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Abstract 
 
The present paper describes the main features of the finite element code NOSA-
ITACA for the static and dynamic analysis of masonry buildings of historical 
interest. The code, which models masonry as a nonlinear elastic material with zero 
tensile strength and bounded compressive strength, is aimed at assessing the static 
safety and seismic vulnerability of masonry constructions in light of Italian 
regulations, as well as modelling possible strengthening interventions.  
The NOSA-ITACA code has been used to study the “Voltone”, a large vaulted 
masonry structure located beneath the “Piazza della Repubblica” square in Livorno. 
The structure has been analysed in the presence of permanent and accidental loads, 
calculated on the basis of current Italian regulations. This case study has provided 
the opportunity to validate the NOSA-ITACA code and highlighted the key role 
played by numerical tools in assessing the safety of ancient masonry constructions. 
 
 
 
Keywords: masonry buildings, nonlinear elasticity, static analysis, numerical 
methods. 
 
 
1  Introduction 
 
Since the early 1900s awareness has been steadily growing of the incommensurable 
social and cultural value of the world’s cultural heritage, as has the conviction that 
such heritage is the birthright of all people of the world. This has prompted both 
local and national authorities and administrations to take cultural heritage into 
account in their operating plans, with the aim of making it accessible to all citizens.  
Article 2 of the Venice Charter [1] reads “The conservation and restoration of 
monuments must have recourse to all the sciences and techniques which can 
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contribute to the study and safeguarding of the architectural heritage”. In recent 
years, according to the inspiring principle of article 2, the structural analysis of 
historical masonry buildings made possible by innovative mathematical models and 
computer technologies has gained increasing importance in safeguarding the world’s 
architectural heritage. 
In Italy many historically and artistically important masonry buildings are in dire 
need of maintenance and restoration. In order to optimize such operations in terms 
of cost-effectiveness, architectural impact and static effectiveness, numerical codes 
have a crucial role to play in modelling the structural behaviour of masonry 
buildings. By providing important information, such as the collapse loads, the stress 
field and the distribution of cracked regions, together with their possible evolution, 
such codes represent a valuable support in the choice and design of strengthening 
and seismic retrofitting operations. 
For these reasons, it is crucial to realistically model masonry materials, whose 
response to tension is fundamentally different from that to compression, and whose 
mechanical properties depend on their constituent elements and the building 
techniques used. The numerous techniques proposed for modelling masonry 
structures can be grouped into the following main classes: micro–mechanical 
approaches [2], [3], rigid block modelling for limit analysis [4], [5] and dynamic 
analysis [6], homogenisation techniques [7], [8] and continuum models [9], [10], 
[11], [12]. The most common constitutive models used are the linear elastic [9]-[11] 
and the elastic-plastic model [2], [3], [6], [8] and [12]. The former provides only 
qualitative information on the global behaviour of masonry structures without 
however considering their inability to withstand tension, while the latter instead 
takes into account the strong nonlinearities of such structures’ static and dynamic 
responses.  
The studies described in [13] have led to the implementation of the finite element 
code NOSA, in which masonry is described as a nonlinear elastic material with zero 
tensile strength and bounded compressive strength. The code has been successfully 
applied to a number of studies, commissioned by both private and public bodies, on 
important historic buildings, such as the chimney of the Vecchi Macelli, the Medici 
Arsenal [13] and the church of San Pietro in Vinculis in Pisa [13], the San Nicolò 
Motherhouse in Noto, the Goldoni Theatre in Livorno, the Baptistery of the Volterra 
Cathedral, the bell tower of Buti [14], the church of Santa Maria Maddalena in 
Morano Calabro [13], the church of San Ponziano [15], the Torre delle Ore (Clock 
Tower) in Lucca, and the Rognosa tower in San Gimignano [16], [17]. 
In many cases, such studies have also provided important information on the 
structure’s seismic vulnerability, which can be assessed with respect to current 
Italian and European regulations. Moreover, the effects of thermal variations and the 
effectiveness of various strengthening interventions, such as the application of 
chains, rods and retaining structures, can be evaluated, and those with the least 
environmental and visual impact identified. 
With the aim of improving the performance of the NOSA code and equipping it with 
an interactive graphic tool for pre- and post-processing, the project “Tools for the 
modelling and assessment of the structural behaviour of ancient constructions” was 
conducted by the laboratory of Mechanics of Materials and Structures of ISTI-CNR 
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and a research team from the Department of Civil and Environmental Engineering of 
the University of Florence. The project [18], funded by the Region of Tuscany 
(2011-2013), was divided into two parts: research activity aimed at studying 
mathematical models for the static and dynamic behaviour of masonry constructions 
and procedures for assessing their static safety and seismic vulnerability, and the 
development of the NOSA-ITACA code, resulting from integration of the NOSA 
code and the open source graphic platform SALOME [19]. SALOME is used both to 
define the geometry of the structure under examination and to visualise the results of 
the structural analysis. 
In this paper we present a study of the “Voltone” − a large vaulted masonry structure 
located beneath the Piazza della Repubblica square in Livorno, Italy. Section 2 is 
devoted to a general description of the NOSA-ITACA code and the mathematical 
models and numerical methods used for simulating the mechanical behaviour of 
masonry constructions. In section 3 a nonlinear structural analysis of the “Voltone” 
is presented, in which the safety of the structure is assessed under gravity and 
accidental loads. The most widely adopted assessment procedures for masonry 
bridges and tunnels are based on limit analysis and aim to estimate their load-
bearing capacity [5], [20]-[24]. Instead, the study presented here follows a nonlinear 
incremental approach. This case study, conducted in collaboration with the 
Municipality of Livorno, has provided an opportunity to validate both the models 
proposed and the calculation tool developed, and constituted a pilot project for 
broader initiatives aimed at safeguarding Tuscany’s cultural heritage.  
 
