
Predicting the Topic of Your Next Query for
Just-In-Time IR

Seyed Ali Bahrainian1, Fattane Zarrinkalam2, Ida Mele3, and Fabio Crestani1

1 Faculty of Informatics, University of Lugano (USI), Switzerland,
2 Laboratory for Systems, Software and Semantics (LS3), Ryerson University,

3 ISTI-CNR, Pisa, Italy
{bahres, fabio.cerstani}@usi.ch, fzarrinkalam@ryerson.ca, ida.mele@isti.cnr.it

Abstract. Proactive search technologies aim at modeling the users’ in-
formation seeking behaviors for a just-in-time information retrieval (JI-
TIR) and to address the information needs of users even before they
ask. Modern virtual personal assistants, such as Microsoft Cortana and
Google Now, are moving towards utilizing various signals from users’
search history to model the users and to identify their short-term as
well as long-term future searches. As a result, they are able to recom-
mend relevant pieces of information to the users at just the right time
and even before they explicitly ask (e.g., before submitting a query). In
this paper, we propose a novel neural model for JITIR which tracks the
users’ search behavior over time in order to anticipate the future search
topics. Such technology can be employed as part of a personal assistant
for enabling the proactive retrieval of information. Our experimental re-
sults on real-world data from a commercial search engine indicate that
our model outperforms several important baselines in terms of predictive
power, measuring those topics that will be of interest in the near-future.
Moreover, our proposed model is capable of not only predicting the near-
future topics of interest but also predicting an approximate time of the
day when a user would be interested in a given search topic.

Keywords: Topic Prediction, Topic Modeling, Just-In-Time Informa-
tion Retrieval, Neural IR

1 Introduction

With the rapid proliferation of web search as the primary mean for addressing
the users’ information needs, search engines are becoming more sophisticated
with the purpose of improving the user experience and of assisting users in their
search tasks more effectively. As an example, with the increasing and ubiquitous
usage of mobile devices, it has become more important for search engines to offer
also Just-In-Time Information Retrieval (JITIR) [18] experiences. This means
retrieving the right information at just the right time [10] to save users from the
hassle of typing queries on mobile devices [2, 3].

The notion of “personalized search” [25] has shown to be effective in improv-
ing the ranking of search results. However, such personalization comes at the

2 Seyed Ali Bahrainian, Fattane Zarrinkalam, Ida Mele, and Fabio Crestani

cost of lower speed, which in some cases might even cause the retrieval of the
results only after the user search session has ended. Moreover, possible discovery
of newly available content related to a previous search is another application of
JITIR models for presenting results to a user at a future time.

As a result, researchers have focused on improving search personalization
with respect to not only the retrieved content but also the user’s habits (e.g.,
when and what information the users consume). While such models can bene-
fit desktop users in better addressing their information needs at just the right
time, they are essential on mobile platforms. Indeed, Microsoft Cortana and
Google Now aim at offering a proactive experience to the users showing the right
information before they ask [24].

As pointed out by Agichtein et al. [1], knowing the user’s information needs
at a particular time of the day allows to improve the search results ranking.
For example, the search results can be personalized based on the specific search
task (of a given user at a given time) rather than based on the more general
information of user interests which have been inferred by the entire user’s profile.
This would also support users in resuming unfinished search tasks (e.g., if a
search is likely to be continued one can save the results already found for a
faster or more convenient access once the task is resumed).

Figure 1(a) shows the behavior of a randomly selected user from our dataset
in issuing search queries related to a topic about movies over differnet week
days. For example, the user might have searched the word “imdb” along with
the title of a movie. As we can see, the user exhibits a higher tendency to search
for movies in the afternoons and evenings as well as on Saturdays. Hence, we
can infer that the user is interested in watching movies on Saturday evenings
and thus it is likely that her queries are related to movies. Moreover, as shown in
Figure 1(b) a user changes search behavior over time. To address such changes
in search behavior we propose a dynamic memory system.

(a) (b)

Fig. 1. (a) The number of queries about movies submitted by a randomly selected
user. (b) Evolution of user-search patterns on different Saturdays.

