one node of F. prausnitzii module that was deeply correlated 
with all the P. vulgatus pathways: node DTDPRHAMSYN-PWY|FAECALIBACTERIUM_PRAUSNITZII. Finally, 
two nodes with high betweenness centrality were node PWY-6737|FAECALIBACTERIUM_PRAUSNITZII in the 
light purple module and node PWY-6703|BACTEROIDES_UNIFORMIS in the mixed dark green and turquoise 
module (see Table 3). Differently from the NI correlation network, B. uniformis did not correlate P. vulgatus, 
whereas it correlated with B. ovatus.

In Fig. 2, we have projected the bipartite network, a graph with two distinct sets of nodes (namely samples and 
pathways), onto the nodes of the bacterial pathways and we validate the projection through a null model (with the 
following parameters; significance threshold α = 0.05 and family-wise error rate fwer = none ). Again, we divided 
the pathways according to their presence along with the samples. We considered the case of 75% of the presence 
across the samples for NI subjects. We found 1715 edges for 153 nodes and the community detection resulted in 6 
large communities; namely, the unclassified species community, the F. prausnitzii community, the E. rectale com-
munity, the B. uniformis community, the B. ovatus community and P. vulgatus community. All the communities 
identified were isolated, the node COA-PWY|UNCLASSIFIED was connected to the unclassified module through 
the nodes PWY-6609|UNCLASSIFIED, PWY-3001|UNCLASSIFIED, and THRESYN-PWY|UNCLASSIFIED. 
Also, nodes PWY-5100|UNCLASSIFIED and PANTO-PWY|UNCLASSIFIED were separated from the rest of 
the unclassified module. Considering F. prausnitzii module, nodes PWY0-1586|FAECALIBACTERIUM_PRAUS-
NITZII, PWY-6305|FAECALIBACTERIUM_PRAUSNITZII, and PWY-5659|-FAECALIBACTERIUM_PRAUS-
NITZII were disconnected from the rest of the module. In Table 4, the pathways with the highest centrality 
belonged to unclassified and F. prausnitzii. This can explained by the fact that the two groups of pathways are 
merged in a unique module.

Table 2.   Top 10 pathway nodes with the highest betweenness centrality in the Crohn’s disease (CD) 
correlation network with prevalent pathways.

Node Pathway Betweenness centrality

137 DTDPRHAMSYN-PWY|UNCLASSIFIED 0.419592

462 PWY-5659|BACTEROIDES_OVATUS 0.414082

632 PWY-6124|BACTEROIDES_OVATUS 0.349599

988 PWY-7219|BACTEROIDES_UNIFORMIS 0.342192

105 COA-PWY|UNCLASSIFIED 0.258219

1261 SER-GLYSYN-PWY|FAECALIBACTERIUM_PRAUSNITZII 0.133321

204 ILEUSYN-PWY|UNCLASSIFIED 0.116815

5 1CMET2-PWY|BACTEROIDES_UNIFORMIS 0.10414

1205 PWY0-845|BACTEROIDES_UNIFORMIS 0.073644

821 PWY-6527|UNCLASSIFIED 0.051347

Table 3.   Top 10 pathway nodes with the highest betweenness centrality in the Crohn’s disease (CD) 
correlation network with prevalent pathways.

Node Pathway Betweenness centrality

901 PWY-6737|FAECALIBACTERIUM_PRAUSNITZII 0.319

105 COA-PWY|UNCLASSIFIED 0.315

873 PWY-6703|BACTEROIDES_UNIFORMIS 0.311

133 DTDPRHAMSYN-PWY|FAECALIBACTERIUM_PRAUSNITZII 0.179

579 PWY-6121|FAECALIBACTERIUM_PRAUSNITZII 0.110

1093 PWY-724|UNCLASSIFIED 0.049

1284 THRESYN-PWY|UNCLASSIFIED 0.049

101 COA-PWY|FAECALIBACTERIUM_PRAUSNITZII 0.037

1008 PWY-7219|EUBACTERIUM_RECTALE 0.029

1154 PWY0-1296|UNCLASSIFIED 0.022
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In the CD case, there were 153 nodes and 1615 edges, the community detection algorithm identified 6 differ-
ent modules, one for each bacterial species identified in the previous cases. All the communities were isolated 
without nodes connecting them. Differently from the NI case, node COA-PWY|UNCLASSIFIED does not result 
in connection to the rest of the unclassified module. Similarly to the NI case, node PWY-5100|UNCLASSIFIED 
was not isolated, whereas node PANTO-PWY|UNCLASSIFIED was well connected to the rest of the unclassi-
fied module. When F. prausnitzii was considered, we obtained that node PWY0-1586|FAECALIBACTERIUM_
PRAUSNITZII was connected to nodes PWY-6317|FAECALIBACTERIUM_PRAUSNITZII and PWY66-
422|FAECALIBACTERIUM_PRAUSNITZII, that both were well connected to the F. prausnitzii pathways. 
Also, node PWY-6305|FAECALIBACTERIUM_PRAUSNITZII differently from the NI projected network is 
connected to two nodes of the bacterium module, namely PWY-6122|FAECALIBACTERIUM_PRAU-SNITZII 
and PWY-6277|FAECALIBACTERIUM_PRAUSNITZII, which were both pathways involving 5-aminoimidazole 
ribonucleotide. On the other hand, node PWY-5659|FAECALIBACTERIUM_PRAUSNITZII was connected 
to node PWY-5695|FAECALIBACTERIUM_PRAUSNITZII and nodes, PWY-6317|FAECALIBACTERIUM_
PRAUSNITZII and PWY66-422|FAECALIBACTERIUM_PRAUSNITZII, where the former was involved in 
the biosynthesis of urate and the latter were involved in the degradation of galactose. Similarly to the NI case, in 
Table 5, the pathways with the highest centrality belonged to unclassified and F. prausnitzii.