 
2  The NOSA-ITACA code and the numerical modelling 
of masonry-like solids 
 
2.1  The finite element code NOSA-ITACA 
NOSA-ITACA is freeware/open-source software for computational mechanics, as is 
the Salome-Meca - Code_Aster package [25], and is distributed with the aim of 
disseminating the use of mathematical models and numerical tools in the field of 
Cultural Heritage. NOSA-ITACA is the result of the integration of the finite element 
code NOSA [13] into the open-source SALOME platform [19].  
The finite element code NOSA (NOn-Linear Structural Analysis) has been 
developed by the Mechanics of Materials and Structures Laboratory of the ISTI-
CNR with the aim of testing new constitutive models for materials. It has moreover 
been applied to checking the algorithms for integrating the equations of motion, as 
well as to other numerical techniques for solving structural engineering problems. 
The development of NOSA began in 1980 and has continued over the ensuing years 
along the research lines of the Lab. 
The first version of the code included plane, three-dimensional and axisymmetric 
isoparametric elements [26] and allowed for elastic and elastic-plastic analyses in 
the presence of infinitesimal strains with the work-hardening models described in 
[27]. The code has subsequently been extended to include cases of finite strains and 
contact problems, based on studies performed on both the constitutive equations 
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[28]-[31] and the methods for numerical integration of the equations of motion, in 
the presence of follower forces [32], [33]. 
Over recent decades, constitutive models and calculation techniques have become 
available that enable realistic description of the static behaviour of masonry 
structures. Several studies [34], [35], [13] have led to a better understanding of the 
constitutive equation of materials not withstanding tension, known in the literature 
as masonry-like or no-tension materials. Within this framework, masonry is 
modelled as a nonlinear elastic material, with zero tensile strength and infinite or 
bounded compressive strength.  
In order to study real problems, the equilibrium problem of masonry structures can 
be solved via the finite element method. To this end, suitable numerical techniques 
have been developed [13] based on the Newton-Raphson method for solving the 
nonlinear system obtained by discretising the structure into finite elements. Their 
application requires that the derivative of the stress with respect to the strain be 
explicitly known, as this is needed in order to calculate the tangent stiffness matrix. 
The numerical method studied has therefore been implemented into the NOSA code 
to enable determination of the stress state and the presence of any cracking. It can 
moreover be applied to modelling needed restoration and reinforcement operations 
on constructions of particular architectural interest. 
The code has been further enhanced to enable performing nonlinear heat-conduction 
analysis on solids even in the non-stationary case, with boundary conditions 
concerning temperature and thermal fluxes. Today, the code provides for thermo-
mechanical analysis of no-tension solids whose mechanical characteristics depend 
on temperature in the presence of thermal loads [36], [37]. 
Finally, numerical solution of dynamic problems requires direct integration of the 
equations of motion [38]. In fact, due to the nonlinearity of the adopted constitutive 
equation, the mode-superposition method is meaningless. With an aim to solving 
such problems, we have instead implemented the Newmark [39] method within 
NOSA in order to perform the integration with respect to time of the system of 
ordinary differential equations obtained by discretising the structure into finite 
elements. Moreover, the Newton-Raphson scheme, needed to solve the nonlinear 
algebraic system obtained at each time step, has been adapted to the dynamic case.  
The code has been successfully applied to the analysis of arches and vaults [40], as 
well as some buildings of historical and architectural interest [13], [14], [16], [17].  
Development of the code has been made possible through the funding of the CNR, 
the Italian Ministry of Universities and Research and the region of Tuscany (NOSA-
ITACA project). 
Within the framework of this project, the NOSA code has been substantially 
modified and significantly improved in light of FORTRAN 90 specifications and 
equipped with new finite elements, thus enhancing its application capabilities. An 
efficient implementation of numerical methods for constrained eigenvalue problems 
for the special case of modal structural analysis taking into account both the sparsity 
of the matrices and the features of master-slave constraints (tying or multipoint 
constraints) has been embedded in NOSA. Such implementation is based on the 
open-source packages SPARSKIT [41], for managing matrices in sparse format 
(storage, matrix-vector products), and ARPACK [42], which implements a method 
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based on the Lanczos factorization combined with spectral techniques that improve 
convergence.  
Implementation of the NOSA-ITACA code for the structural analysis of historical 
masonry constructions was then completed by integrating the finite element code 
NOSA within the open-source interactive graphic code SALOME [19]. Specifically, 
the NOSA code has been implemented within the SALOME architecture (developed 
mostly in the C/C++ and Python languages) as an additional module on a par with 
those already existing (MESH, GEOM, POST-PRO). Through such integration the 
NOSA module thus allows the user to define the physical quantities to associate to a 
mesh (materials, element thickness, boundary conditions, loads, analysis type, etc.), 
display the load applied to the structure, generate the input file for running and 
monitoring the finite element analysis, etc. Moreover, the NOSA module allows the 
user to monitor the analysis and transmits the results of the numerical study to the 
POST-PRO module. 
Recent applications of the NOSA-ITACA code are described in [43]-[47]. In 
particular, comparative dynamic analyses of masonry towers conducted via the 
NOSA-ITACA and MADY [48] codes are presented in [44], while [45], [46] and 
[47] provide descriptions of a preliminary study of the “Voltone” and the church of 
San Francesco in Lucca.  
 