Predicting the Topic of Your Next Query for Just-In-Time IR 3

Addressing the near-future information needs of the users has been also stud-
ied in the context of personal assistants, such as Google Now, Microsoft Cortana,
or Apple’s Siri and in the context of memory augmentation in meetings [6]. These
systems offer proactive experiences [22] that aim to recommend useful informa-
tion to a user at just the right time.

In this paper, we focus on predicting the topics of the users’ future search
queries. Specifically, we propose a model which predicts the topic of the search
queries submitted by the users in the next 24 hours. Moreover, our model lever-
ages the user’s behavior patterns over time in order to predict the topic of the
user’s query on a specific weekday (e.g., Mondays, Tuesdays) and at an approx-
imate time of the day. The main contributions of this paper are:

C1: we propose a time-series model based on neural networks to predict the
topic of near-future queries of users.

C2: our model is equipped with a dynamic memory learning users’ behavior
over time. This memory evolves over time when the search patterns change. We
demonstrate that our dynamic memory architecture is beneficial as it increases
the prediction performance. Further, we believe that this model could be useful
in other domains that involve temporal data.

The organization of this paper is as follows: Section 2 presents the related
work, Section 3 describes our research goals and Section 4 presents our model for
predicting the topics of the users future search queries. In Section 5, we evaluate
our method against the baseline methods based on their predictive performance.
Finally, Section 6 concludes this paper and gives insight into future work.

2 Related Work

2.1 Just-In-Time Information Retrieval

Addressing the users’ near-future information needs has been studied in the
context of personal assistants [4] such as Google Now, Microsoft Cortana, or
Apple’s Siri. These systems offer proactive experiences and aim to recommend
the right information at just the right time [22,24]. As an example, Sun et al. [24]
proposed an approach for tracking the context and intent of a user leveraging
smartphone data [5] in order to discover complex co-occurring and sequential
correlations between different signals. Then, they utilized the discovered patterns
to predict the users’ intents and to address their information needs.

In the context of proactive search and recommendation, Song and Guo [23]
aimed at predicting task repetition for offering a proactive search experience.
They focused on predicting when and what type of tasks will be repeated by
the users in the future. Their model was based on time series and classification.
They tested the effectiveness of their approach for future query and future app
predictions. Our work differs from their work since we take a collaborative time-
series approach for predicting the topics of future user queries. Moreover, our
goal is to predict the topic of one’s next query and not only predicting the
repetition of a search task.

4 Seyed Ali Bahrainian, Fattane Zarrinkalam, Ida Mele, and Fabio Crestani

Agichtein et al. [1] tried to predict the continuation of a previously started
task within the next few days. Similarly to [23], they defined the prediction of
the continuation of a task as a classification problem. They used an extensive
set of features for training the classifiers. Such features include query topics,
level of user engagement and focus, user profile features such as total number
of unique topics in prior history, and repeating behavior among others. Our
work differs from this work as we do not simply try to predict the search task
continuation in the future but we also aim at predicting the day of the week and
the approximate time of the day when a query topic will occur. Moreover, unlike
their model which is a classifier based on a number of hand-engineered features,
our model has a time-series structure and it evolves over time by learning from
the data and correcting itself over time.

Furthermore, another interesting but different work consists in the identifi-
cation of recurrent event queries and was presented by Zhang et al. [28]. In this
work, the authors aimed at identifying search queries that occur at regular and
predictable time intervals. To accomplish this, they train various classifiers such
as Support Vector Machines and Näıve Bayes, on a number of proposed features
such as query frequency, click information, and auto correlation. They conclude
that a combination of all features leads to the highest performance.

2.2 Topic models and Word Embeddings

Topic models are defined as hierarchical Bayesian models of discrete data, where
each topic is a set of words, drawn from a fixed vocabulary, which together repre-
sent a high level concept [26]. According to this definition, Blei et al. introduced
Latent Dirichlet Allocation (LDA) [8]. In our work, we use LDA for discovering
the topics of the users’ search queries. In particular, as we will see in Section 4,
we created a collection of documents consisting of some of the query results,
then we run LDA to extract the topics of the various search queries.

Another form of word vectors is represented by word embeddings which map
semantically related words to nearby positions in a vector space. Topic modeling
approach is also unsupervised. Some well-known approaches are the word2vec
model [15] and the Glove model [17]. As explained in Section 4, we needed to
use word embeddings to model the dependencies between different attributes.

