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Abstract

We envision the molecular evolution process as an information transfer

process and provide a quantitative measure for information preservation in

terms of the channel capacity according to the channel coding theorem of

Shannon. Information capacities of both non-coding DNA and coding DNA

are calculated using various mutation substitution models. We extend our

results on coding DNA to a discussion about the optimality of the natural

codon-aminoacid code. We provide the results of an intelligent search in the

code domain and demonstrate the existence of a large number of genetic

codes with higher information capacity. The results support the thesis of

move from original 2-nucleotide codons to the current 3-nucleotide codons.
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Figure 1: A generic communications system.

1. Introduction

The fundamental biochemical processes in the cell such as replication

and translation as well as cell signalling can be envisioned as information

transfer processes. In all such processes there is an original message stored

in a biological apparatus (the DNA) that needs to be transferred through5

a noisy medium to another biological apparatus (the RNA polymerase ).

The DNA is stored in the nucleus of a cell and spontaneous mutations can

change its sequence. In the example of translation, the biological message

which is originally stored in DNA needs to be transcribed into RNA and

then translated into proteins, two processes which might cause errors as10

well.

The paradigm of information transfer in biological systems brings into

mind an analogy with communication systems (Figure 1) where the message

is coded into a waveform or a signal which carries the information coded

in a way that it is compact, to save on physical material, and robust to15

noise to prevent loss of information. The information carrying signal then is

transferred over the noisy channel to be received at a receiver and decoded

to obtain the information.
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This analogy was established by several researchers in the past in works

as early as [1, 2, 3]. A key element of the analogy is the ability to quantify20

the information which is provided by the entropy as an information measure

[4]. Numerous publications in the literature have studied the entropy of the

DNA [5], across the species, at protein binding sites [6, 7], etc. Very few

works, however, did a full analysis of the information transfer processes in

the genome such as protein coding, to derive its fundamental limits.25

Calculation of the fundamental limits of transfer of information is very

important in understanding the biological evolution over generations as well

as the functioning of genomic processes. In particular, it can tell us the

expected time or number of generations after which vital information about

an organism would be lost during molecular evolution. It can also provide30

us insight into understanding the existing natural genetic (codon-aminoacid

code) and where it stands among all possible codes. In particular, whether

the nature tried to optimize the information capacity in choosing the natural

code among a very large number of options.

Although various previous publications build on the communications35

system analogy, most fail to address this problem, partly due to the over-

idealisation of the model. It must be underlined that a full analogy with

a communication system fails in the sense that a communication system

aims to transmit encoded messages over noisy channels which are to be

received, decoded and reconstructed as close as possible to the original mes-40

sage, while in the case of protein coding, the decoded message is not DNA

but aminoacids. In this case, one can at best talk of hypothetical informa-

tion sources already coded in the form of nucleotide sequences.

In this article, utilizing the Coding Theory of Shannon, we develop theo-

retical limits of information preservation in non-coding DNA and aminoacid45
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coding in terms of the channel capacity. The channel noise is characterised

by various mutation models widely accepted in the literature. The quantifi-

cation of the information preservation capacity brings us to the discussion

of the optimality of the natural genetic (codon-aminoacid) code. This ques-

tion was posed several times but the analyses were not done in terms of50

channel capacity. With this publication, we propose an intelligent search al-

gorithm optimising the channel capacity to find an optimal genetic code and

to understand where the natural code stands with respect to the optimal

code.

The rest of this article is organised as follows: the next section provides55

the fundamentals on entropy as a measure of information as the building

stone of the model, Shannon’s information and coding theory principles

leading to channel capacity. We give channel capacity results on non-coding

DNA and protein coding DNA in Section 3 and Section 4, respectively. The

optimality of the natural codon-aminoacid encoder is studied in Section 5.60

Conclusions and future research directions are provided in Section 6.

2. Information Capacity

As in previous works on application of information theory in biology,

we quantify (lack of) information with entropy, following the definition of

Shannon [4]:

H(p) = −
∑
i

pi log pi. (1)

As an example: for given human nucleotides distribution of p[A,C,G,T ] =

[0.29 0.21 0.21 0.29], the entropy is calculated to be H(P ) = 1.9815 < 2.

If the nucleotides were uniformly distributed, it would have achieved the65

highest value of 2. Similarly, the entropy of codon distribution in human is

4



5.7936 < 3×H(p[A,C,G,T ]) = 5.9445. If all the codons were equiprobably it

would have achieved the highest value 6. The fact that the entropy of codons

is less than 3 times the entropy of nucleotides indicates to a dependency

structure between the nucleotides in the codon.70

Referring back to Figure 1, the capacity of a channel is defined as the

maximum of the mutual information between the input and the output of

the channel.

C = max
p
I(X;Y ) = H(Y )−H(Y |X) =

∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)
(2)

where H(Y |X) is the conditional entropy of the output Y , given input X.

The Channel Capacity provides a measure of the maximum information one

can transmit over a channel, the channel being characterised by p(Y |X), the

distribution of the noise on the channel.

The calculation of Channel Capacity analytically is not easy other than75

for a limited number of special cases such as the Gaussian channel, binary

symmetric channel and binary erasure channel [8]. However, a numerical al-

gorithm exists for calculating the channel capacity in the other cases, which

is called the Blahut-Arimoto Algorithm [9, 10]. The Blahut-Arimoto al-

gorithm iteratively searches the optimal input distribution leading to the80

highest mutual information between the input and the output which is a

convex optimisation problem.