2.2  The constitutive equation of masonry-like materials 
In order to model the structural behaviour of masonry constructions, we have 
adopted the constitutive equation of masonry-like materials described in [13]. 
Masonry is assumed to be a nonlinear hyperelastic material with zero tensile 
strength and finite compressive strength. Despite its simplicity, this constitutive 
equation enables modelling the most important aspects of the mechanical behaviour 
of masonry constructions, which are due to their different behaviour under tensile 
and compressive stresses. The masonry-like material is characterized by the Young’s 
modulus 0>E , Poisson’s ratio ν with 2/10 <≤ν  and a compressive strength, 

00 <σ .  
The masonry-like constitutive equation is described in the following. Let us denote 
by Sym the vector space of symmetric tensors with the inner product 

)(ABBA tr=⋅ , Sym∈BA,  and tr the trace. Let −Sym  and +Sym  be the cones of 
Sym constituted by the negative and positive semidefinite tensors, respectively. We 
assume that the infinitesimal strain Sym∈E  is the sum of an elastic part Syme ∈E  

and two mutually orthogonal inelastic parts +∈ SymfE  and −∈ SymcE , 
respectively called fracture strain and crushing strain, 
 

cfe EEEE ++= , 0=⋅ cf EE ,             (1) 
 
and that the Cauchy stress T depends linearly and isotropically on eE ,  
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Lastly, we assume that T, fE  and cE  satisfy the conditions 
 