3 Research Goals

We can summarize the goals of our work as follows: (1) predicting the topics of
future search queries of a user, and (2) predicting the day of the week and the
approximate time of the day when the topic will be queried by a user.

Given the search history of each user u in the last n consecutive time slices,
as well as a set of corresponding query topics Z, we aim to predict the topic
z ∈ Z of the query of user u in the (n+ 1)th time slice.

For achieving this, we first model the search tasks as topics using LDA. Then,
leveraging a time-series model we discover the latent patterns in search tasks and

Predicting the Topic of Your Next Query for Just-In-Time IR 5

predict the continuation of a search task in the near-future. In other words, we
aim at predicting the topics of the user’s future queries. Such technology will en-
able the proactive retrieval of relevant information in a JITIR setting. However,
estimating the time of the day when a user would access a particular content
is the second piece of the puzzle in order to recommend content more precisely
and more effectively. Thus, our second goal consists in correctly predicting when
(day and time of the day) the users will consume what content (topic) knowing
the users’ habits in requesting the various topics at the different times.

4 Query Topic Prediction Model

We now present our novel time-series evolutionary model for predicting the topic
of a user’s near-future queries. The model is based on the notion of reinforcement
learning so that it adapts itself to the data over time and corrects itself. We
formally define our model as a function f which takes as input the search history
of users and predicts which topics occur in the near future.

The model consists of a dynamic memory in the form of a word embedding
connected with a Bi-directional Long Short Term Memory (BiLSTM) [21] used
to capture the behaviour of a user over time. The dynamic memory implements
two different effects of persistence and recency. At each point in time, based on
the possible changes in the input data, it updates the word vectors to provide
as input to the BiLSTM network.

In the following, we first describe the dynamic memory system in Sections 4.1
and 4.2. Then, we present the BiLSTM network in Section 4.3.

4.1 A Dynamic Memory based on Word Embeddings

Our intuition behind the design of such memory model is that people often show
similar behavior over time (i.e., persistence) but they also have a tendency to
explore new things (i.e., recency). As a result, over a timeline people may show
very different behaviors and the model should be capable of capturing them
in order to accurately anticipate the users’ future behaviors [27]. Therefore, we
believe that dividing the temporal input data into a number of time slices and
weighting them based on identified patterns in the data is important.

The dynamic memory is based on the word2vec word embeddings. Through-
out this paper whenever we use the term word2vec, we refer to a Skip-Gram with
Negative Sampling (SGNS) word embedding model. Levy et al. [14] showed that
the SGNS method is implicitly factorizing a word-context matrix, whose cells
are the Pointwise Mutual Information (PMI) of the respective word and context
pairs, shifted by a global constant. They further elaborate that word2vec decom-
poses the data very similar to Singular Value Decomposition (SVD) and that
under certain conditions an SVD can achieve solutions very similar to SGNS
when computing word similarity. Apart from scalability and speed, SGNS is ca-
pable of removing bias towards rare words using negative sampling. Other than

6 Seyed Ali Bahrainian, Fattane Zarrinkalam, Ida Mele, and Fabio Crestani

the few differences, at the concept level both SVD and SGNS are very similar.
They both build a word-context matrix for finding similarities between words.

Based on these principles we propose a novel and effective method for in-
tegrating multiple word2vec memory components where each is trained with
data from a different time slice of the input data. Let mt ∈ M where mt is a
word2vec memory trained on data form time slice t and M is a vector of all
word2vec models. Instead of using only one single memory to capture the global
patterns in the dataset, we propose to use a different word vector from model
mt to represent time slice t where t ∈ 0, 1, . . . , n. Then, we integrate all these
word vectors into one final vector. Therefore, a temporal dataset of web search
queries can be divided into n different time slices, and one word2vec memory
mt is trained for each time slice. We assume that all the vectors have the same
embedding dimensions, so given two vectors mt and mt+1 we can combine them
using the orthogonal Procrustes matrix approximation. Let W t be the matrix
of word embeddings from mt which is trained on data at the time slice t. We
align across mt and mt+1 which are derived from consecutive time slices while
preserving the cosine similarities by optimizing:

argminQTQ=I ||W tQ−W t+1|| (1)

Matrix Q is described in the following. We note that this process only uses
orthogonal transformations like rotations and reflections. We have solved this
optimization problem by applying SVD [20].
We can summarize the steps of the approach as follows:

1. The vocabulary of the resulting word vectors from the two time slices are
intersected and the ones in common are kept. We note that due to our
definition of an active user as well as the way we map queries to unique user,
topic and time identifiers, vocabulary remains the same over all time slices
(see Section 5.1).