In the UC case, we could find 153 nodes and 669 edges. Differently from the previous cases, the commu-
nity detection algorithm could not isolate modules corresponding to the 6 species of the prevalent pathway 
group. The F. prausnitzii module was split into two modules held together by the nodes GLCMANNANAUT-
PWY|FAECALIBACTERIUM_PRAUSNITZII and PWY-5686|FAECALIBACTERIUM_PRAUSNITZII. Simi-
larly to the CD projected network, node COA-PWY|UNCLASSIFIED was isolated from the rest of the unclas-
sified module, whereas node PWY-5100|UNCLASSIFIED was connected to the rest of the module by means 
of nodes BRANCHED-CHAIN-AA-SYN-PWY|UNCLASSIFIED, ILEUSYN-PWY|UNCLASSIFIED, PWY-
5103|UNCLASSIFIED, and CALVIN-PWY|UNCLASSIFIED. Differently from the NI projected network and 
similarly to the CD projected network, in the UC projected network, the node PANTO-PWY|UNCLASSIFIED 
was well connected to the rest of the unclassified module. When the F. prausnitzii module was considered, 
nodes PWY0-1586|FAECALIBACTERIUM_PRAU-SNITZII, PWY-6305|FAECALIBACTERIUM_PRAUS-
NITZII, and PWY-5659|FAECALIBACTERIUM_PRAUSNITZII were isolated from the rest of the module in 
the same fashion as the NI case. Furthermore, the UC projected network by displaying fewer connections 
had more isolated pathways compared to the NI and the CD case. For instance, nodes DTDPRHAMSYN-
PWY|BACTEROIDES_OVATUS and PWY-7282|BACTEROIDES_OVATUS detached from the B. ovatus 

Table 4.   Top 10 pathway nodes with the highest betweenness centrality in the non-IBD (NI) projected 
network with prevalent pathways.

Node Pathway Betweenness centrality

362 PWY-3001|UNCLASSIFIED 0.00645

413 PWY-5097|UNCLASSIFIED 0.00534

610 PWY-6122|FAECALIBACTERIUM_PRAUSNITZII 0.00514

724 PWY-6277|FAECALIBACTERIUM_PRAUSNITZII 0.00514

544 PWY-5695|UNCLASSIFIED 0.00430

351 PWY-2942|FAECALIBACTERIUM_PRAUSNITZII 0.00421

105 COA-PWY|UNCLASSIFIED 0.00391

1284 THRESYN-PWY|UNCLASSIFIED 0.00313

499 PWY-5667|UNCLASSIFIED 0.00242

1188 PWY0-1319|UNCLASSIFIED 0.00242

Table 5.   Top 10 pathway nodes with the highest betweenness centrality in the Crohn’s disease (CD) projected 
network with prevalent pathways.

Node Pathway Betweenness centrality

1285 TRNA-CHARGING-PWY|UNCLASSIFIED 0.0108

1225 PWY66-422|UNCLASSIFIED 0.0077

42 ARO-PWY|UNCLASSIFIED 0.0066

672 PWY-6151|UNCLASSIFIED 0.0056

525 PWY-5686|UNCLASSIFIED 0.0052

748 PWY-6317|FAECALIBACTERIUM_PRAUSNITZII 0.0045

1222 PWY66-422|FAECALIBACTERIUM_PRAUSNITZII 0.0045

865 PWY-6700|UNCLASSIFIED 0.0045

298 PEPTIDOGLYCANSYN-PWY|FAECALIBACTERIUM_PRAUSNITZII 0.0031

610 PWY-6122|FAECALIBACTERIUM_PRAUSNITZII 0.0031
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Table 6.   Top 10 pathway nodes with the highest betweenness centrality in the ulcerative colitis (UC) projected 
network with prevalent pathways.

Node Pathway Betweenness centrality

67 CALVIN-PWY|UNCLASSIFIED 0.0192

158 GLCMANNANAUT-PWY|FAECALIBACTERIUM_PRAUSNITZII 0.0132

517 PWY-5686|FAECALIBACTERIUM_PRAUSNITZII 0.0132

359 PWY-2942|UNCLASSIFIED 0.0113

525 PWY-5686|UNCLASSIFIED 0.0113

865 PWY-6700|UNCLASSIFIED 0.0113

321 PWY-1042|FAECALIBACTERIUM_PRAUSNITZII 0.0104

821 PWY-6527|UNCLASSIFIED 0.0097

244 NONOXIPENT-PWY|UNCLASSIFIED 0.0066

121 COMPLETE-ARO-PWY|UNCLASSIFIED 0.0036

Figure 1.   Correlation networks of prevalent metagenomic pathways in (a) NI subjects, (b) CD subjects, (c) 
UC subjects. In  (a), nodes in the frontier between P. vulgatus and B. uniformis and in the frontier between F. 
prauznitzii and unclassified modules are highlighted. In (b) and (c), nodes with high betweenness centrality like 
node 105 are highlighted. The legend remarks the species of each node/pathway.
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module, node PWY-7219|EUBACTERIUM_RECTALE detached from the E. rectale module, and several more 
fragments of the module. Similar to the previous two cases, the highest betweenness centrality nodes belonged 
to F. prausnirzii and unclassified groups Table 6.