−∈ SymT ,    +∈− SymIT 0σ ,              (3) 
 
and 
 

0)( 0 =⋅−=⋅ cf EITTE σ ,               (4) 
 
with Sym∈I  the identity tensor, meaning that the material does not dissipate energy 
while crushing and cracking. For 0σ  tending towards ∞−  the constitutive equation 
(1)-(4) conforms to the more classical equation of masonry-like materials with 
infinite compressive strength dealt with in [34] and [35].  
The stress tensor T satisfying the constitutive equation (1)-(4) can be expressed as a 
nonlinear function of the total strain E, )(ˆ ETT =  by using the coaxiality of E, T, 

fE  and cE . Both T̂  and its derivative )(ˆ ETED  with respect to E, necessary to 
build the tangent stiffness matrix, have been explicitly calculated in [13] for three- 
and two-dimensional cases.  
Here we recall how this constitutive equation can be applied to the study of masonry 
shell structures such as vaults, domes, arches etc, by using thick shell elements [49] 
based on Mindlin plate theory [50].  
Formulation of the element, a four-node quadrilateral with six degrees of freedom 
per node, is based on the following hypotheses: (i) displacements and strain are 
infinitesimal, (ii) the unit vector n orthogonal to the mean surface of the shell 
maintains its length after deformation.  
Now let η1 and η2 be an orthogonal coordinate system defined on the mean surface Σ 
of the element of thickness h shown in Figure 1, with ]2/,2/[ hh−∈ζ  as the 
coordinate in the normal direction n. We denote by g1 and g2 the unit tangent vectors 
to the η1 and η2 axis, respectively.  
The structure can be considered to be made up of the layers 
 

)}(  ,   , '{ pnnpnpp =Σ∈+==Σ ζζ ,   ]2/,2/[ hh−∈ζ ,      (5)  
 
and strain tensor E and stress tensor T are functions of p and ζ.  
We denote by jiijE gEg ⋅= , jiijT Tgg ⋅= ,32 ,1, =ji , the components of E and T 
with respect to the orthonormal basis { }321 ,, ggg , with ng =3 . Hypothesis (ii) 
implies that there are no changes in thickness, namely 033 =E , and the transverse 
shear strains 13E  and 23E  are thereby constant along the thickness.  
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Figure 1: Shell element. 
 
The displacements and rotations within the element are given by the relations 

i
i

iuu ∑
=

=
4

1
ϕ , i

i
iθθ ∑

=

=
4

1
ϕ , where iu  and iθ  are respectively the displacement vector 

and the rotation of the i-th node, and iϕ , i =1,. . . , 4 are bilinear shape functions. 
The vector of infinitesimal strains TEEEEE ),,, ,( 2313122211=ε  can be expressed as a 
function of the generalized displacements T) , , , , , , ,(~

44332211 θuθuθuθuu =  via the 
matrix B containing the derivatives of the shape functions iϕ , uBε ~ = . In particular, 
matrix B can be written as 
                                                       θζ BBB  += m ,           (6) 
where matrices mB  and θB  take into account the membrane strains and the 
curvature variations, respectively. The elemental tangent stiffness matrix is 

                                                         dA d  ˆ 
2/

2/

ζBTBK E
A

h

h

T
T D∫ ∫

−

= ,      (7) 

where A is the area of the element and T̂ED  is the derivative of the stress function 
T̂  with respect to strain. In view of (6), for TD ˆ

ED= , omitting simple calculations, 
relation (7) becomes 
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We denote by j
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=  for 2 ,1=i  are the normal force and bending moment (per 

unit length) at point p of the mean surface Σ. The ratios  
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are the eccentricities at Σ∈p  along gi, 2 ,1=i . Moreover, by considering the 
limited compressive strength 0σ  , we have [51] 
 

                 
0 0

1 1
2 2

i i
i

h N h Ne ( )
N N

   
− − ≤ ≤ −   

   
p ,      for each Σ∈p ,    (11) 

with 0 0N hσ= . 
 
3  Case study: the “Voltone” in Livorno, Italy 
 
The “Voltone” (i.e., the great vault) is a 220-meter long, tunnel-like masonry 
structure located beneath Piazza della Repubblica in Livorno (Figures 2, 3 and 4). It 
is constituted by a segmental vault, through which the “Fosso Reale” canal flows. 
The vault is set on two lateral walls and strengthened by buttresses placed at 
intervals of about 5.8 meters one from the other. 
 

 
Figure 2: Piazza della Repubblica square and the “Voltone”, northern side. 
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Figure 3: The “Voltone”, southern side. 
 