2. We compute the dot product of the two matrices (for doing so, we first
transpose one of the matrices).

3. The SVD of the matrix resulting from the dot product is computed. The re-
sult consists of three factorized matrices commonly known as U , the diagonal
matrix S, and the matrix V .

4. We compute the dot product of U (left singular matrix) and V (right singular
matrix) to have as resulting matrix Q. Since S contains information on the
strength of concepts representing word-dimension relations which are not
needed here as they are not modeled in word2vec, we discard the matrix S.
The existence of the S matrix is also one important difference between SVD
and word2vec, which word2vec does not compute.

5. Finally, we compute the dot product of Q and the embedding matrix W t. For
further detailed information we refer to [20] where the orthogonal Procrustes
approximation using SVD is described.

We repeat the process of model alignment for all n word2vec models spread over
the entire timeline.

Predicting the Topic of Your Next Query for Just-In-Time IR 7

4.2 Modifying the Dynamic Memory using Recency and Persistence
Effects

Now that we have explained the process of combining different word2vec models,
in this section we explain how our proposed model takes into account the recency
and persistence of the searching behaviors of users over time. Before combining
W t and W t+1 which are word-dimension matrices from two word2vec models (as
described in Section 4.1), we modify each matrix based on the following effects:
Recency Effect. It modifies the strength of word embeddings by assigning
higher weights to the word vectors observed in the most recent time slice. We
formally define the recency effect as follows: given the query topics of the last
n consecutive time slices of a sequential dataset, we would like to predict which
query topics continue in the (n + 1)th time slice. By assuming a vocabulary v
of all the words occurring in the first n time slices, we construct a word vector
containing the probability scores corresponding to each word in v. The assigned
probability scores are higher for the words appearing in the most recent time
slices. After modifying the word vectors, we then perform alignment of models
as described in Section 4.1. According to the recency effect presented in the
following equation we modify the word embedding matrices W ts by PRec =
N∑

n=1

∑
wi∈W t P (wi)∗2n, where n is the time slice number, P indicates probability,

and wi is a word from the word embedding matrix W t. The 2n is the rate with
which recent word vectors are assigned higher weights. The resulting constructed
word vector is an average representation of the probability of all the words
present in all the n time slices.

Therefore, this effect assigns higher weight to a word which has occurred in
the most recent time slice of a sequential corpus. We refer to the word vectors
which are computed by the recency effect as the recency matrix.
Persistence Effect. Given the word embeddings of the last n consecutive time
slices, we would like to predict which query topic continues in the (n+ 1)th time
slice. Given a vocabulary v of all the words occurring in the first n time slices, we
construct a word vector containing the probability scores corresponding to each
word in v. The assigned probability scores are higher for the words which have
persisted over time. We compute the updated probability of each word according

to the persistence effect using PPers =
N∑

n=1

∑
wi∈W t P (wi) ∗ 2−n, where n is the

time slice number, P indicates probability, and wi is a word from W t. The
2−n is the rate with which the higher weights are assigned to persistent words.
Therefore, the more persistent words (i.e., persisting in occurrence) have higher
weights, and we refer to the word vector computed with the persistent effect as
the persistence vector.
Combining Recency and Persistence: Recency and persistence scores are
combined in a linear interpolation to modify the original word embedding matrix.
The linear interpolation at the time t is defined as:

EmbeddingMatrixw,t = wP,t ∗ ScorePers. + wR,t ∗ ScoreRec. (2)

8 Seyed Ali Bahrainian, Fattane Zarrinkalam, Ida Mele, and Fabio Crestani

where ScorePers. and ScoreRec. are computed by the persistence and the recency
effects, respectively. Furthermore, wP,t and wR,t are persistence weights and
recency weights computed at each time slice. They have the following relation
and are learned from the data: wP,t + wR,t = 1. This means that at each time
slice t each of the two effects corresponds to a weight. The weights can be equal
(i.e. when the effects have the same intensity) or different, but their sum would
be always 1.

