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Many-body effects in third harmonic generation of graphene
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The low-energy (intraband) range of the third harmonic generation of graphene in the terahertz regime is
governed by the damping terms induced by the interactions. A controlled many-body description of the scattering
processes is thus a compelling and desirable requirement. In this paper, using a Kadanoff-Baym approach, we
systematically investigate the impact of many-body interaction on the third harmonic generation of graphene,
taking elastic impurity scattering as a benchmark example. We predict the onset in the mixed inter- and intraband
regime of incoherent features driven by the interaction at four- and five-photon transition frequencies in the
third harmonic optical conductivity with a spectral weight proportional to the scattering rate. We also show that
in spite of the complex many-body physics, the purely intraband term governing the limit ω → 0 resembles
the constraints of the phenomenological model. We ascribe this agreement to the fulfilling of the conservation
laws enforced by the conserving approach. However, the overlap with incoherent features and the impact of
many-body-driven multiphoton vertex couplings severely limit the validity of phenomenological description.
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I. INTRODUCTION

A simple dimensional analysis shows that the zero-
temperature third harmonic response of clean graphene scales
as σ (3) ∼ 1/(ω3|μ|) [1–5], where μ is the chemical poten-
tial and ω is the frequency of the incident field. Comparing
it to the scaling of linear conductivity at low frequency,
σ (1) ∼ |μ|/ω, we can thus expect a huge enhancement of the
nonlinear optical response at low frequencies. Accordingly,
there is a surge of experimental interest in exploring nonlinear
optics of graphene and other two-dimensional materials in
the terahertz frequency range. The effective three-dimensional
third harmonic generation (THG) susceptibility of graphene
with an effective thickness ∼0.1 nm has been measured as
10−19–10−16m2/V2 [6–9] in the near-infrared and visible fre-
quency range h̄ω ∼ 100–500 THz, whereas in the terahertz
range (h̄ω ∼ 1 THz) a susceptibility as large as 10−9m2/V2

is obtained [10,11]. In these works, however, the nonlinear
response was not related to multiphoton absorption and emis-
sion but rather to the underlying nonlinear dependence of
the low-frequency intraband linear conductivity on the elec-
tronic temperature ruled by the magnitude of the incident laser
power [9,12,13]. The intrinsic role of multiphoton processes
is thus completely missing in the interpretation of this experi-
mental observation.
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In common graphene, the terahertz frequency range, 1 THz
∼ 4 meV, is much below the interband transition, h̄ω �
2|μ|, and therefore the optical response is mainly governed
by intraband processes. Even in the low-doping regime, the
terahertz-range interband transitions will be essentially Pauli
blocked owing to temperature effects, charge-puddle forma-
tion, and many-body-induced band broadening. The intraband
response is very sensitive to the scattering processes which re-
sult in the momentum relaxation of quasiparticles. Therefore
the many-body interaction is expected to have an unavoidable
impact on the intraband optical response of the Dirac fermions
in graphene. A compelling study of nonlinear responses is
usually a delicate and cumbersome task. Therefore the number
of studies exploring many-body effects on the nonlinear opti-
cal response in a systematic way is quite limited [5,14–18].
A practical shortcut for including the impact of the scatter-
ing in the analysis is through a phenomenological relaxation
rate � independent from energy and field [2,3]. This rough
approximation may work qualitatively well in the high-doping
and high-frequency (|μ|, |h̄ω| � �) regime. However, even in
high-quality graphene samples a scattering rate � not less than
� ≈ 2–5 THz was estimated in a wide range, μ ∼ 0–200 meV
[19,20]. Therefore, in the terahertz range (h̄ω ∼ 1 THz) we
are rather in the regime h̄ω < �, questioning the validity
of a constant-� model. Furthermore, in the low-frequency
regime, vertex corrections to the linear ones are expected to
be extremely relevant due to the proximity to the multiphoton
self-generation [18].

The aim of this paper is to provide a compelling many-
body approach for the nonlinear response of graphene and
other two-dimensional Dirac systems in the terahertz fre-
quency range, where the role of scattering is fundamentally
important. We derive a conserving quantum theory based on
the Kadanoff-Baym framework [21], which contains both the
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self-energy and vertex correction effects on the same footing.
Our theory is therefore consistent with conservation laws and
the gauge invariance. To further preserve the gauge invariance
and not violate the Ward identity, we employ a dimensional
regularization [22,23] in the evaluation of momentum inte-
grals in a Dirac model of graphene for which a high-energy
cutoff is unavoidable. For the sake of simplicity, we only focus
on the impact of disorder scattering within the self-consistent
Born approximation (SCBA). However, our formal and tech-
nical scheme, i.e., the Kadanoff-Baym functional derivation
and the diagrammatic structure, is valid also for scattering
with phonons and other electrons in the system within a mean-
field approximation. Most of our qualitative predictions are
thus expected to be valid also for other types of scattering
processes.

Our main results can be summarized as follows: (i) We
predict the onset of four- and five-photon transitions in the
third harmonic response of graphene. As a result of such
four- and five-photon transitions, the THG of graphene is
strongly enhanced in the intraband regime where h̄ω is smaller
than the three-photon transition edge. These transitions are
intrinsically driven by the interaction with a spectral weight
that scales with the magnitude of the one-particle scattering
rate, revealing the intrinsic incoherent character. (ii) A strong
impact of vertex corrections is revealed owing to the pres-
ence of many-body-induced two- and three-photon current
vertices which are absent in noninteracting Dirac fermions in
graphene. A crucial role in this regard is played, in particular,
by the occurrence of the two-photon vertex self-generation in
the intraband terahertz regime, close to the dc limit. (iii) In
the extreme low-frequency limit, we find a good agreement of
the pure intraband term in the presence of many-body effects
with the phenomenological models, as the result of enforcing
a conserving approach. Departures from this modeling are,
however, also observed at relatively small scattering due to
the onset of incoherent four- and five-photon transitions and
the two-photon vertex self-generation. Our theoretical model-
ing can be generalized in a straightforward way to describe
intraband THG in other two-dimensional materials such as
transition-metal dichalcogenides (TMDs), homo- and heter-
obilayer systems, etc. The main challenges to be addressed in
TMDs along these lines are as follows: the parabolic behavior
for low electron or hole doping, related also to the appearance
of a finite diamagnetic term; the sizable spin-orbit interaction;
the possible relevance of other valleys (e.g., �, Q); and the fact
that single-layer TMDs are noncentrosymmetric, resulting in
a finite second-order response. Furthermore, the excitonic
contribution in TMDs’ optical response must be taken into
account.

The rest of the paper is structured in five sections. In Sec. II,
we introduce the conserving Kadanoff-Baym derivation em-
ployed to evaluate the nonlinear current within the Dirac
model, and we introduce the elastic-impurity-induced self-
energy. In Sec. III, we formally derive the many-body-induced
multiphoton vertices based on self-consistent Bethe-Salpeter
equations within the Kadanoff-Baym method. In Sec. IV we
provide all of the analytical relations for the third-order re-
sponse function using a diagrammatic quantum theory for
THG in graphene and for generic two-dimensional Dirac sys-
tems. In Sec. V, we present our numerical results for the

real and imaginary parts of the third harmonic conductivity
in graphene, and we discuss the onset of incoherent transition
peaks, the impact of vertex renormalization, and the spectral
features of pure intraband processes. Finally, in Sec. VI we
provide a summary and conclusion.