In order to realistically model the structural behaviour of this monument via a finite 
element code, the geometry, the mechanical properties of the constituent materials, 
and the characteristics of the soil and surrounding structures are needed. The 
permanent and accidental loads acting on the structure must moreover be assessed as 
well. To this end, some non-destructive tests were conducted (laser scan digital 
acquisition and georadar scan of the surface of the tunnel and overlying square), and 
four vertical core samples extracted, two from the wall and surrounding soil, and 
two from the vault (at the crown and haunch), with the aim of accurately measuring 
the thickness of the vault and walls and determining the stratigraphy and mechanical 
properties of their constituent materials. In addition, two horizontal core samples 
were extracted from the lateral walls, starting from the intrados. The results of these 
tests were then supplemented by data gathered from historical and archaeological 
reports [52]. The information collected allowed us to build a three-dimensional finite 
element model (Figures 5 and 6), which has been used to verify the static conditions 
of the structure. The model was built by collecting 43228 thick shell and beam 
elements (elements 9 and 10 of the NOSA-ITACA library [53]) and 45379 nodes; 
the connections between the vault and the lateral wall elements were guaranteed by 
multipoint constraints able to model the geometrical misalignment between the vault 
and the wall, and specified by expressly developed user routines [53]. 
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Figure 4: Map of Piazza della Repubblica square. 

 
The vault, made of lime mortar and bricks, is about 0.41÷0.43 m thick, with constant 
thickness along the section and length of the vault, except for the tunnel’s ends (in 
correspondence to the roadways, see Figure 4), where the thickness increases to 
about 0.7 m. The vault’s structure, which is segmental (quite ‘lowered’ with respect 
to a semicircle), spans 12.4 m and has a rise of about 1.65 m. 
The lateral walls, made up by external layers of a local chalky stone and an inner 
cohesive mortar core layer, are variable in height above the surface of the canal, 
decreasing from 5.27 m to 2.65 m. The walls’ maximum overall height is 9.3 m with 
a thickness of about 2.3 m. According to [52], the walls have been strengthened by 
some buttresses, whose thickness has been set to 1.6 m. Table 1 lists the mechanical 
properties chosen for each structural element, as deduced by laboratory tests on the 
material extracted and according to [54], [55]. The weight of the structure has been 
calculated assuming 1800 daN/m3 for the vault and 2000 daN/m3 for the lateral 
walls with buttresses. 
 



11 

Element Young  
modulus 

E 
[daN/m2] 

Shear 
strength τc 
[daN/m2] 

Compressive 
strength |σc| 

[daN/m2] 

Partial factor 
for the 

material 
γm 

Design 
compressive 
strength |σ0| 

[daN/m2] 
Vault 1.5x108 17100 720000 3.0 240000 
Lateral 
walls 

1.23x108 9700 562500 3.0 187500 

Buttresses 1.23x108 9700 562500 3.0 187500 
Table 1- Mechanical properties of the model’s structural elements 