The weight wR,t is then computed as square root of the sum of the difference
in the number of occurrences of each query topic compared with the previous
time slice divided by the number of all the queries at the same time slice. Sub-
sequently, wP,t is computed based on wP,t +wR,t = 1. As a result, the dynamic
memory evolves over time and updates itself proportionally to the rate of the
changes in the data.

Finally, we map each query to a topic using LDA. Further details of this
process are explained in Section 5.1. We specify each query with the ID of the
user who submitted it along with the given week day and time bucket (i.e. which
is an approximate time of day) of the query. Then, we train n word2vec SGNS
models on this data in order to train the dynamic memory. For word2vec, we
use embedding size of 300, without discarding any of the input words. The result
will be n word embedding matrices derived from n time slices which are aligned
and combined into one word embedding matrix which is given as input to the
BiLSTM.

BiLSTM 2

BiLSTM 1

BiLSTM 2

BiLSTM 1

BiLSTM 2

BiLSTM 1

BiLSTM 2

BiLSTM 1

512 units

512 units

Softmax

word
embedding

x1 x2 x3 x4

Label

Fig. 2. The architecture of our proposed model. xi stands for input at time step i

4.3 Bi-directional Long Short Term Memory (BiLSTM)

We train the BiLSTM network using the word embeddings of the dynamic mem-
ory. We use the BiLSTM neural network as function for generating a sequence

Predicting the Topic of Your Next Query for Just-In-Time IR 9

of events given an input query. In other words, we aim at modeling the sequence
of observations (i.e., the searches about certain topics) in a time-series fashion.
Thus, given the user ID, the future week day and the time bucket, the model
will predict the topics of the near-future queries.

As shown in Figure 2, the architecture of our model consists of word embed-
dings from the dynamic memory provided as input to the BiLSTM network. We
model each query in 4 recurrent time steps in order to predict the topic of near-
future queries along with their weekday, and approximate time of the day (i.e.,
we refer to it as the time bucket in dataset description). On the other hand,
when we want to only predict the near-future topics without specifying their
approximate time of the day, we train the same network with 2 recurrent time
steps (i.e., one for the user ID and the other for the topic). In both cases we set
number of word2vec models to six (n=6) to model almost every two weeks with
one word2vec model. Furthermore, our model includes two fully connected BiL-
STM layers, with each layer containing 512 cells or units. We applied a SoftMax
layer to the final output from the BiLSTM networks.

Our intuition behind this architecture is to first find a collaborative general-
ization of patterns of users in issuing queries about certain topics at particular
points in time by using the dynamic memory based on the word2vec model.
Then, using the BiLSTM neural network we leverage the local dependencies be-
tween certain behaviors in a temporal manner. The BiLSTM network serves as a
time-series model that determines the occurrence of a future event (i.e., a future
query’s topic) by modeling the sequences of events (i.e., sequences of topics).

5 Experimental Setup

5.1 Dataset Description

In the experiments, we use the publicly available AOL query log [16] which has
been used in other research works on query caching and search result person-
alization. It consists of about 36M query records and spans a period of three
months (from March to May 2006). Each record consists of the anonymous ID
of the user, query keywords, timestamp, and rank and URL of the clicked result.

Our goal is to predict the topics of the future queries issues by a user, hence
we selected those users who have a high number of queries. Formally, we define
active users those who have searched at least one query every week and over
a span of three months have issued at least 1, 000 queries. From this set which
contains 1, 197 active users, we randomly selected 500 users to train and test
our proposed model as well as the baselines. The query log made of the queries
issued by these 500 users consists of 755, 966 queries.
Training and testing data. Our experiments aim at predicting the topics of
the future queries searched by a user, so we sorted the query log by time and
split it into training and test sets. The training set is used for learning the topics
of interests of a user, while the test set to check the prediction performance. For
our experiments, the test set consists of the queries issued in the last 24 hours
(which results of 10, 848 queries) while the rest of the queries is used for training.