Escherichia coli
As it is possible to observe in Fig. 4, the relatively uncommon pathways were 910 in total. There were 49203 edges 
in NI correlation network ( thNI = 0.474 ), 42617 edges in CD correlation network ( thCD = 0.446 ), 44523 edges in 
UC correlation network ( thUC = 0.465 ). The number of edges was comparable in the three networks. We could 
observe 9 modules in the NI correlation network (modularity 0.623), 9 modules in the CD correlation network 
(modularity 0.644), and 6 modules in the UC correlation network (modularity 0.695). In every network, it was 
possible to identify an approximately isolated ball-shaped module containing E. coli pathways. It was interesting 
to highlight the position of B. fragilis pathways in respect of E. coli pathways in the different diagnoses. In the 
NI correlation network, B. fragilis pathways were connected to the E. coli module through Veillonella parvula 
pathways, by contrast, in the UC correlation network, B. fragilis pathways were incorporated and surrounded 
by the same module containing E. coli pathways, whereas in the CD correlation network, the bacterial path-
ways of the two species were separated. In the NI correlation network, the module containing E. coli included 
also bacterial pathways of other species, notably Eubacterium siraeum and Ruminococcus gnavus pathways that 
behaved as bridge nodes between E. coli containing the module and the rest of the network. In the CD correlation 
network, this role was assumed by Roseburia intestinalis and V. parvula, whereas, in the UC correlation network, 
we did not observe any pathways behaving as bridge nodes. An additional important module that was also the 

Figure 2.   Projected network representation of prevalent metagenomic pathways in (a) NI subjects, (b) CD 
subjects, (c) UC subjects. Networks are obtained through a bipartite projection and the exclusion of an edge 
between two nodes is made through a comparison with a null model. The nodes highlighted describe the 
pathway with the highest betweenness centrality. The legend remarks the species of each node/pathway.
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largest was the one mainly composed of R. torques, Anaerostipes hadrus, Lachnospiraceae bacterium 5 1 63FAA, 
plus other minor species. The pathways belonging to the last two mentioned species were strictly intertwined 
forming the second largest ball-shaped group of nodes. The same ball-shaped group of nodes was present in the 
CD correlation network, by contrast, in the UC correlation network, the two species were in the same module 
and the nodes were not mixed in the ball but they laid separately. The highest betweenness centralities of each 
correlation network can be found respectively in Tables 7, 8, and 9. The NI network contains a variety of central 
pathways from different bacterium species, by contrast, the UC network has several central pathways belonging 
to Enterocloster bolteae.

In the NI network projection, we obtained a network with 910 nodes and 20078 edges. As it is possible to 
notice in Fig. 5, several modules emerged from the network. The most evident was the E. coli module which 
was one of the modules that composed the E. coli group in the uncommon pathways. This bigger module was 

Table 7.   Top 10 pathway nodes with the highest betweenness centrality in the non-IBD (NI) correlation 
network with uncommon pathways.

Node Pathway Betweenness centrality

263 PANTO-PWY|RUMINOCOCCUS_GNAVUS 0.163

969 PWY-7208|EUBACTERIUM_RECTALE 0.112

1159 PWY0-1298|UNCLASSIFIED 0.043

1112 PWY-7383|UNCLASSIFIED 0.039

1007 PWY-7219|EUBACTERIUM_HALLII 0.035

836 PWY-6609|RUMINOCOCCUS_GNAVUS 0.034

819 PWY-6527|FAECALIBACTERIUM_PRAUSNITZII 0.033

756 PWY-6385|BACTEROIDES_XYLANISOLVENS 0.032

1250 RHAMCAT-PWY|ROSEBURIA_INTESTINALIS 0.031

198 ILEUSYN-PWY|RUMINOCOCCUS_OBEUM 0.028

Table 8.   Top 10 pathway nodes with the highest betweenness centrality in the Crohn’s disease (CD) 
correlation network with uncommon pathways.

Node Pathway Betweenness centrality

156 GLCMANNANAUT-PWY|DOREA_LONGICATENA 0.180

500 PWY-5676|UNCLASSIFIED 0.072

265 PANTO-PWY|BURKHOLDERIALES_BACTERIUM_1_1_47 0.059

395 PWY-5097|BACTEROIDES_STERCORIS 0.058

247 P162-PWY|UNCLASSIFIED 0.053

913 PWY-6897|UNCLASSIFIED 0.052

1312 VALSYN-PWY|DOREA_FORMICIGENERANS 0.048

895 PWY-6737|DOREA_LONGICATENA 0.046

670 PWY-6151|ROSEBURIA_INTESTINALIS 0.043

1003 PWY-7219|DOREA_FORMICIGENERANS 0.042

Table 9.   Top 10 pathway nodes with the highest betweenness centrality in the ulcerative colitis (UC) 
correlation network with uncommon pathways.