 
A number of relevant scientific papers addressing the structural behaviour of 
masonry bridges have been published in the international literature. The fundamental 
role played by the complex interactions between masonry and soil on the load 
capacity of such structures has been generally recognized. In particular, as shown in 
[5] and [20]-[24], the infill contributes significantly to the statics of masonry 
bridges, both by distributing the concentrated vertical loads induced by traffic and 
by restraining the horizontal displacements of the structure. In [20]-[22] the authors 
take these effects into account by directly modelling the soil via finite elements and 
interface elements at the juncture with the masonry structure. In [5], [23], [24] the 
infill is modelled via unilateral constraints able to develop a lateral reaction 
equivalent to the passive lateral earth pressure.  
In the formulated model, the dispersion effect of the load through the fill has been 
taken into account by introducing an internal friction angle Φ = 31°, while, due to 
the fact that the vault is segmental, the retaining effect of the soil surrounding the 
structure has been applied on the lateral walls only.  
The permanent and accidental loads have been applied incrementally. With regard to 
the lateral earth pressure acting on the structure, an equivalent horizontal load has 
been considered as acting on the lateral walls and linearly variable along their height 
following classical Rankine theory. The coefficient k0 [56] of the at rest lateral earth 
pressure has been considered for permanent loads, while for accidental loads, two 
limit situations have instead been considered: the first (Case 1) in which the lateral 
earth pressure values are maintained constant and equal to those calculated for 
permanent loads; and the second (Case 2) in which the lateral loads are increased 
incrementally together with the accidental loads until a lateral thrust value is attained 
corresponding to a coefficient of about 0.3 kp, where kp is the passive earth pressure 
coefficient given by Rankine limit theory [56], [57]. This reduced value is often 
employed in the literature [5] and seems to be reasonable, considering that the total 
value of the passive earth pressure coefficient kp is activated only by very large 
deformations of the masonry-soil system. For an internal friction angle Φ = 31°, and 
null cohesion, we have k0 = 1-sinΦ = 0.485, kp = tg2(45°+Φ/2) = 3.11.  
With regard to accidental loads, their values were calculated in such a way as to 
match the structure’s usage class according to Italian regulations [54], [55]. More 
precisely, under permanent loads, such as the weight of the structure and filling 
material and the earth pressure acting on the walls, two different types of accidental 
loads were considered: a load modelling the presence of a dense crowd of people (5 
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kN/m2) in the central region of the square, and a traffic load for category II bridges 
at the square’s ends, where roadways are located (Figures 7 and 8). According to 
[54], the traffic load is constituted by a distributed load and a set of concentrated 
loads applied on conventional lanes, as shown in Figure 8. The above loads were 
applied to the structure in accordance with the load combinations for ultimate limit 
states prescribed by Italian regulations [54], [55]. In order to simulate a live load, 
two different positions were considered along the vault’s span to model an overload 
at the vault’s crown and at its haunches.  
The analyses have enabled calculating the stress, fracture and crushing strain fields 
and assessing the structure’s safety (checks are being carried out in light of current 
Italian Regulations [54], [55]). The results are reported also in terms of line of thrust 
(Figures 9 and 10) through a diagram mapping function ( )ie p  defined in (10) on a 
given transverse section of the structure. Indeed, a line of thrust that is well 
contained within the thickness of the structure is an indication of static safety [4], 
[13], as also expressed by inequality (11). 
Other safety checks aimed at studying the structure’s behaviour at its ultimate limit 
states were easily implemented and tested in the NOSA-ITACA code. They are 
based on the partial factor method [54], formulated for checking the bending 
behaviour of the structure via the inequality 

                                                                1≤i

iRd

M
M

,          (12) 

where iM  is the bending moment per unit length defined in Section 2, and RdM  is 
the corresponding ultimate limit moment per unit length (i.e. the maximum value of 
the bending moment that can be attained in the section), given, for a rectangular 
section, by the expression 

                                            2

0
1

2
σ σ

σ
  

= −     

im im
iRdM h ,        (13) 

where imσ is the mean value acting in the cross section due to the axial force iN  and 
σ0 is the design compressive strength specified in Table 1. 
Checks on the shear strength were based on the expression  

                                                              1≤ij

ivd

T
f

,           (14) 

where ivdf  is the limit tangential stress on the section of normal vector ig , (see 
Figure 6, with 3 =g n ), as evaluated by the expression  
                                                ( 0.4 ) / ,τ σ γ= + ⋅ivd c im mf .        (15) 
where τ c  is the shear strength specified in Table 1. 
Figures 9 and 10 show the line of thrust for the load at the haunches and crown, 
respectively, for a transverse section at the southern end of the tunnel, where the 
structures reach the maximum lateral wall height. The line of thrust for permanent 
loads is shown in red, while the different accidental loads scenarios are represented 
by the green curve for Case 1, and the blue one for Case 2. In both figures, moving 



13 

from Case 1 to Case 2, the effects of the increased values of the lateral earth pressure 
are evident: the lateral wall eccentricity in Case 1 reaches the limit value expressed 
by (11). In Case 2 the eccentricity values tend to diminish along the walls, changing 
sign near the foundations. The presence of the filling, in terms of weight increase 
and concentrated loads distribution, helps the vault to contain the effects of the 
traffic loads. The eccentricity reaches its limit values in the vault under the 
concentrated loads and at the haunches. All Figures from 11 to 22 are relative to the 
traffic loads on the vault crown. In particular, Figures 11 to 14 show the vertical 
stresses at the intrados and extrados of the lateral walls plotted for Cases 1 and 2. 
The retaining effects of the lateral earth pressure are even more evident. Figures 15 
and 16 show the fracture strains at the intrados of the tunnel for Cases 1 and 2, 

respectively. Figures 17 to 22 instead show ratios i

iRd

M
M

and ij

ivd

T
f

along the tunnel 

and in the buttresses for Cases 1 and 2. It is noteworthy that, while relation (12) is 
well satisfied along the entire structure, the shear checks (14) are not satisfied, and 
in both cases the tangential stresses reach very high values at the vault haunches, at 
the base of the lateral walls and in the buttresses. This situation, though limited to 
small portions of the structure and determined in part by the very low values of the 
shear strength specified by Italian Regulations, nonetheless requires monitoring. In 
particular, further tests should be planned to better define the geometry and 
mechanical characteristics of the buttresses, whose contribution is essential to the 
tunnel’s static equilibrium. Moreover, in consideration of the high traffic volumes 
characterising “Piazza della Repubblica” square, structural monitoring of the traffic-
induced vibrations is also highly advisable. 
 