10 Seyed Ali Bahrainian, Fattane Zarrinkalam, Ida Mele, and Fabio Crestani

Modeling search tasks as topics. In order to model the topics of the search
tasks we used the Latent Dirichlet Allocation (LDA) topic model [8].

Since the search queries are short and lack context, we decided to enrich
them with the content of clicked pages. More in detail, given the queries from
the training set and the URL of their clicked results, we gathered the content of
351, 301 unique web pages. We treat each query and the text of its corresponding
clicked result as a document, and we run LDA over the collection made of these
documents. LDA returns K list of keywords representing the latent topics dis-
cussed in the collection. Since the number of topics (K) is an unknown variable
in the LDA model, it is important to estimate it. For this purpose, similar to the
method proposed in [7, 9], we went through a model selection process. It con-
sists in keeping the LDA parameters (commonly known as α and η) fixed, while
assigning several values to K and run the LDA model each time. We picked
the model that minimize logP (W |K), where W contains all the words in the
vocabulary. This process is repeated until we have an optimal number of topics.
The training of each LDA model takes nearly a day, so we could only repeat it
for a limited number of K values. In particular, we trained the LDA model with
K equals to 50 up to 500 at steps of 50, and the optimal value was 150.
Labels for Predicting the approximate time. The search queries have
timestamps, so we could extract the day of the week and the time of the day
when they were issued. We divide the 24 hours into 8 time buckets of 3 hours
each. Each time bucket represents an approximate time of the day and we can
use this for predicting the approximate time of the day when a query topic will
appear. Hence, given a user, our ultimate purpose is to predict the right query
topic and when it will be requested (i.e., the week day and the time bucket).

5.2 Evaluation Metrics and Baselines

Evaluation Metrics. We performed a rigorous testing of our proposed method
and compared it against several baseline methods. For our evaluation, we used
the standard information retrieval evaluation metrics: precision, recall, and F1.
Baseline Methods. Since our proposed method is based on a collaborative
filtering principle, we chose as baselines the following top-performing techniques:

1. Probabilistic Matrix Factorization (PMF) is a model for collaborative
filtering that has achieved robust and strong results in rating prediction [19].

2. Non-negative Matrix Factorization (NMF) can analyze data with a
high number of attributes [13]. It reduces the dimensions of data by convert-
ing the original matrix into two matrices with non-negative values.

3. User-based K Nearest Neighbours (userKNN) is another popular
method which uses similarities among the users’ behaviours to recommend
items to users.

4. SVD++ is a collaborating filtering method, where previously seen patterns
are analyzed in order to establish connections between users and items [11].
The approach merges latent factor models that profile both the users and the
items with the neighborhood models that analyze the similarities between
the items or between the users.

Predicting the Topic of Your Next Query for Just-In-Time IR 11

5. TimeSVD++ is one of the most successful models for capturing the tempo-
ral dynamics and has shown strong results in various prediction and ranking
tasks which seek to model a generalized pattern over time [12]. The regular-
ization parameter and the factor size are selected using a grid search over
λ ∈ {100, . . . , 10−5} and k ∈ {20, 40, 80, 160}.

6. BiLSTM+w2v we also add as a baseline our own model with only one
word2vec model trained as input (i.e., see n=1 in Table 2).

5.3 Experimental Results

First experiment. The aim of our first experiment is predicting the topics of
the queries issued by a user in the next 24 hours. Table 1 reports the results of our
approach compared to the baselines. We observe that our method outperforms all
the baseline models in terms of predicting the topics of one’s queries in the future
24 hours with statistically significant improvement. We averaged the prediction
results over the 500 users of our sampled data. As a result of this experiment,
we could observe that our model is superior in predicting the topics of future
queries compared to the other collaborative-filtering baselines.

Our proposed model features incorporating some principles that we believe
have caused the superiority of our model. First, the dynamic memory not only
learns users’ search behavior but also considers the temporal dimension when
modeling data. Furthermore, our model uses the recency and persistence effects
and adjust itself to the data by measuring the behavior of the data and subse-
quently updating itself when needed. None of the baseline models, despite being
powerful models, can model such complexities.
Second experiment. In the second experiment, we would like to investigate
whether or not running and combining different word2vec models can improve
the performance compared to one trained word2vec model. In particular, we
divided our input data into chunks (e.g., weeks) and trained several word2vec
models over them. Then, we compared the performance of one word2vec model
trained over the whole timeline against the performances achieved with different
numbers of word2vec models. We started by only having one word2vec model
up to 12 models (one for each week of our dataset).