II. MODEL AND METHOD

We use the Dirac Hamiltonian of low-energy carriers in
graphene [24]

Ĥk = h̄vσ̂ · k − μ0 Î, (1)

where Î is the identity matrix in the Pauli matrix space, k is
the in-plane momentum k = (kx, ky) measured with respect
to the nodal point, μ0 is the bare chemical potential, and
v ∼ 106 m/s is the Fermi velocity. Note that the Hamiltonian
(1) includes the dependence both on the pseudospin sublattice
degree of freedom and on the valley. More explicitly, we write
σ̂ = (τ σ̂x, σ̂y), where σ̂x, σ̂y stand for the Pauli matrices in the
sublattice basis and τ = ± accounts for the two inequivalent
valleys in the Brillouin zone of graphene.

In the dipole approximation we can model light-matter
interaction by applying the minimal coupling transformation
h̄k → h̄k + eA(t ), where A(t ) stands for an external vec-
tor potential and the corresponding electric field is given by
E(t ) = −∂t A(t ). For the sake of shortness the speed of light
is set as c = 1. The inverse of the bare Green’s function in the
presence of the external vector potential thus reads [25,26]

Ĝ−1
0 (1, 1′; A) = {

i∂t1 − vσ̂ · [−ih̄∇1 + eA(1)] + μ0
}

× δ(1 − 1′), (2)

where we use the shorthand notation 1 ≡ (r1, t1) for the
space-time coordinate. In the presence of many-body scatter-
ing, it is useful to introduce an interacting Green’s function:

Ĝ(1, 1′; A) = −i〈T [ψ̂H(1)ψ̂†
H(1′)]〉, (3)

where 〈· · · 〉 stands for the thermodynamical average, T stands
for the time-ordering operation, and ψ̂H(r, t ) denotes the
field operator in the Heisenberg picture in the basis of the
full Hamiltonian H which contains kinetics, light-matter, and
many-body interaction terms.

Using a standard quantum-field formalism, the effects of
the many-body interaction can be conveniently cast in terms
of the many-body self-energy 	̂(1, 2). Using the Dyson recur-
sive relation, the full field-dependent and interacting Green’s
function is given in terms of a field-dependent self-energy 	̂

and of a bare Green’s function Ĝ0 as follows [25,26]:

Ĝ(1, 1′; A) = Ĝ0(1, 1′; A)

+
∫

2̄,3̄
Ĝ0(1, 2̄; A)	̂(2̄, 3̄; A)Ĝ(3̄, 1′; A). (4)

Equivalently, we have

Ĝ−1(1, 1′; A) = Ĝ−1
0 (1, 1′; A) − 	̂(1, 1′; A). (5)

From now on we assume an external gauge field along the
y axis, A(1) = A(1)ŷ. The thermodynamical physical current,
J(1; A) = J (1; A)ŷ, in Dirac systems can now be obtained as

J (1; A) = −i
∫

1′,1′′
tr
[

̂

(0)
1 (1, 1′; 1′′)Ĝ(1, 1′+; A)

]
, (6)
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FIG. 1. Diagrammatic representation of the impurity self-energy
in the self-consistent Born approximation. The solid line denotes the
renormalized electronic Green’s function, whereas the dashed lines
connected by a cross represent the impurity scattering governed by
the statistical correlations in Eq. (9).

where we denoted 1′+ ≡ (r1′ , t1′ + 0+) and “tr” stands for
the “trace” operation over all spinor indexes, i.e., tr[ÂB̂] =∑

ss′ [Ass′Bs′s]. The bare one-photon current vertex is hence ob-
tained in terms of variational derivatives of the noninteracting
Green’s function versus the gauge field:


̂
(0)
1 (1, 1′; 1′′) = δĜ−1

0 (1, 1′; A)

δA(1′′)

∣∣∣
A→0

= −evσ̂yδ(1 − 1′)δ(1 − 1′′). (7)

Because of the linear dispersion of the Dirac model, the
two- and three-photon current vertices are of course null at
the noninteracting level. However, as we are going to see,
the presence of a field-dependent self-energy 	̂(1, 1′; A) in
Eq. (5) breaks the linear dependence of the inverse Green’s
function Ĝ−1(1, 1′; A) on the external field, and it is expected
to give rise to higher-order n-photon current vertices. More
precisely, such nonlinear processes can be computed in terms
of multipoint correlation functions for n-photon vertex opera-
tors:


̂n(1′, 1′′; 1, . . . , n) = 1

(n − 1)!

δnĜ−1(1′, 1′′; A)

δA(1), . . . , δA(n)

∣∣∣
A→0

. (8)

The possibility of obtaining a computationally affordable ex-
pression for 
̂n(1′, 1′′; 1, . . . , n) depends of course on the
specific characteristics of the scattering source.

In the following we focus on the role of elastic disorder
or impurity scattering, which, along with a particularly sim-
ple structure allowing for a direct computation, preserves in
Dirac materials the fundamental frequency dependence of the
self-energy, which is a crucial ingredient in determining the
nonlinear electromagnetic response.

One-particle impurity self-energy

We consider scattering on random local impurity cen-
ters with density nimp and potential Vimp(r) = ∑

i Viδ(r − Ri ),
where Ri are the coordinates of the lattice sites. We as-
sume standard Born impurity correlations [27–29], so that
〈Vimp(r)〉 = 0 and the effective scattering potential reads

V (1, 2) = 〈Vimp(r1)Vimp(r2)〉imp = nimpV
2

impδ(r1 − r2), (9)

where the average 〈· · · 〉imp is meant over all the random im-
purity configurations and where Vimp parametrizes the strength
of impurity scattering. A diagrammatic representation of the
self-energy is shown in Fig. 1, where the cross represents
an impurity center and dashed lines represent the multiple
scattering on each center, which in the Born scheme is assume

to happen no more than twice. Such a self-energy scheme is
thus valid in the dilute limit and for small impurity scattering.

In the absence of external fields, the lowest-order self-
consistent Born self-energy reads

	̂(z) = nimpV
2

imp

∑
k

Ĝ(k, z)

= γimpScell

∫
d2k

(2π )2
Ĝ(k, z), (10)

where γimp = nimpV 2
imp, Scell is the two-dimensional unit-cell

area, and the variable z lies in the complex frequency space.
Due to the isotropic impurity scattering the self-energy spinor
structure is trivial as 	̂(z) = 	(z)Î , and therefore the Green’s
function can be explicitly written as follows:

Ĝ(k, z) = S(z)Î + h̄vσ̂ · k
S(z)2 − (h̄vk)2

, (11)

where S(z) = z + μ0 − 	(z).
The introduction of a high-energy (ultraviolet) cutoff is an

unavoidable requirement of Dirac models. There is, however,
a relatively large degree of freedom in the way in which
it is introduced, and particular care is needed in order to
avoid spurious results and to preserve physical consistencies,
such as Ward identities, and gauge invariance. Dimensional
regularization has proved to be a formidable tool to ensure
that physical correctness is preserved [22,23]. We consider
the evaluation of the disorder self-energy which displays a
primary diverging integral. In arbitrary D dimensions, we have
thus

	(z) = γimpNcellSD
cell

(h̄v)D

∫
dD

(2π )D

S(z)

S(z)2 − 2
. (12)

Note that the above integral in D dimensions can be solved
in terms of Euler’s gamma function �E (z) by utilizing the
following identity [23]:∫

dD

(2π )D

1

(2 + �)n
= 1

(4π )D/2

�E
(
n − D

2

)
�E (n)

(
1

�

)n−D/2

.