Node Pathway Betweenness centrality

131 DTDPRHAMSYN-PWY|ESCHERICHIA_COLI 0.175

571 PWY-6121|ENTEROCLOSTER_BOLTEAE 0.129

753 PWY-6353|UNCLASSIFIED 0.097

1096 PWY-7282|BACTEROIDES_FRAGILIS 0.097

622 PWY-6123|BACTEROIDES_FRAGILIS 0.095

178 GLYCOL-GLYOXDEG-PWY|ESCHERICHIA_COLI 0.053

599 PWY-6122|ENTEROCLOSTER_BOLTEAE 0.039

713 PWY-6277|ENTEROCLOSTER_BOLTEAE 0.039

155 GLCMANNANAUT-PWY|RUMINOCOCCUS_TORQUES 0.029

1143 PWY0-1296|ENTEROCLOSTER_BOLTEAE 0.027
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connected to Flavonifractor plautii via 5 nodes on the E. coli side and via 5 nodes on the F. plautii side. On the 
E. coli side: 

1.	 node FUCCAT-PWY|ESCHERICHIA_COLI;
2.	 node PWY-6737|ESCHERICHIA_COLI;
3.	 node PWY-6609|ESCHERICHIA_COLI;
4.	 node PWY-6703|ESCHERICHIA_COLI;
5.	 node PWY-7199|ESCHERICHIA_COLI.

On the F. plautii side: 

1.	 node PWY-5188|FLAVONIFRACTOR_PLAUTII;
2.	 node PWY-6122|FLAVONIFRACTOR_PLAUTII;
3.	 node PWY-6277|FLAVONIFRACTOR_PLAUTII;
4.	 node PEPTIDOGLYCANSYN-PWY|FLAVONIFRACTOR_PLAUTII;
5.	 node PWY-6121|FLAVONIFRACTOR_PLAUTII.

Curiously there was also a Enterocloster bolteae pathway well-connected to the E. coli main module (node PWY0-
1296|ENTERO-CLOSTER_BOLTEAE). The remaining part of the E. coli group was represented by fatty acid 
metabolism pathways (node FAO-PWY|ESCHERICHIA_COLI) or pathways involving mannose biosynthesis, 
which were connected to other species’ pathways. Apart from these nodes scattered around the network, the 
species group had two main ball-shaped modules thanks to the well-connected nature of the nodes inside the 
module. Another interesting community was the module formed by the nodes of two different species L. bac-
terium 5 1 63FAA and A. hadrus. The edges connecting the nodes of the two species were so dense that the two 
groups formed a unique module. Similarly to the NI correlation network, the NI projected network (Table 10) 
has diverse central pathways compared to the CD and UC projected network (Tables 11 and 12)

In the CD network projection, there were 910 nodes and 26505 edges. One of the immediately visible proper-
ties of the projected network was the isolated module composed of E. coli pathways. Compared to the NI case, 
there were no connections to the other species nodes. R. torques module was connected to A. hadrus module, 

Table 10.   Top 10 pathway nodes with the highest betweenness centrality in the non-IBD (NI) projected 
network with uncommon pathways.

Node Pathway Betweenness centrality

27 ARGSYNBSUB-PWY|BIFIDOBACTERIUM_LONGUM 0.153

1309 VALSYN-PWY|ENTEROCLOSTER_BOLTEAE 0.148

237 NONOXIPENT-PWY|ENTEROCLOSTER_BOLTEAE 0.142

1044 PWY-7221|BIFIDOBACTERIUM_LONGUM 0.080

878 PWY-6703|LACHNOSPIRACEAE_BACTERIUM_5_1_63FAA 0.070

1253 SALVADEHYPOX-PWY|RUMINOCOCCUS_TORQUES 0.042

891 PWY-6737|CLOSTRIDIUM_LEPTUM 0.041

660 PWY-6151|RUMINOCOCCUS_OBEUM 0.037

355 PWY-2942|LACHNOSPIRACEAE_BACTERIUM_5_1_63FAA 0.036

55 BRANCHED-CHAIN-AA-SYN-PWY|BIFIDOBACTERIUM_LONGUM 0.033

Table 11.   Top 10 pathway nodes with the highest betweenness centrality in the Crohn’s disease (CD) projected 
network with uncommon pathways.

Node Pathway Betweenness centrality

697 PWY-621|ESCHERICHIA_COLI 0.207

81 COA-PWY-1|DOREA_LONGICATENA 0.156

680 PWY-6163|DOREA_LONGICATENA 0.098

971 PWY-7208|PARASUTTERELLA_EXCREMENTIHOMINIS 0.098

1265 SER-GLYSYN-PWY|RUMINOCOCCUS_BROMII 0.089

625 PWY-6123|BACTEROIDES_XYLANISOLVENS 0.088

584 PWY-6121|PARASUTTERELLA_EXCREMENTIHOMINIS 0.047

615 PWY-6122|PARASUTTERELLA_EXCREMENTIHOMINIS 0.047

729 PWY-6277|PARASUTTERELLA_EXCREMENTIHOMINIS 0.047

950 PWY-7111|RUMINOCOCCUS_BROMII 0.047
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which in turn was connected to L. bacterium 5 1 63FAA module. 5 nodes of A. hadrus community was connected 
to most of the nodes of the other two species exhibiting high betweenness centrality, they were: 

1.	 node VALSYN-PWY|ANAEROSTIPES_HADRUS;
2.	 node PWY-5104|ANAEROSTIPES_HADRUS;
3.	 node PWY-5659|ANAEROSTIPES_HADRUS;
4.	 node PWY-6700|ANAEROSTIPES_HADRUS;
5.	 node PWY-6121|ANAEROSTIPES_HADRUS.