Table 1. A comparison of our proposed method against the baselines.

Precision Recall F1

PMF (%) 12.53 31.03 19.78

NMF (%) 13.65 35.11 21.23

UserKNN (%) 14.20 38.06 22.09

SVD++ (%) 12.60 30.43 20.20

TimeSVD++ (%) 28.46 14.62 20.00

BiLSTM+w2v (%) 34.28 36.04 35.12

Our Model (%) 48.19 38.44 42.77

Our Model+time prediction (%) 26.23 34.41 29.77

12 Seyed Ali Bahrainian, Fattane Zarrinkalam, Ida Mele, and Fabio Crestani

Table 2. A comparison of the prediction performance varying the number of word2vec
models in terms of F1 (n=1 means one model trained over the whole dataset, etc.).

n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10

24 hours prediction (%) 35.12 38.63 39.14 41.56 42.93 42.77 41.46 40.34 40.52 40.12

24 hours +
time-bucket prediction (%)

28.64 29.32 29.57 29.83 30.21 29.77 29.40 29.43 29.21 29.06

The results of this experiment are reported in Table 2 and show that training
the word2vec model over different time slices performs better than having only
one word2vec model trained over the entire dataset. Moreover, we could observe
that increasing the number of models allows to gain higher performance, how-
ever, after some point the performance plunges. We can conclude that training
several models is better than one, but the number of models should be chosen
depending on the application. We could observe that the best results can be
achieved training the models with roughly two weeks of data.

Our research goal was to design an intuitive time-series method for modeling
the user behavior, specifically regarding search queries. The broader vision and
strategy that we tried to incorporate into the model was that the users have
the tendency to repeat the behavior (e.g., searching about the same topic in a
sequence), but they also have consistent behaviors (e.g., searching for the same
topic every Saturday night). Hence, incorporating these two dimensions into
our model helped to improve the prediction performance. The concept behind
our model may also be used in a personal assistant environment for modeling
other types of data, tracking the user behavior over time and providing the
user with the right information just-in-time the user might need it. Envisaging
that a system can correctly predict the topic of your near-future query more
than 40% of times among all possible options (i.e., in this case 150 topics) while
also predicting the time bucket when you will show interest in that topic and
presenting relevant information or targeted ads to you even before you have
started searching on that topic is a very interesting result.

6 Conclusions

In this paper, we addressed the problem of predicting topics of future queries for
just-in-time IR. For this purpose, we proposed a novel method and compared it
against six baseline methods which have been extensively used in the literature
for temporal and non-temporal collaborative filtering. We showed through exper-
imental results that our method, generalizing the users’ behavior and modeling
the temporal recurrent patterns, outperforms all the baselines. The developed
method could be implemented as a part of a proactive search system that aids
people in their every day lives.

One interesting future work would be adapting our method to other domains.
For example, analyzing various data modalities gathered by current personal
assistant tools such as Microsoft Cortana could be an interesting direction.

Predicting the Topic of Your Next Query for Just-In-Time IR 13

References

1. E. Agichtein, R. W. White, S. T. Dumais, and P. N. Bennet. Search, interrupted:
Understanding and predicting search task continuation. In Proceedings of the 35th
International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, SIGIR ’12, pages 315–324, 2012.

2. M. Aliannejadi, M. Harvey, L. Costa, M. Pointon, and F. Crestani. Understanding
mobile search task relevance and user behaviour in context. CHIIR 2019, 2018.

3. M. Aliannejadi, H. Zamani, F. Crestani, and W. B. Croft. In situ and context-
aware target apps selection for unified mobile search. In Proceedings of the 27th
ACM International Conference on Information and Knowledge Management, pages
1383–1392, 2018.

4. S. A. Bahrainian and F. Crestani. Towards the next generation of personal as-
sistants: Systems that know when you forget. In Proceedings of the ACM SIGIR
International Conference on Theory of Information Retrieval, ICTIR ’17, pages
169–176, 2017.