(13)

We set D = d − ε, where d = 2 is the physical dimension and
ε → 0. Note that �E (ε/2) ≈ 2/ε for ε → 0 and

lim
ε→0

(X 2)−ε/2

ε/2
= ln

[
W 2

X 2

]
, (14)

where W is a proper ultraviolet energy cutoff and where we
use the prescription limε→0 1/ε ≡ ln[W ]. The above proce-
dure of dimensional regularization is employed in a similar
way in the evaluation of all the momentum integrals in this
paper.

Eventually, we obtain the following self-consistent formula
for the self-energy:

	(z) = −US(z) ln

[
− W 2

S(z)2

]
, (15)

where U is a dimensionless parameter representing the
electron-impurity scattering strength,

U = γimpScell

4π (h̄v)2
. (16)
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FIG. 2. (a) Renormalized chemical potential μ = μ0 − Re	(0) as a function of the bare chemical potential μ0. (b) Quasiparticle relaxation
rate �(μ) = −Im	(0) vs μ. The crossover from the Boltzmann and the quantum regime is qualitatively signalized in this context by the
departure from a linear behavior for both quantities.

In a direct comparison with graphene, we have Scell = √
3a2/2

and h̄v = 3at0/2, where a ≈ 0.246 nm is the lattice constant
and t0 ∼ 3 eV is the nearest-neighbor hopping energy. In order
to preserve the number of states, Scell defines also an effec-
tive two-dimensional (2D) Brillouin zone, VBZ = 4π2/Scell,
which, employing the isotropic symmetry, defines a momen-
tum cutoff kc, πk2

c = VBZ, and a natural ultraviolet energy
cutoff W = h̄vkc for the Dirac linear dispersion. Using the
above parameters for graphene, we get W = 7.2 eV.

Numerical results of the self-energy at the Fermi level are
shown in Fig. 2, where the renormalized chemical potential
μ = μ0 − Re	(0) [Fig. 2(a)] conveys information about the
real part of the self-energy and the relaxation rate �(μ) =
−Im	(0) [Fig. 2(b)] governs the damping processes. It is
worth remarking that for the impurity scattering the quasi-
particle relaxation rate �(μ) does not vanish on the Fermi
surface, in contrast with the standard Fermi-liquid paradigm.

III. MANY-BODY-DRIVEN MULTIPHOTON
VERTEX GENERATION

The analytical expression of the functional dependence of
the one-particle self-energy on the external field allows, within
the spirit of a Kadanoff-Baym approach, the derivation of a
closed set of self-consistent equations governing the trans-
port properties at the chosen (linear or nonlinear) order. For
Dirac materials, such as graphene, where the second-order
response vanishes by symmetry, particular attention is paid
to the third-order response and, within this framework, to
the third harmonic generation. At the noninteracting level,
vertex corrections are null, and the third harmonic generation
is governed by the well-known “square” diagram with bare
one-photon current vertices at the corners [4].

Things are much more complex in the presence of many-
body interactions where the intrinsic dependence of the
self-energy on the frequency and on external fields triggers
nonlinear effects which are not predictable at the noninteract-
ing level or within a phenomenological model using a constant

(frequency independent and external field independent) one-
particle scattering rate.

A careful investigation of the many-body effects driven by
disorder scattering, at the lowest-order self-consistent Born
level, is remarkably enlightening since it preserves all the rele-
vant nonlinearity but with a particularly simple expression for
the self-energy which depends linearly on the fully interacting
Green’s function in the presence of an external field:

	̂(1, 2) = V (1, 2)Ĝ(1, 2). (17)

Here, V (1, 2) stands for the many-body interaction po-
tential, which, for the impurity-driven scattering, is given
by Eq. (9).

It is worth stressing that such a simple linear relation as
Eq. (9) between self-energy and the Green’s function holds
true within a mean-field scheme for other kinds of scatter-
ing, e.g., electron-electron or electron-phonon. In this case
the formal Kadanoff-Baym derivation and the diagrammatic
theory that will be derived in the next sections remain still
valid upon replacement of the appropriate interaction poten-
tial V (1, 2), namely, V (1, 2) ∝ e2δ(t1 − t2)/|r1 − r2| for the
Coulomb interaction and V (q, iωm) ∝ g2

qD(q, iωm) for the
electron-phonon interaction, where gq is the electron-phonon
coupling constant and D(q, iωm) = −2ωq/(ω2

m + ω2
q) is the

retarded phonon propagator in the Matsubara frequency for a
generic phonon mode with dispersion ωq.

On this basis, after performing lengthy but straightforward
algebra, we can construct a diagrammatic theory for the third-
order response function of graphene as a two-dimensional
Dirac material. Feynman diagrams for the third harmonic
response function χ (3)(1; 2, 3, 4) are depicted in Fig. 3. Here,
solid lines represent Green’s functions, wavy lines represent
the incoming or outgoing photons, and the empty and filled
symbols represent the bare and renormalized n-photon ver-
tices, respectively, where n can be identified by the number of
attached wavy lines (photons).

A key role in this context is played by the multipho-
ton (n > 1) current vertices 
̂n(1′, 1′′; 1, . . . , n). A close
inspection reveals that each fully dressed n-photon vertex
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FIG. 3. Diagrams for the third-order response function of graphene as a two-dimensional Dirac material in terms of renormalized one-,
two-, and three-photon vertices (where n is given by the number of attached wavy lines (photons). The empty circle represents the one-photon
current vertex at the noninteracting level [Eq. (7)], whereas filled symbols represent fully renormalized n-photon vertices.


̂n(1′, 1′′; 1, . . . , n) can be expressed in the self-consistent
(Bethe-Salpeter-like) form (Fig. 4)


̂n(1′, 1′′; 1, . . . , n)

= λ̂n(1′, 1′′; 1, . . . , n)

+
∫

2̄,3̄
K̂n(1′, 1′′; 2̄, 3̄)
̂n(2̄, 3̄; 1, . . . , n), (18)

where the term λ̂n(1′, 1′′; 1, . . . , n) (empty symbols in
Fig. 4) can be expressed in terms of lower-order multi-
photon vertices (see Fig. 5). It should be noticed that,
while λ̂1(1′, 1′′; 1) reduces to the bare one-photon ver-
tex λ̂1(1′, 1′′; 1) = λ̂

(0)
1 (1′, 1′′; 1) = −evσ̂yδ(1 − 1′)δ(1 − 1′′)

in the noninteracting limit U → 0, the two- and three-photon
vertex terms λ̂2(1′, 1′′; 1, . . . , n), λ̂3(1′, 1′′; 1, . . . , n) and so
the fully dressed multiphoton vertices 
̂2(1′, 1′′; 1, . . . , n),

̂3(1′, 1′′; 1, . . . , n) are triggered by the many-body impu-
rity scattering. By using the symmetry enforced by isotropic
impurity scattering, one can see that each n-photon vertex
has a specific Pauli structure. This property can be employed
to define a scalar vertex function for each n-photon vertex,
namely, 
̂n = (−evσ̂y)n
n and λ̂n = (−evσ̂y)nλn. With this
notation in the noninteracting case we have 


(0)
1 = λ

(0)
1 = 1

and 

(0)
n>1 = λ

(0)
n>1 = 0.