Similarly to the NI case, node GLCMANNANAUT-PWY|RUMINOCOCCUS_TORQUES was connected only 
to pathways of other species. Another difference with the NI projected network was the edges of R. intestinalis 
which in this case were connected to B. instestinihominis, whereas, in the NI case, they were connected to nodes 
PWY-6151|ROSEBURIA_INULINIVORANS and 1CMET2-PWY|BACTEROIDES_UNIFORMIS.

The UC network projection had 910 and only 10140 edges. The first striking property of this network was 
that there were much fewer edges compared to the previous two cases. It was not possible to say much about the 
module of E. coli. On the other hand, it was possible to observe that L. bacterium 5 1 63FAA and A. hadrus were 
separated. Furthermore, L. bacterium 5 1 63FAA module was connected to the R. hominis module through several 
nodes. Related to the R. torques group, we had one main module similar to the other cases, two isolated nodes 
(node PWY-7221|RUMINOCOCCUS_TORQUES as the NI case and node PWY-6121|RUMINOCOCCUS_
TORQUES) and two nodes connected between them (nodes PWY-6277|RUMINOCOCCUS_TORQUES and 
PWY-6122|RUMINOCOCCUS_TORQUES), but separated from the rest of the pathways. As shown in Fig. 3, 
we found with a two-way ANOVA test a statistically significant difference in the number of edges by network 
type (p < 0.00187 ) for correlation networks, but not diagnosis, the interaction between these terms was not 
significant. On the other hand, edges had not a statistically significant difference by network type nor diagnosis 
for projected networks.

Table 12.   Top 10 pathway nodes with the highest betweenness centrality in the ulcerative colitis (UC) 
projected network with uncommon pathways.

Node Pathway Betweenness centrality

314 PWY-1042|ANAEROSTIPES_HADRUS 0.0177

875 PWY-6703|BACTEROIDES_XYLANISOLVENS 0.0166

131 DTDPRHAMSYN-PWY|ESCHERICHIA_COLI 0.0109

391 PWY-5097|ANAEROSTIPES_HADRUS 0.0109

472 PWY-5667|ANAEROSTIPES_HADRUS 0.0086

1161 PWY0-1319|ANAEROSTIPES_HADRUS 0.0086

136 DTDPRHAMSYN-PWY|ROSEBURIA_INTESTINALIS 0.0079

1108 PWY-7357|ROSEBURIA_INTESTINALIS 0.0079

583 PWY-6121|ODORIBACTER_SPLACHNICUS 0.0068

320 PWY-1042|ESCHERICHIA_COLI 0.0063

Figure 3.   The barplots show the number of edges for each diagnosis in correlation networks (a) and projected 
networks (b).
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Discussion
In the literature, the reduction of F. prausnitzii has been associated with IBD33; nevertheless, in our results, we 
recognized that instead of a decrease in the quantity of F. prausnitzii pathways expressed, there was a change in 
the wiring in the metagenomic network. In particular, what changed from the NI correlation network and the IBD 
correlation networks were the bridge pathways connecting the module of unclassified pathways and the module 
containing the F. prausnitzii pathways. For instance, in the NI correlation network, the bridge pathway was node 
PWY-6527|UNCLASSIFIED, whereas, in the IBD networks, the bridge pathways between the two modules were 
node COA-PWY|UNCLASSIFIED. The correlation between these bridge nodes and the nodes in the aforemen-
tioned modules meant that both modules relied on that specific pathway to function correctly. On the one hand, 
the central substance was the tetrasaccharide stachyose which is degraded into UDP-alpha-D-glucose and has 
been recognized as a potential probiotic against enterotoxigenic E. coli34; on the other hand, there was coenzyme 
A, which has a fundamental role in the metabolism and, in particular, is important in the oxidation of fatty acids. 
Several studies linked the alteration of fatty acid production to the IBDs; hence, this change in the centrality of 
the pathway related to this substance could be investigated further to explain the origins of IBDs34. The modules 
of Bacteroides in IBD networks corresponded to the single species, whilst in the NI network are gathered in one 
module. This could demonstrate that in IBDs the different Bacteroides species proliferates the gut independently. 
This fact can confirm the meta-analysis by35, which showed that lower levels of Bacteroides were associated 
with IBDs. Other pathways differentially wired between NI and IBD networks are those involving the bacterial 
metabolite 5-aminoimidazole ribonucleotide (nodes PWY-6121|FAECALIBACTERIUM_PRAUSNITZII, PWY-
6122|FAECALIBACTERIUM_PRAUSNITZII, PWY-6277|FAECALIBACTERIUM_PRAUSNITZII). These nodes 
were behaving as bridges in the NI correlation network; by contrast, in the IBD correlation networks, they were 
substituted by a unique bridge node (node COA-PWY|UNCLASSIFIED).