5. S. A. Bahrainian and F. Crestani. Tracking smartphone app usage for time-aware
recommendation. In Digital Libraries: Data, Information, and Knowledge for Dig-
ital Lives, pages 161–172, 2017.

6. S. A. Bahrainian and F. Crestani. Augmentation of human memory: Anticipating
topics that continue in the next meeting. In Proceedings of the 2018 Conference
on Human Information Interaction & Retrieval, CHIIR ’18, pages 150–159, 2018.

7. S. A. Bahrainian, I. Mele, and F. Crestani. Predicting topics in scholarly papers.
pages 16–28, 2018.

8. D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. J. Mach.
Learn. Res., 3:993–1022, 2003.

9. T. L. Griffiths and M. Steyvers. Finding scientific topics. Proceedings of the
National academy of Sciences, 2004.

10. R. Guha, V. Gupta, V. Raghunathan, and R. Srikant. User modeling for a personal
assistant. In Proceedings of the Eighth ACM International Conference on Web
Search and Data Mining, WSDM ’15, pages 275–284, 2015.

11. Y. Koren. Factorization meets the neighborhood: a multifaceted collaborative
filtering model. In Proceedings of the 14th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 426–434, 2008.

12. Y. Koren. Collaborative filtering with temporal dynamics. In Proceedings of the
15th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’09, pages 447–456, 2009.

13. D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. In
Advances in neural information processing systems, pages 556–562, 2001.

14. O. Levy and Y. Goldberg. Neural word embedding as implicit matrix factorization.
In Advances in neural information processing systems, pages 2177–2185, 2014.

15. T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed repre-
sentations of words and phrases and their compositionality. In Advances in neural
information processing systems, pages 3111–3119, 2013.

16. G. Pass, A. Chowdhury, and C. Torgeson. A picture of search. In Proceedings of
the 1st International Conference on Scalable Information Systems (InfoScale ’06),
New York, NY, USA, 2006. ACM.

17. J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word
representation.

14 Seyed Ali Bahrainian, Fattane Zarrinkalam, Ida Mele, and Fabio Crestani

18. B. J. Rhodes. Just-in-time information retrieval. PhD thesis, Massachusetts In-
stitute of Technology, 2000.

19. R. Salakhutdinov and A. Mnih. Probabilistic matrix factorization. In Proceedings
of the 20th International Conference on Neural Information Processing Systems,
NIPS’07, pages 1257–1264, 2007.

20. P. H. Schönemann. A generalized solution of the orthogonal procrustes problem.
Psychometrika, 31(1):1–10, 1966.

21. M. Schuster and K. K. Paliwal. Bidirectional recurrent neural networks. IEEE
Transactions on Signal Processing, 45(11):2673–2681, 1997.

22. M. Shokouhi and Q. Guo. From queries to cards: Re-ranking proactive card rec-
ommendations based on reactive search history. In Proceedings of the 38th Inter-
national ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’15, pages 695–704, 2015.

23. Y. Song and Q. Guo. Query-less: Predicting task repetition for nextgen proac-
tive search and recommendation engines. In Proceedings of the 25th International
Conference on World Wide Web, WWW ’16, pages 543–553, 2016.

24. Y. Sun, N. J. Yuan, Y. Wang, X. Xie, K. McDonald, and R. Zhang. Contextual
intent tracking for personal assistants. In Proceedings of the 22Nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’16,
pages 273–282, 2016.

25. J. Teevan, S. T. Dumais, and E. Horvitz. Personalizing search via automated
analysis of interests and activities. In Proceedings of the 28th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR ’05, pages 449–456, 2005.

26. C. Wang, D. Blei, and D. Heckerman. Continuous time dynamic topic models.
Proc. of UAI, 2008.

27. F. Zarrinkalam, M. Kahani, and E. Bagheri. Mining user interests over active
topics on social networks. Information Processing and Management, 54:339–357,
03 2018.

28. R. Zhang, Y. Konda, A. Dong, P. Kolari, Y. Chang, and Z. Zheng. Learning
recurrent event queries for web search. In Proceedings of the 2010 Conference on
Empirical Methods in Natural Language Processing, EMNLP ’10, pages 1129–1139,
2010.