FIG. 4. Diagrams for the self-consistent Bethe-Salpeter renor-
malization of n-photon vertex functions 
n, where (a), (b), and
(c) correspond to n = 1, n = 2, and n = 3, respectively.

IV. MANY-BODY DRESSED THIRD
HARMONIC GENERATION

The diagrammatic expressions in Figs. 3–5 are valid for
any generic third-order optical response. A particularly inter-
esting case is the third harmonic generation (THG), which,
using the translational invariance symmetry and in the Mat-
subara space, can be conveniently written as

χ
(3)
THG(m) = 1

β

∑
n

P(n, n + m, n + 2m, n + 3m). (19)

Here, m = iωm represents the photon bosonic energy, and n =
iωn is the internal fermionic energy to be summed over.

The corresponding third harmonic optical conductivity
σ

(3)
THG(ω) can be hence obtained after analytical continuation

iωm → h̄ω + i0+ as

σ
(3)
THG(ω) = i

χ
(3)
THG(ω)

ω3
. (20)

FIG. 5. Diagrams for the interaction-induced two- and three-
photon vertices λn=2,3 are given in (a) and (b), respectively.
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After straightforward algebra, one can thus obtain [18]

χ
(3)
THG(ω) =

∫ +∞

−∞

dε

2π i
{nF(ε)PRRRR − nF(ε + 3h̄ω)PAAAA

+ [nF(ε + h̄ω) − nF(ε)]PARRR

+ [nF(ε + 2h̄ω) − nF(ε + h̄ω)]PAARR

+ [nF(ε + 3h̄ω) − nF(ε + 2h̄ω)]PAAAR}, (21)

where nF(ε) = 1/[exp(ε/T ) + 1] is the Fermi-Dirac factor
with temperature T in units of 1/kB, with kB being the Boltz-
mann constant.

For the sake of compactness, we use here a short notation
where Pν0ν1ν2ν3 = P(ε0,ν0 , ε1,ν1 , ε2,ν2 , ε3,ν3 ), where ε j,ν j = ε +
jω + jην j ( j = 0, 1, 2, 3) and where ην j is a vanishingly small
quantity with ην j > 0 if ν j = R and ην j < 0 if ν j = A. Notice
also that PAAAA = (PRRRR)∗.

As depicted in Fig. 3, the P function contains four different
contributions, P = P1 + P2 + P3 + P4, associated with square
(P1), triangle (P2 and P3), and bubble (P4) diagrams, respec-
tively. More explicitly, we can write

P1(z0, z1, z2, z3) = αQ1(z0, z1)Q1(z1, z2)Q1(z2, z3)

×�1(z0, z1, z2, z3), (22)

where α = e4v2Nf /2π h̄2. The sum over spin and valley in-
dices just leads to an overall degeneracy factor Nf = NsNv ,
where Ns = 2 and Nv = 2. The function �1(z0, z1, z2, z3) rep-
resents the square diagram neglecting vertex renormalization,

�1(z0, z1, z2, z3) = γimp

2U

∑
k

Tr[σ̂yĜ(k, z0)σ̂yĜ(k, z1)σ̂y

× Ĝ(k, z2)σ̂yĜ(k, z3)], (23)

and Q1(zi, z j ) = 
1(zi, z j )/λ1(zi, z j ), where as defined above,
λ1(zi, z j ) = 1. Q1(zi, z j ) thus represents the one-photon
Bethe-Salpeter renormalization factor, which is discussed in
detail in Appendix A. In a similar way we can write the
contributions of the two triangle diagrams as

P2(z0, z1, z2, z3) = αQ1(z2, z3)Q2(z0, z2)λ2(z0, z1, z2)

×�2(z0, z2, z3), (24)

where λ2(z0, z1, z2) is the lowest-order two-photon current
vertex [Fig. 5(a)],

�2(z0, z2, z3)=−γimp

2U

∑
k

Tr[σ̂yĜ(k, z0)Ĝ(k, z2)σ̂yĜ(k, z3)],

(25)
and Q2(zi, z j ) = 
2(zi, zk, z j )/λ2(zi, zk, z j ) is the two-photon
Bethe-Salpeter renormalization factor (see Appendix B). Fur-
thermore, we can also express the triangle diagram as

P3(z0, z1, z2, z3) = αQ1(z0, z1)Q2(z1, z3)λ2(z1, z2, z3)

×�3(z0, z1, z3), (26)

where

�3(z0, z1, z3)=−γimp

2U

∑
k

Tr[σ̂yĜ(k, z0)σ̂yĜ(k, z1)Ĝ(k, z3)].

(27)

Finally, we can express the bubble term as

P4(z0, z1, z2, z3) = αλ3(z0, z1, z2, z3)Q3(z0, z3)

× X1(z0, z3), (28)

where Q3(zi, zk, zl , z j ) = 
3(zi, z j )/λ3(zi, zk, zl , z j ) is the
three-photon Bethe-Salpeter renormalization factor (see Ap-
pendix C), with λ3(z0, z1, z2, z3) being the lowest-order
three-photon vertex function [Fig. 5(b)], and

X1(z, z′) = γimp

2U

∑
k

Tr[σ̂yĜ(k, z)σ̂yĜ(k, z′)]. (29)

A close inspection of the topological structure of the dia-
grams for the three-photon vertex [see Fig. 5(b) and Appendix
C] permits further simplifications as

P4(z0, z1, z2, z3) = UQ3(z0, z3)X1(z0, z3)

×
3∑

i=1

Pi(z0, z1, z2, z3). (30)

Using Q3 = Q1 = 1/[1 − UX1] (see Appendix C), we find the
following result for the total P function:

P(z0, z1, z2, z3) = Q3(z0, z3)
3∑

i=1

Pi(z0, z1, z2, z3). (31)

We can thus see that the net impact of the three-photon vertex
diagram in the third-order response function simply leads
to the appearance of the three-photon renormalization factor
Q3(z0, z3) on the contribution of the other diagrams. The
explicit expressions of λn, Qn, and �n are provided in great
detail in Appendixes A–C for the one-, two-, and three-photon
vertex Bethe-Salpeter renormalizations.

Equipped with all the analytical expressions needed for the
computation of the optical properties of the third harmonic
generation response, in the following section we present
numerical results for the low-energy intraband third har-
monic conductivity of a two-dimensional Dirac modeling of
graphene.

V. RESULTS AND DISCUSSION

Based on a mere dimensional analysis, we can conve-
niently express the zero-temperature third harmonic con-
ductivity of graphene in terms of a dimensionless function
f3(x, y, z):

σ
(3)
THG(ω) = σ0

E2
0

( t0
h̄ω

)4

f3

(
h̄ω

μ0
,
μ

�
,U

)
, (32)

where μ = μ0 − Re	(0) is the renormalized chemical po-
tential, � = �(0) = −Im	(0) is the Fermi surface scattering
rate, σ0 = e2/4h̄ is the universal conductivity including
the spin and valley degeneracy, and E0 = πt0/

√
3ea ≈

22.0 V/nm is a characteristic electric-field scale determined
by the interatomic hopping energy t0 and by the lattice con-
stant a. In the dc limit ω → 0, limx→0 f3(x, y, z)/x4, we
recover the transport regime discussed in Ref. [18]. The ap-
pearance of the bare chemical potential μ0 in the definition
of x, and of the renormalized one, μ, in the definition of y,
is dictated by the different roles of μ0 and μ in governing
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FIG. 6. (a) Real and (b) imaginary parts of the THG conductivity for the whole range of intraband to interband regimes. The vertical red
dashed lines indicate the location of the n-photon interband resonance as h̄ω = 2μ0/n with n = 1, 2, 3, whereas the vertical purple dashed
lines reveal the frequencies of four- and five-photon incoherent transitions with n = 4, 5. Note that the purely intraband features for ω → 0,
although present, are not visible on this scale in the f3 function.

the dc and optical properties, as discussed in more detail
below.