In the range of uncommon bacterial species, we can observe the E. coli module; in the literature, this bacterial 
species has a recognized role in the development of IBD36,37. It was possible to observe the different interplay 
between E. coli, V. parvula and B. fragilis across the different diagnoses. The increase of E. coli and B. fragilis in 
IBD was observed in a previous study38, but our results provide additional information about the differential 
wiring scheme of the aforementioned species. In particular, it seemed that V. parvula pathways mediated the con-
nection of E. coli with the other module in the correlation network. In particular, in the NI correlation network, 
V. parvula pathways were in the same module of B. fragilis pathways which were connected to the rest of the 
correlation network. In the CD correlation network, V. parvula pathways were included in the E. coli module, to 
remark how close the two bacterial species were, but if, on the one hand, the relationship between E. coli and B. 
fragilis has been already studied, the effect of V. parvula on E. coli has to be investigated yet in the literature. In 
the UC correlation network, V. parvula formed an almost completely isolated module far from the E. coli, this 

Figure 4.   Correlation networks of uncommon metagenomic pathways in (a) NI subjects, (b) CD subjects, (c) 
UC subjects. The nodes encircled show the position of B. fragilis and other species like E. coli and V. parvula. 
The legend remarks the species of each node/pathway, where the grey nodes are classified as ’other’.
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result could differentiate the connectome of the UC microbiome from the connectome of the CD microbiome. 
The isolation of the E. coli module in the UC correlation network could further represent the peculiar features 
of the particular form of IBD. This isolation meant that there were no correlations with the other pathways, and 
the metagenomic expression pattern across the samples correlated only inside the same bacterial species. In 
the NI correlation network, E. siraeum and R. gnavus pathways were the two main bridge pathways between E. 
coli and the rest of the network, it could be possible to hypothesize that re-establishing a connection between 
E. coli module with the aforementioned bacterial species could lead back to healthy gut microbiota. In the CD 
correlation network, R. intestinalis pathways had the role of bridge pathways, and, in fact, by using the permuta-
tion tests between the NI and CD samples, we obtained that the most differential pathways were R. intestinalis 
pathways. In the literature, this bacterial species, which has anti-inflammatory properties on the intestinal walls, 
was depleted in IBD subjects; nevertheless, the mechanisms underlying its protective action against IBDs are 
still unknown39,40. In the uncommon bacterial pathways of the NI projected network, the E. coli module was 
connected to the E. bolteae, which, in turn, was linked to Bifidobacterium longum module. B. longum is a bacte-
rial species that can have anti-inflammatory properties in the human gut10. By contrast, in the CD projected 
network, E. coli was connected to the rest of the network through two Dorea longicatena pathways, which were 
nodes PWY-6163|DOREA_LONGICATENA and COA-PWY-1|DOREA_LONGICATENA and were connected 

Figure 5.   Projected network representation of uncommon metagenomic pathways in (a) NI subjects, (b) CD 
subjects, (c) UC subjects. Networks are obtained through a bipartite projection and the exclusion of an edge 
between two nodes is made through a comparison with a null model. The nodes highlighted correspond to 
nodes with high betweenness centralities or to nodes that compare to the NI projected network are isolated. The 
legend remarks the species of each node/pathway, where the grey nodes are classified as ’other’.
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to node PWY-621|ESCHERICHIA_COLI. On the other hand, in the UC projected network, two E. coli nodes 
were connected to six C. comes nodes, showing an interaction between the two species in the UC diagnosis.

Methods
Database
The first step of the workflow (see Fig. 6) starts from the raw data which was taken from the Inflammatory Bowel 
Disease Multi’omics Database (IBDMDB)41 is one of the first publicly available comprehensive studies of the 
gut ecosystem’s multiple molecular properties involved in the IBD dynamics. Some of the measurements of the 
microbiome offered by the study are metagenomics, metatranscriptomics and metabolomics. The data is related 
to 132 subjects approached in the following five medical centres: Cincinnati Children’s Hospital, Emory Univer-
sity Hospital, Massachusetts General Hospital, Massachusetts General Hospital for Children, and Cedars-Sinai 
Medical Centre. The patients recruited for the study initially arrived at the hospitals either for routine age-related 
colorectal cancer screening, the presence of other gastrointestinal symptoms, or suspected IBD. The latter could 
be a consequence of positive imaging, symptoms of chronic diarrhoea or rectal bleeding. If there were no con-
ditions for exclusion right after enrolment, a preliminary colonoscopy was performed to determine the study 
strata. Based on initial analyses, the subjects that were not diagnosed with IBD (non-IBD) were labelled as ‘NI’ 
controls. This group of subjects included the patients who arrived for routine screening and those with more 

Figure 6.   Diagram representing the methods and the network tools used to analyse the microbiome networks. 
The part surrounded by the dashed line was performed by the IBDMDB.
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benign or non-specific symptoms42. The IBDMDB website contains the raw and the final results of the processed 
information, the complete pipeline for producing the final results is: 