 

 
Figure 5: The finite element model built via the NOSA-ITACA code: overall view 

and detail (right). 
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Figure 6: Definition of the local axes for the vault, walls and buttresses. 

 
 

     
Figure 7: Map of the conventional lanes over the extrados of the tunnel: lane 1 in 

red, lane 2 in green, lane 3 in violet, other lanes in yellow. 
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00
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3.

00
 m

Qik/2

Qik/2
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L1 240 7.20 

L2 200 2.50 

L3 100 2.50 

L4 0.00 2.50 

Figure 8: Scheme of the conventional traffic loads as defined in [54]. 

 

 
Figure 9: Southern side of the “Voltone”: lines of thrust for permanent loads (red 

line) and traffic loads at the haunches for Case 1 (green) and Case 2 (blue). 
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Figure 10: Southern side of the “Voltone”: lines of thrust for permanent loads (red 

line) and traffic loads at the arch crown for Case 1 (green) and Case 2 (blue). 

 

Figure 11: Case 1. Stresses 11T  at the vault extrados and 22T  at the extrados of the 
lateral walls. 
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Figure 12: Case 2. Stresses 11T  at the vault extrados and 22T  at the extrados of the 

lateral walls. 

 
Figure 13: Case 1. Stresses 11T  at the vault intrados and 22T  at the intrados of the 

lateral walls.  
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Figure 14: Case 2. Stresses 11T  at the vault intrados and 22T  at the intrados of the 

lateral walls. 

Figure 15: Case 1. Fracture strain 11
fE at the vault intrados and 22

fE  at the intrados of 
the lateral walls. 
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Figure 16: Case 2. Fracture strain 11
fE at the vault intrados and 22

fE  at the intrados of 
the lateral walls. 

  

Figure 17: Case 1. Ratios 1

1Rd

M
M

 in the vault and 2

2Rd

M
M

in the lateral walls. 
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Figure 18: Case 2. Ratios 1

1Rd

M
M

 in the vault and 2

2Rd

M
M

in the lateral walls. 

 

Figure 19: Case 1. Ratios 13

1vd

T
f

 in the vault and 23

2vd

T
f

in the lateral walls. 
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Figure 20: Case 2. Ratios 13

1vd

T
f

 in the vault and 23

2vd

T
f

in the lateral walls. 

 

Figure 21: Case 1. Ratio 12

2vd

T
f

 in the buttresses. 
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Figure 22: Case 2. Ratio 12

2vd

T
f

 in the buttresses. 

4  Conclusions 
 
The availability of ever-more sophisticated constitutive models for masonry 
materials, supported by increasingly powerful hardware and numerical techniques, 
has enabled quite realistic modelling of the mechanical behaviour of masonry 
constructions, whose response to tension is fundamentally different from that to 
compression. The constitutive equation adopted in this paper models masonry as a 
nonlinear elastic material with zero tensile strength and bounded compressive 
strength. This constitutive equation, which is known as the masonry-like (or no-
tension) model, has been implemented in the finite element code NOSA-ITACA, 
which has been successfully applied to the static analysis of several historical 
masonry buildings.  
Herein we have reported some results regarding application of the NOSA-ITACA 
code to the “Voltone”, a large vaulted masonry structure located beneath the “Piazza 
della Repubblica” square in Livorno, Italy. Preliminary results on the static safety of 
the “Voltone” have been presented in [45], on which the present paper is based.  
A structural analysis of the vault has been performed and the effects of the traffic 
loads analysed in light of current Italian regulations. These analyses have enabled 
calculating the stress and crack fields in the structure, also in terms of generalized 
stresses per unit length, and then assessing the structure’s safety.  
This case study, conducted in collaboration with the Municipality of Livorno, 
provides an opportunity to validate both the models proposed and the calculation 
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tool developed and highlights the key role played by numerical tools in assessing the 
safety of historical masonry constructions. 
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