Besides the obvious role of the real part of the third
harmonic generation, the imaginary part of the conductiv-
ity bears also a strong relevance. As a matter of fact, the
THG efficiency ηTHG scales indeed as ηTHG = ITHG/Iin ∝
I2
in|σ (3)

THG|2, where Iin and ITHG stand for the incident and THG
intensities, respectively. For computational reasons it is con-
venient to directly calculate, using Eqs. (20) and (21), the
real part of the nonlinear conductivity Re[σ (3)

THG], or equiv-
alently, Re[ f3] ∝ ωIm[χ (3)

THG]. The imaginary part, Im[σ (3)
THG]

(or Im[ f3] ∼ ωRe[χ (3)
THG]), can thus be obtained by means of

the Kramers-Kronig relations:

Re
[
χ

(3)
THG(ω)

] = 2

π

∫ ∞

0
dω′ ω

′Im
[
χ

(3)
THG(ω′)

]
ω2 − ω′2 . (33)

In the high-frequency regime, the third harmonic gen-
eration response function χ

(3)
THG(ω) is described by purely

interband transitions, χ
(3)
THG,inter (ω), giving rise to steplike

functions at h̄ω ≈ 2μ0/n corresponding to n = 1, 2, 3 pho-
ton resonances, where the three-photon resonance at h̄ω ≈
2μ0/3 defines the interband optical edge. The low frequency
h̄ω � μ corresponds to the purely intraband regime of third
harmonic optical conductivity, which will be discussed in
Sec. V B. In addition to this structure, in the intermediate
frequency range, we reveal incoherent four- and five-photon
transitions with mixed intra- and interband characters. These
features will be the focus of Sec. V A.

A. Four- and five-photon incoherent transitions

The full quantum treatment of many-body interaction
with Green’s functions and Kubo formalism predicts in-
triguing spectral features. In Figs. 6(a) and 6(b) we plot
the real and imaginary parts of the THG function f3 ∼
ω4σ

(3)
THG versus the laser frequency ω in the whole intra-

band to interband frequency range for different values of
the scattering strength U . In the almost clean limit (U =
0.001) the dominant features are the the multiphoton in-
terband resonances at h̄ω ≈ 2μ0/n with n = 1, 2, 3, which
appear as smeared structures by the interaction in the real
and imaginary parts. Note that on this scale the purely in-
traband features are not visible since their magnitude scales
as ω4. Upon increasing the scattering strength, besides the
obvious smearing of the interband features, we notice the
appearance of resonances below the interband edge h̄ω ≈
2μ0/3, i.e., in the intraband range. A closer look reveals that
such spectral features occur at frequencies h̄ω = 2μ0/n with
n = 4, 5 (purple vertical dashed lines in Fig. 6), namely, at
energies corresponding to four- and five-photon resonances,
respectively.

The very possibility of observing four- and five-photon
transitions in the third-order conductivity is quite surprising,
and it calls for further and deeper investigation. Also worth
noticing is the fact that although a full many-body treatment is
here enforced, the n-photon resonances (n = 1, . . . , 5) occur
at the energies h̄ω ≈ 2μ0/n dictated by the bare chemical
potential μ0, rather than by the effective renormalized one,
μ. This puzzling result has not been detected previously in
the literature since in noninteracting models as well as in
phenomenological models where only a constant scattering
rate � (the imaginary part of the self-energy) is included,
no renormalization of the chemical potential is operative, and
μ = μ0.

The appearance of four- and five-photon transitions in the
third-order conductivity can be rationalized by considering
at the simplest level the square diagrams depicted in Fig. 3
furthermore neglecting the Bethe-Salpeter vertex renormal-
ization. In this case, according to Eq. (22), the kernel response
function P in Eq. (21) will read simply P(z0, z1, z2, z3) =
P1(z0, z1, z2, z3) ∝ �1(z0, z1, z2, z3). The explicit expression
of �1(z0, z1, z2, z3) is long and cumbersome, and it is provided
in Appendix C. The main feature in regard to the present issue
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TABLE I. Predicted n-photon transitions h̄ω = 2μ0/n in the
third-order optical conductivity. The transitions marked with an
asterisk are expected to have null spectral weight for the elastic scat-
tering considered here, but they might gain a finite spectral weight in
the presence of inelastic scattering (see discussion in the text).

Channel ε range at T = 0 n-photon transition

RRRR −3h̄ω � ε � 0 n = 1, 2, 3, 4, 5
ARRR −h̄ω � ε � 0 n = 1∗

AARR −2h̄ω � ε � −h̄ω n = 1, 2∗, 3
AAAR −3h̄ω � ε � −2h̄ω n = 1, 2, 3, 4, 5

is that it depends as

�1(z0, z1, z2, z3) ∝ �i �= j=0,...,3
1

S(zi) + S(z j )
. (34)

According to Eq. (34), multiphoton transitions can occur
when Re[S(zi ) + S(z j )] = 0 with z j = ε + jh̄ω. Neglecting
for the moment the contribution of the self-energy, this implies
that ε = −μ0 − (i + j)h̄ω/2. We assume for simplicity μ >

0 and T = 0, and we focus on the RRRR channel. Enforcing
the boundary conditions −3h̄ω � ε � 0 which originate from
the factor nF(ε) − nF(ε + 3ω) in Eq. (21), we get that possible
n-photon interband transitions can occur at h̄ω = 2μ0/n with
n = 6 − (i + j), and considering i, j = 0, 1, 2, 3 with i �= j,
we obtain the possible values n = 1, 2, 3, 4, 5. A similar anal-
ysis can be applied to other channels where the possibility of
detecting an n-photon transition is dictated by the integration
window over ε [see the Fermi function prefactors in Eq. (21)
for different channels] and by the retarded or advanced char-
acter of the complex frequencies zi involved in the transition.
More explicitly, it can be shown that n-photon transitions in
each channel have a finite spectral weight only when zi and z j

have the same (retarded or advanced) character, in a similar
way as occurs in the linear optical response. With such a road
map, we can analyze theoretically the possible appearance of
multiphoton transitions in each separate contribution PRRRR,
PARRR, PAARR, and PAAAR. Our theoretical predictions are
summarized in Table I, and the numerical results are shown
in Figs. 7(a) and 7(b), in excellent agreement with each other.

The total nonlinear response is determined by the sum of
all the channels. As we can see in Fig. 7(a), both RRRR and

FIG. 7. (a)–(c) Different channel contributions (RRRR, AAAR, ARRR, and AARR) to the real part of the f3 function for U = 0.005.
(d) Evolution of the real part of the total f3 function for different values of U . We set μ0 = 25 THz.