1.	 Quality and error checking for completeness, producing raw files.
2.	 AnADAMA pipeline, producing products.

In particular, if we consider the pipeline for producing the metagenomic data, after stool collection, the samples 
for the quality control process go through the KneadData43 and the AnADAMA pipelines. The former is a tool 
useful to exclude the reads, which are fragments of DNA, related to the host or related to other contaminants 
from the metagenomic sequencing data, and this separation step is made completely in silico. Whereas the lat-
ter, the Anadama pipeline, performs and produces documents from an automated scientific workflow, where 
a workflow is simply a succession of tasks, such as quantifying operational taxonomic units (OTU). The OTUs 
are classifications of groups of bacteria closely related to each other by sequence similarity. On the IBDMDB 
website, there are two versions of data Version 2.0 and Version 3.0. Version 3.0 has been uploaded 
with the new version of bioBakery44. In our work, we use the products file related to the functional profiles 
Version 2.0. Moreover, we exploit the HMP2 Metadata file, containing the sample IDs, the subject IDs and 
the properties associated with each sample. The External ID is the unique ID of the sample, Partici-
pant ID is the subject from where the sample has been taken, diagnosis is either ulcerative colitis (UC), 
Crohn’s disease (CD) or control group (NI), week_num points out the week number, when the sample has 
been taken and data_type is the type of sample (metagenomics, 16S, etc.). we extracted useful information 
to avoid importing the whole database, and we selected only the samples from the first week (week 0). Moreover, 
the samples different from metagenomic ones were excluded. Finally, we dropped the samples from the same 
participant in week 0 and obtained a list of samples IDs that were present in both the metagenomic database 
and the HMP2 Metadata. The metagenomic database contains as row indexes the gene descriptors; specifi-
cally, the descriptor is composed of the pathway, genus and species (e.g., “ARO-PWY: chorismate biosynthesis 
I |g__Alistipes.s__Alistipes_finegoldii”). To generate the database, the algorithm HUMAnN232 has been used. 
The algorithm can be divided into three phases; firstly, the metagenomic sample is quickly analyzed to seek 
known species in the gut microbiome. The functional annotation of the identified pangenomes (i.e. the genome 
of a larger group of species) of the microbiome is concatenated to form a gene database of the sample. Secondly, 
using this database, the whole sample is aligned, meaning that statistics regarding the species and the genes are 
made, and unmapped reads are collected. Thirdly, the gene abundances are calculated, and they are combined 
with the metabolic network to determine the pathways in the microbial community.

To reduce the number of pathways present in the resulting network, we built the correlation matrices and 
the biadjacency matrices for the projected networks for three different groups of pathways based on quantiles; 
namely, one group for the pathways expressed in a percentage between 25% and 50% of the subjects (uncommon 
pathways), another group for those in the range between 50% and 75% (common pathways), and lastly a group 
for the pathways expressed in more than 75% (prevalent pathways). Originally, there were 953 nodes among the 
uncommon pathways. 43 nodes were disconnected from the rest of the network in the correlation networks, 
hence, we chose to exclude these pathways from our analysis in both the correlation and projected networks.

Correlation Networks
Correlation networks are built from the following steps: 

1.	 pairwise gene similarity score (correlation);
2.	 thresholding.

Normalization methods, correlation measures (Pearson or Spearman), significance and relevance are still 
debated45. In our work, we chose the Pearson correlation similar to Ref.46.

To transform a correlation matrix into a correlation network, we used a thresholding method inspired by a 
brain network technique that was used to cut the least important edges and keep the significant relationships 
among the nodes, hence, we calculated the absolute value of the correlations, making the signs irrelevant. This 
method consists of increasing a cut-off threshold until the network connectivity breaks apart; because of this 
property, this cut-off threshold is also known as the percolation threshold. This method has been considered 
one of the most effective methods to maximise the information quantity kept by the network47. In our work, we 
started from a cut-off threshold of t = 0 , and we used a bisection method to get to the percolation threshold. 
In the bisection method, we flattened the absolute values in the weighted adjacency matrix into a sorted array, 
chose the median value and used it as the new cut-off threshold, we calculated the connectivity of the graph 
built from the adjacency matrix having this cut-off threshold, finally, if we obtained a connected graph with the 
median value as a cut-off threshold, we used as the sorted array the upper half array, on the contrary, we used 
the lower half. The procedure was iterative until convergence which corresponded to an array with zero length 
or with the same head and same tail.

Co‑expression network from bipartite projected networks
Bipartite networks are graphs G = (U ,V ,E) where the nodes can be divided into two disjoint sets, U and V, and 
every edge in E links an element in U to an element in V. In our work, we designated with U the set of nodes 
representing the genes and with V the set of nodes representing the samples. We can find in E all the edges con-
necting the gene u to the sample v if the gene was over-expressed in the corresponding sample. We evaluated 
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the over-expression of a gene through the binarization of the data that led to the construction of a biadjacency 
matrix B of size |U | × |V | that described the bipartite network G = (U ,V ,E) with the entries (0, 1), where Bij = 1 
if the gene vi is over-expressed in the sample uj , and Bij = 0 if it is not over-expressed. Biadjacency matrices are 
rectangular matrices where on one side there are the nodes in U, and on the other side the nodes in V.

Binarization
The binarization process is useful to highlight the edges in E that are over-expressed. By using the revealed 
comparative advantage (RCA)48, We highlighted the over-expressed genes for specific samples:

where E is the expression of the gene i in the sample j. When RCAij > 1 , the quantity of gene i in sample j can 
be considered over-expressed and the entry bij = 1 (where bij is the element of the final biadjacency matrix), in 
the other case RCAij ≤ 1 , then bij = 0.

Randomization of bipartite networks
To generate a null model useful to calculate the statistically important properties of a real bipartite network, we 
randomized the bipartite networks by using the package BiCM49. In particular, the package is based on the works 
by Ref.50–52. In the aforementioned works, the Shannon entropy is defined as

is maximized, where G is an ensemble of binary, undirected, bipartite networks, and −→C (M) is a given set of 
constraints. The result is:

Where H
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 is the normalization. In 
the case of the bipartite extension of the configuration model (BiCM), the Hamiltonian becomes:

because we have two layers of nodes and we constrained the degree sequences 
−→
d (M) and −→u (M) . 