125415-8



MANY-BODY EFFECTS IN THIRD HARMONIC … PHYSICAL REVIEW B 103, 125415 (2021)

AAAR channels show steplike transitions at the four- and
five-photon resonances, i.e., at h̄ω ≈ μ0/2 and h̄ω ≈ 2μ0/5,
but with opposite sign. The sum of these two contributions
would exactly cancel out in the clean limit U = 0. Such
cancellation is, however, just partial for finite U (or finite
�), leaving finite spectral structures at h̄ω ≈ μ0/2 and h̄ω ≈
2μ0/5, as seen in Fig. 7(c). The behavior as a function of
the scattering strength is shown in Fig. 7(d). As mentioned
above, in the clean limit U → 0 the multiphoton resonances
at n = 4, 5 in the individual channels PRRRR, PARRR, PAARR,
and PAAAR cancel out exactly, and they are thus absent in the
total response. However, such cancellation is not perfect in
the presence of a finite electron-impurity scattering, leaving
residual spectral structures at frequencies corresponding to
the four- and five-photon resonances. The spectral weight of
these multiphoton structures scales with the impurity scatter-
ing itself. The absence of four- and five-photon transitions in
the clean (noninteracting) limit thus reveals that these tran-
sitions are in fact incoherent transitions with mixed inter-
and intraband characters. The partial intraband character is
highlighted by the transition weight being proportional to
the relaxation rate �, whereas the partial interband character
of such features is pointed out by their lying at finite fre-
quency, i.e., at exactly the four- and five-photon resonance
energy with the peak positions not affected by U . It is worth
emphasizing that these incoherent transitions at finite fre-
quency pinned by μ0 are a peculiar property of nonlinear
optical conductivity and they do not emerge in linear optical
conductivity.

Now, we focus on the role of the many-body self-energy
renormalization in determining the spectral features of the op-
tical third harmonic generation response. As discussed above,
n-photon transitions can be theoretically identified by enforc-
ing the condition Re[S(zi ) + S(z j )] = 0 together with ε =
εmin, εmax, where εmin, εmax are the lower and upper energy
integration limits for each channel. With such a prescription,
neglecting the many-body self-energy, the n-photon transi-
tions occur at h̄ω ≈ 2μ0/n, where μ0 is the bare chemical
potential. It is, however, straightforward to check that the
same holds true also in the presence of (frequency dependent)
elastic scattering driven by disorder or impurity preserving
the mirror symmetry with respect to the Dirac point. The
analysis of linear optical conductivity is enlightening on this
point. In a similar way to that in the third-order response
function, at T = 0 the edge of the interband optical transitions
is determined by the conditions Re[S(ε) + S(ε + h̄ω)] = 0
and Re[S(ε) + S∗(ε + h̄ω)] = 0, respectively, together with
the constraints ε = 0, ε = −h̄ω determined by the window
of energy integration over ε. We thus obtain that the edge of
optical interband transitions is determined by

h̄ω = 2μ0 − Re	(0) − Re	(−2μ0), (35)

with a spectral weight Isw that scales as

Isw = |Im	ν (0) − Im	ν ′
(−2μ0)|, (36)

where ν, ν ′ = A, R. The elastic impurity scattering self-
energy respects the following symmetry relation owing to

symmetry of Dirac dispersion:

Re	(−μ0 − ε) = −Re	(−μ0 + ε), (37)

Im	R/A(−μ0 − ε) = Im	R/A(−μ0 + ε), (38)

Im	A/R(−μ0 − ε) = −Im	R/A(−μ0 + ε). (39)

These relations imply in a direct way that (i) the interband
optical edge in the linear optical conductivity is determined
only by μ0 and not by the renormalized chemical potential
μ and (ii) only the retarded-retarded channel is responsible
for the n = 1 photon transition thus observed in linear optics.
Similar argumentations hold true in a straightforward way
in nonlinear optics, where we conclude that (i) the n-photon
transitions are determined only by μ0 and not by the renormal-
ized chemical potential μ and (ii) only retarded-retarded or
advanced-advanced transitions show a sizable spectral weight
and can thus be observed in the optical features.

The strict validity of these symmetry relations is affected
in the presence of inelastic scattering where the even or odd
symmetries with respect to the Dirac points are lifted. Con-
sidering, however, the realistic case of low-energy inelastic
scattering (e.g., phonons), the breaking of the symmetry rela-
tions in the imaginary part in Eqs. (38) and (39) is limited to
a narrow shell around the Fermi level, thus affecting only the
h̄ω ≈ 2μ0 resonance (n = 1). Inelastic scattering might thus
reduce a bit the spectral weight of n = 1 photon transitions
in the RRRR, AARR, and AAAR channels, and it might
induce a finite spectral weight in the ARRR channel, which
is predicted to be null under the above symmetry conditions
valid, however, only for elastic scattering. Inelastic scattering
would affect as well the symmetry relation for the real part
of the self-energy, as it can be obtained by Kramers-Kronig
transform of the imaginary part of the self-energy. Since the
imaginary part of the self-energy is typically affected only in
a narrow region around the Fermi level, we expect deviations
from the symmetry relation in the real part in Eq. (37) to be
relatively small and scaling with the strength of the inelas-
tic coupling. Multiphoton transitions might be just slightly
shifted from the edge determined by μ0.

B. Intraband THG conductivity

The analysis of the THG optical conductivity allows us to
investigate in detail also the low-energy spectral features asso-
ciated with the pure intraband processes, which are not easily
visible in the dimensionless function f3. A phenomenological
model previously obtained [2,3] based on density-matrix for-
malism and using a constant scattering rate is commonly used
to describe qualitatively the low-frequency profile of THG
conductivity in the Boltzmann regime where μ � �, h̄ω:

σ
(3)
THG,� = i

C

μ(h̄ω + i�)3
, (40)

where C > 0 is a constant and � stands for a constant (fre-
quency independent) scattering rate. A sketch of Eq. (40) is
shown in Fig. 8(a). Equation (40) captures a similar physics
to that of the Drude term in the linear optics. Indeed, in a
similar way to that used to obtain the Drude term, such a
purely intraband term can be obtained, in this phenomenolog-
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FIG. 8. (a) Spectral behavior of the purely intraband part of THG conductivity according to the phenomenological model of Eq. (40). The
characteristic parameters defined in Eqs. (41)–(44) are here represented. (b) Real part of the intraband THG conductivity for U = 0.013 and
μ0 = 25 THz computed at different levels of approximation and compared with the phenomenological model of Eq. (40). Red circles represent
results for the full quantum theory including all diagrams in a conserving way, blue triangles correspond to a nonconserving analysis where the
two-photon vertex renormalization is neglected by setting X2 = 0, and green squares represent a further (nonconserving) approximation where
all vertex renormalization processes are neglected. The solid line represents the phenomenological model of Eq. (40) with a fitting parameter
� ≈ 0.017μ0. Note that σ3 = 1011σ

(3)
0 with σ

(3)
0 = σ0/E 2

0 .

ical framework, by replacing in the noninteracting model the
frequency ω with the complex frequency ω → ω + i�. Fur-
thermore, like the Drude term in the linear response and unlike
the interband counterpart ruled by μ0, the spectral properties
of Eq. (40) are governed only by a couple parameters, namely,
the renormalized chemical potential μ (ruling the magnitude
of the intraband feature) and the relaxation rate � (ruling the
energy scale of such intraband features). In more detail, the
above model predicts, for any strength of �, a negative dc
conductivity in the limit ω → 0,

σ
(3),dc
THG,� = − C

μ�3
, (41)

as well as a maximum

σ
(3),max
THG,� = C

4μ�3
, (42)

at

h̄ωmax = �, (43)

and a zero σ
(3)
THG,� (ω = ω0) = 0 at

h̄ω0 = �/
√

3. (44)

See Fig. 8(a) for a graphical representation of the parameters
defined above. Interestingly, the nonlinear Drude term scales
inversely with the chemical potential, while the linear Drude
conductivity is directly proportional to μ. This implies that
nonlinear correction is more pronounced at a lower doping
rate.

We are now in a position to compare the results of
our quantum analysis, which includes in a conserving way
many-body processes, with the phenomenological model of
Eq. (40), where many-body effects are neglected. In Fig. 8(b)
we compare such a phenomenological model (solid line) with
the full quantum theory (red circles) for U = 0.013 and μ0 =

25 THz, showing a remarkable agreement. Such agreement is
even more striking upon noticing that many-body effects (not
present in the phenomenological model), i.e., the two-photon
vertex renormalization, are widely ruling these intraband fea-
tures. This can also be seen in Fig. 8(b), where we plot also
the numerical results obtained by neglecting the two-photon
vertex renormalization (blue triangles). The spectral profile in
this case is quite different, showing, in particular, a positive
value in the dc ω → 0. A further different result is obtained
when all the vertex renormalizations are neglected (green
squares).

Such agreement between the full quantum theory and the
phenomenological model appears to be not accidental since it
can be assessed in a numerically controlled way using Eq. (40)
as a template. More precisely, we numerically determine in the
full quantum theory, as a function of the scattering strength U ,
the dc limit σ

(3),dc
THG = σ

(3)
THG(ω = 0); the frequency ω0 where

the THG has the first low-frequency zero; the frequency
ωmax where the THG conductivity has its first maximum; and
the value σ

(3),max
THG of the THG conductivity at ω = ωmax. As

discussed above, in the phenomenological model all these
parameters are not independent, but they obey the scaling
relations described in Eqs. (41)–(44).

In Figs. 9(a)–9(d) we can thus compare for μ0 = 25 THz
the mutual dependence of such characteristic spectral param-
eters as obtained from the numerical results of the many-body
quantum theory and as estimated from the model in Eq. (40).
We find an excellent agreement in the very weak scatter-
ing regime U → 0 (� � μ), with a noticeable departure for
larger �. The nature of such deviation will be discussed later.

The striking resemblance for the pure intraband spectral
features between the results of the conserving Kadanoff-Baym
theory and the phenomenological model with a constant im-
purity scattering rate is somehow puzzling, and it prompts
thus the fundamental question, How is possible that the full
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FIG. 9. Comparison between the full many-body theory and the phenomenological model given in Eq. (40). (a) Log-log scale plot of the
maximum value of the real part of the intraband THG conductivity vs the third-order dc conductivity compared with linear scaling (dashed red
line) obtained from the phenomenological formula. (b) Log-log scale plot of ωmax vs ω0, which is compared with a linear scaling line (dashed
red line) based on the phenomenological model. (c) Cubic scaling of the maximum value of the real part of the intraband THG vs ωmax, which
is valid only for small values of U . (d) Cubic scaling for third-order dc conductivity vs ω0, which is valid only for small values of U . Here,
μ0 = 25 THz and σ3 = 1010σ

(3)
0 with σ

(3)
0 = σ0/E 2

0 .

quantum theory, which contains crucial complex many-body
effects, is so remarkably similar to a strongly approximate
modeling where multiple scattering processes and many-body
effects are essentially neglected? In this regard it is worth
stressing that the constant-� model is itself a conserving
approximation, where to a field-independent and frequency-
independent self-energy correspond unrenormalized vertices.
We rationalize thus the agreement between the constant-�
model and the fully many-body theory on the basis of the
requirement of a conserving analysis. This understanding
prompts hence the crucial warning in the field: A reliable
description at a microscopic level of the scattering pro-
cesses unavoidably requires that they be addressed within
a self-consistent conserving approach, whereas approximate
quantum many-body theories, when not based on a conserving
approach, might give severely spurious results.

It should be remarked, however, that such reasonable map-
ping of a full quantum theory onto a phenomenological model
is quite limited in the (Boltzmann) limit � � μ. For the im-
purity scattering here considered, from Fig. 9(d) we roughly
estimate (reminding the reader that h̄ω0 ≈ √

3�) � ∼ 0.01μ,

corresponding here to U ∼ 0.015. The origin of the break-
down of the model in Eq. (40) in describing correctly the
purely intraband term spectral features and the dc limit can
be traced in the relative evolution of the magnitude and en-
ergy scales of the purely intraband term versus the incoherent
multiphoton transition edges, as shown in Fig. 10.

In the extreme weak-scattering limit [Fig. 10(a)] the pure
intraband features, governed by the energy scale �, lie at ener-
gies much smaller than the multiphoton transition edges ruled
by μ0, and they are thus well detached. The magnitude itself
of the purely intraband term is also much bigger than the mag-
nitude of the spectral features associated with the multiphoton
edges, so that, as a result, the intraband part is essentially
unaffected by the presence of the incoherent multiphoton
features. In the intermediate regime � ≈ 0.1μ [Fig. 10(b)] a
purely intraband feature can still be identified, but, due to the
large overlapping with the multiphoton edges (the smallest
n = 5 lying at h̄ω = 2μ0/5), a reliable determination of its
parameters, using Eq. (40) as a fitting guide, is not accessible.
For further, larger scattering rates � � μ [Fig. 10(c), see U �
0.11] the purely intraband spectral structures are essentially
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FIG. 10. Evolution of the real part of the THG conductivity for fixed chemical potential μ0 = 25 THz and varying the impurity scattering
strength U , from the weak-scattering limit � � μ0, μ (a), to the intermediate crossover � ≈ 0.1μ (b), to the strong-scattering regime � �
μ0, μ (c).

negligible, and the low-energy features are governed by the
multiphoton transition edges with mixed intra- and interband
character, resulting in a remarkable change of sign of the
dc limit of the THG conductivity, consistent with the results
of Ref. [18]. Figures 10(a)–10(c) display thus the evolution
of the low-energy third harmonic generation from the high-
doping (Boltzmann) regime to the quantum regime.

VI. SUMMARY AND CONCLUSION

In this paper we have explored the effects of the elastic im-
purity scattering on the third harmonic generation of graphene
by using a conserving diagrammatic method that includes
self-consistently both self-energy and vertex renormalization
contributions. As a result of the field dependence of the
self-energy, we showed that interaction-induced multiphoton
vertex diagrams are relevant. In particular, we have predicted
the onset of incoherent resonances at four- and five-photon
transition energy with mixed intra- and interband character.
Furthermore, we have shown that the main features of the
purely intraband contribution in the full quantum theory are
qualitatively comparable to phenomenological models that as-
sume a frequency- and field-independent self-energy, whereas
nonconserving approaches give rise to spurious results. In the
terahertz regime the proximity of the five-photon transition
edge at h̄ω = 2μ0/5 might affect the interpretation of experi-
mental data in terms of a purely intraband term.