−→
d (M) is the 

degree sequence of the genes and −→u (M) is the degree sequence of the samples.

Projection
One way to compress the information contained in a bipartite network is to project the bipartite network onto 
one of the two layers (gene/pathway layer or sample layer). We carried out the projection by connecting in the 
same layer the nodes that were linked by a common node in the other layer. The projection leads to a loss of 
information itself, so to avoid further loss of information, we weighted the edges by the number of common 
nodes neighbouring the nodes in the same layer53. The algorithm to perform the projection is: 

1.	 select the partition on which the projection will be done
2.	 take two nodes of the selected partition, n and n′ , and calculate their similarity
3.	 by evaluating the corresponding p-value compute the statistical significance of the calculated similarity with 

respect to a properly-defined null model;
4.	 if, and only if, the p-value associated with the link n and n′ is statistically significant, connect the selected 

nodes.

The similarity in the second step of the algorithm is evaluated by:

where Vc
nn′ ≡ mncmn′c and it is clear from the definition that Vc

nn′ = 1 if, and only if, both n and n′ are common 
neighbours of c. The third step of the algorithm passes through the calculation of the p-value of the Poisson-
Binomial distribution, i.e. the probability of observing a number of V-motifs greater than, or equal to, the 
observed one (which will be indicated as V∗

nn′:

(1)RCAij =
Eij/

∑

j′∈V Eij′
∑

i′∈U Ei′j/
∑

i′∈U ,j′∈V Ei′j′

(2)S = −
∑

M∈G
P(M) ln P(M)

(3)P
(

M|−→θ
)

=
e
−H

(

M,
−→
θ

)

Z
(−→
θ

)

(4)H
(

M,
−→
θ

)

= −→α ·
−→
d (M)+−→

β
−→u (M)

(5)Vnn′ =
Nc
∑

c=1

mncmn′c =
Nc
∑

c=1

Vc
nn′ ,

(6)
p− value(V∗

nn′ ) =
∑

Vnn′ ≥V∗
nn′

fPB(Vnn′) = 1−
∑

Vnn′ ≤V∗
nn′

fPB(Vnn′).
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Finally, in the last step of the algorithm, in order to understand which p-values were significant, a false-discovery 
rate or FDR has been adopted to take into account the fact that we were testing multiple hypotheses54.

Betweenness centrality
There are many different centrality measures in network science, namely degree centrality, betweenness central-
ity, and eigenvector centrality; these measures describe the importance of a node in the network. In our work, 
we considered only the betweenness centrality, because it was the most suited to represent the importance of 
the pathways, i.e. the nodes. The betweenness centrality was introduced by Freeman55, and it considers more 
important the nodes that behave as bridges in the network. It can be calculated as:

where σst is the number of shortest paths connecting s and t, whilst σst(i) is the number of shortest paths con-
necting s and t and going through i.

Community detection
In the study of network science, both natural complex networks and artificial complex networks display a modu-
lar behaviour, i.e. groups of nodes are more densely connected within the members of the group than with the 
rest of the network. This phenomenon can also be described by a function called modularity56, which can be 
used as a parameter for one of the several ways to perform community detection in complex networks. In our 
work, we used the Louvain method57 because it is suited to large complex networks, moreover, this method is 
usually used when it is assumed that the gut microbiome of a healthy subject is a singular assortative network58. 
We hypothesized that the modularity changes if the network represents the gut microbiome of an IBD subject. 
Louvain method is based on an optimization problem that can be solved in a time O(n · log2n) where n is the 
number of nodes in the network59. The method is based on the aforementioned modularity optimization. Modu-
larity is defined as in Ref.60,

The algorithm is based on two phases that repeat iteratively. In the first phase, each node is repeatedly moved 
individually between the communities to maximize modularity. The first phase stops when no further individual 
move can improve the modularity. In the second phase, each community formed in the first phase is considered 
as a node of a weighted graph, where the weights of the edges are given by the sum of the edges connecting the 
nodes in the communities. The algorithm has a high efficiency partly because the gain modularity �Q , due to 
moving a node i into a community C, can be steadily calculated as:

where 
∑

in is the sum of the weights of the edges inside C, 
∑

tot is the sum of the weights of the edges going from 
the outside to the nodes inside C, ki is the sum of the weights of the edges going to node i, and ki,in is the sum of 
the weights of the edges going from i to the nodes in C and, finally, m is the sum of the weights of all the edges 
in the graph. One of the limitations of community detection based on modularity is the resolution limit61. This 
limitation to modularity may be present when ls ≈

√
2L , where ls is the number of internal links in a module S 

and L is the total number of links in the network and it can be overcome through several methods, one of the 
most promising is Surprise maximization62. The modularity in correlation networks differs from the modularity 
in projected networks mainly because, in the former networks, the information being represented is based on 
the covariance of the pathway expressions across all the subjects, whereas, in the latter networks, the information 
is built on a cumulative measure that counts the number of subjects sharing common pathways. Therefore, in 
the first case, community detection identifies groups of correlated pathways and, in the second case, it identifies 
pathways that often appear in the same subject.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.
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