Our study sheds light on the importance of many-body
interaction in qualitative explanations of nonlinear optics in
the terahertz and infrared (intraband) regimes. Although the
numerical study is performed for the third harmonic gen-
eration, the formalism is quite general and applicable to
two-photon absorption, the nonlinear Kerr effect, etc. More-
over, our study can be simply generalized to explain the
terahertz nonlinear response in other two-dimensional ma-
terials such as transition-metal dichalcogenides and twisted
bilayer graphene.
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APPENDIX A: RENORMALIZATION OF THE
ONE-PHOTON VERTEX

The one-photon vertex renormalization is depicted dia-
grammatically in Fig. 4(a) of the main text, and it reads


̂1(p, p + q; n, n + m) = λ̂1(p, p + q; n, n + m)

+ γimp

∑
k

Ĝ(k, n)
̂1(k, k

+ q; n, n + m)Ĝ(k + q, n + m),

(A1)

where m ≡ iqm and n ≡ ikn = ipn stand for the bosonic and
fermionic Matsubara frequencies, respectively. Note that in
the integrand we have shifted the dummy momentum k as
k + p → k, and therefore we can see that vertex correction
does not depend on the fermion momentum p. For the opti-
cal (or dipole) approximation we have q = 0. Therefore the
Bethe-Salpeter relation for the one-photon vertex function
reads


̂1(n, n + m) = λ̂1(n, n + m)

+ γimp

∑
k

Ĝ(k, n)
̂1(n, n + m)Ĝ(k, n + m).

(A2)

Note that we have λ̂1(n, n + m) = 
̂
(0)
1 = δĜ−1

0 /δA|A→0 =
−evσ̂y, where Ĝ0 stands for the noninteracting Green’s func-
tion. We assume the following ansatz for the vertex function:


̂1(n, n + m) = aÎ + bσx + (c + v)σy + dσz. (A3)
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Using the fact that the integral of an odd function of k is
zero, we obtain a = b = d = 0 and eventually the following
result for the vertex function: 
̂1 = (−evσ̂y)
1 and λ̂1 =
(−evσ̂y)λ1, where


1(n, n + m) = Q1(n, n + m)λ1. (A4)

Note that λ1 = 1 and we define the one-photon vertex renor-
malization factor

Q1(z, z′) = 1

1 − UX1(z, z′)
, (A5)

in which

X1(z, z′) = γimp

2U

∑
k

Tr[σ̂yĜ(k, z)σ̂yĜ(k, z′)]. (A6)

Using dimensional regularization, we find the following for-
mula for the X1 function:

X1(z, z′) = S(z)S(z′)
S(z)2 − S(z′)2

ln

[
S(z′)2

S(z)2

]
. (A7)

Obviously, X1(z, z′) = X1(z′, z).

APPENDIX B: RENORMALIZATION OF THE
TWO-PHOTON VERTEX

Similar to the one-photon vertex case, it can be shown
that the two-photon vertex function is independent of the
fermionic momentum p. Moreover, for the optical limit we
can neglect the photon momentum q. The self-consistent
Bethe-Salpeter relation for the two-photon vertex function is
depicted in Fig. 4(b) of the main text, and it reads


̂2(n, n + m, n + 2m)

= λ̂2(n, n + m, n + 2m)

+ γimp

∑
k

Ĝ(k, n)
̂2(n, n + m, n + 2m)Ĝ(k, n + 2m).

(B1)

In the noninteracting Dirac system the “bare” two-photon
vertex function is zero, 
̂

(0)
2 ∝ δ2Ĝ−1

0 /δA2|A→0 = 0, due to
the linear momentum dependence of the Hamiltonian. How-
ever, due to interaction the unrenormalized two-photon vertex
λ̂2 is finite and is given by the following relation [see Fig. 5(a)
of the main text]:

λ̂2(n, n + m, n + 2m)

= −γimp

∑
k

Ĝ(k, n)
̂y(n, n + m)

× Ĝ(k, n + m)
̂y(n + m, n + 2m)Ĝ(k, n + 2m).

(B2)

From now on we adopt the shorthand notation z j = n + jm
with j = 0, 1, 2, 3.

We find λ̂2 = (−evσ̂y)2λ2 with σ̂ 2
y = Î and

λ2(z0, z1, z2) = Q1(z0, z1)Q1(z1, z2)UZ (z0, z1, z2), (B3)

in which Q1(zi, z j ) is the one-photon renormalization factor
defined in Appendix A and where

Z (z0, z1, z2) = −γimp

2U

∑
k

Tr[Ĝ(k, z0)σ̂yĜ(k, z1)σ̂yĜ(k, z2)].

(B4)

By performing the momentum integration using the dimen-
sional regularization, we obtain

Z (z0, z1, z2) = X1(z0, z1) − X1(z1, z2)

S(z0) − S(z2)
. (B5)

By solving the the self-consistent Bethe-Salpeter relation for
the two-photon vertex given in Eq. (B1), we obtain 
̂2 =
(−evσ̂y)2
2 with


2(z0, z1, z2) = Q2(z0, z2)λ2(z0, z1, z2), (B6)

in which Q2(z0, z2) is the two-photon Bethe-Salpeter renor-
malization factor

Q2(z0, z2) = 1

1 − UX2(z0, z2)
(B7)

and where

X2(z, z′) = γimp

2U

∑
k

Tr[Ĝ(k, z)Ĝ(k, z′)]. (B8)

Therefore the two-photon renormalization factor reads

Q2(z, z′) = S(z) − S(z′)
z − z′ . (B9)

APPENDIX C: RENORMALIZATION OF THE
THREE-PHOTON VERTEX

Similar to the two-photon case, the impurity scattering
induces a finite three-photon vertex as defined in Fig. 5(b) of
the main text. Accordingly, we find λ̂3 = (−evσ̂y)3λ3 with

λ3(z0, z1, z2, z3) =
3∑

n=1

Mn(z0, z1, z2, z3), (C1)

where

M1(z0, z1, z2, z3) = U�1(z0, z1, z2, z3)Q1(z0, z1)

× Q1(z1, z2)Q1(z2, z3), (C2)

M2(z0, z1, z2, z3) = U�2(z0, z2, z3)λ2(z0, z1, z2)

× Q1(z2, z3)Q2(z0, z2), (C3)

M3(z0, z1, z2, z3) = U�3(z0, z1, z3)λ2(z1, z2, z3)

× Q1(z0, z1)Q2(z1, z3). (C4)

Here, Q1(zi, z j ) and Q2(zi, z j ) are the Bethe-Salpeter one-
and two-photon renormalization functions, respectively. The
explicit expression for �1 function is given by

�1(z0, z1, z2, z3) =
3∑

n=1

un(z0, z1, z2, z3) ln

[
S(z0)2

S(zn)2

]
, (C5)
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where we have

un(z0, z1, z2, z3) = � jS(z j ) + R(z0, z1, z2, z3)S(zn)2

� j �=n[S(zn)2 − S(z j )2]
, (C6)

in which R(z0, z1, z2, z3) = S(z0)S(z2) + S(z1)S(z3). Simi-
larly, by explicit calculation of the momentum integration, one

can obtain �2(z0, z2, z3) = Z (z2, z3, z0) and �3(z0, z1, z3) =
Z (z3, z0, z1). Finally, the Bethe-Salpeter renormalization of
the three-photon vertex function gives


3(z0, z1, z2, z3) = Q3(z0, z3)λ3(z0, z1, z2, z3), (C7)

where Q3(z1, z2) = Q1(z1, z2).
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