A communication channel is characterised by noise in the channel. In

the case of the DNA channel, the noise are the mutations. Mutations can

be of type insertions, deletions or substitutions. In our analyses we consider85

mainly substitutions due to their dominance and the ease of work. We

consider the non-coding DNA channel and coding DNA channel separately.
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3. Non-Coding DNA

We first calculate the information capacity of the non-coding DNA. Only

the nucleotides are considered as independent messages and the communi-

cation has 2-bit rate due to the existence of a four letter alphabet. For

the nucleotide channels, various mutation models have been proposed be-

fore. The simplest such model is the Jukes-Cantor model which assumes the

same probability of error or mutation rate for each nucleotide [11]. Hence,

the substitution matrix is characterized with only one parameter, the nu-

cleotide substitution rate q. The Jukes-Cantor rate matrix is given in

QJC =


−3q q q q

q −3q q q

q q −3q q

q q q −3q

 (3)

where the row and column indices are A,C,G, T . Then, the transition or

substitution matrix for a finite time interval t can be obtained as ([12])

PJC = exp(QJCt) =


1− 3p p p p

p 1− 3p p p

p p 1− 3p p

p p p 1− 3p

 (4)

where p = (1− exp(−4qt))/4. From 2, the channel capacity after m gener-

ations or m cascaded channels in Figure 1 is

Cm = max
p
I(X;Y (m)) = H(Y (m))−H(Y (m)|X) (5)

Since the channel is symmetric, a uniform input X leads to a uniform out-

put Y (m). The first term is maximized for the uniform case and is simply90

log |X |, where |X | is the cardinality of X. The second term is independent

of the input and corresponds to the entropy of a row of the substitution
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Figure 2: Channel capacity for Jukes-Cantor non-coding DNA channel for various values

of mutation rate.

probability matrix (entropy of all the rows are the same). Using these sim-

plifying arguments, the capacity for each generation is calculated without

the need of using the Blahut-Arimoto algorithm.95

The results are given in Figure 2 which show the exponential decline of

information capacity of the non-coding DNA code with increasing number

of generations. The curves potentially give us the information preservation

limits of the DNA code over generations.

The results show clearly that information (capacity) vanishes exponen-100

tially over generations and that the time scale is given by the mutation rate.

Although for long, the non-coding part of DNA was seen as junk, now we

have increasingly more knowledge about the function of parts of non-coding

DNA as key regulators in translational and transcriptional output. In partic-

ular, studies have shown that long non-coding dNAs play critical regulatory105

roles in diverse cellular processes such as chromatin remodeling, transcrip-

tion, post-transcriptional processing and intracellular trafficking [13]. The

channel capacity of non-coding DNA can provide us an intuition about how
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far these functions can be preserved.

The channel capacity of non-coding DNA can be especially informative110

for viruses. It can help one predict in how many generations a virus would

be dysfunctional due to the lack of an error correcting mechanism unlike

coding DNA, and in the contrary sense it can also help understand the

quick evolution into other viruses.

The Jukes-Cantor mutation model provides only an approximation to

the actual mutation statistics since in the nature not all substitutions are

equiprobable. The rates of substitutions of type transitions (purine-pyrimidine

substitutions) and transversions (purine-purine or pyrimidine-pyrimidine

substituons) are different due to the different chemical properties of purines

(Adenine and Guanine) and pyrimidines (Cytosine and Thymine). A mu-

tation substitution model with two parameters exists due to Kimura [14].

The Kimura substitution rate matrix is given by

Qkm = q


−(2 +K) 1 1K 1

1 −(2 +K) 1 K

K 1 −(2 +K) 1

1 K 1 −(2 +K)

 (6)

Due to the symmetry of the matrix, we can invoke the same arguments115

as in the case of the Jukes-Cantor model and calculate the capacity from

Cm = maxp I(X;Y (m)) = H(Y (m)) − H(Y (m)|X). The capacity curves

are given in Figure 3. The curve of the case K = 1 corresponds to the

Jukes-Cantor model and is included to provide a comparison. Increasing

K indicates the dominance of transitions. In the limit of very large K,120

practically all substitutions are of type transitions and between A and G or

C and T , practically reducing the code to a 1-bit code rather than a 2-bit

code.
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Figure 3: Channel capacity for Kimura non-coding DNA channel for various values of

transitions/transversions rate ratio K.

These results show clearly the capacity gain when one moves from equiprob-

able substitutions to unequal substitution rates for transitions and transver-125

sions.

The capacity gain with the diversity provided by Kimura model over

Jukes-Cantor model might tempt one to look into more complex mutation

models. We have therefore considered also the Felsenstein model [15]. The

Felsenstein substitution rate matrix is given by:

Qf =


−(πC + πG + πT ) πC πG πT

πA −(πA + πG + πT ) πC πT

πA πC −(πA + πC + πT ) πT

πA πC πG −(πA + πC + πG)

 (7)

where πA + πC + πG + πT = 1.

In this case, there is no more symmetry in the substitution matrix and

there is no simplified way of calculating the capacity unlike the Jukes-Cantor

and Kimura cases. Therefore, the capacity is calculated using the Blahut-130

Arimoto algorithm. The obtained capacity curves for two different substi-
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Figure 4: Channel capacity for Felsenstein non-coding DNA channel for two values of

mutation rate and comparison with Kimura channel.

tution vectors [πA πC πG πT ] are given in Figure 4. As can be seen from the

figure, although more diversity is obtained with the Felsenstein model, the

difference in the capacity curves are limited.

4. Coding DNA135

In the case of non-coding DNA the capacity analysis is straightforward

since there is no obvious encoding structure. In the case of protein-coding

DNA, considering the communication channel to have as input codons and

as output aminoacids, the presence of an encoder is clear. There are 64

codons (each codon being made of 3 nucleotides) which are mapped to 20140

aminoacids and some are used as stop markers. There is redundancy in the

codon-to-aminoacid map and this redundancy is used as an error correcting

mechanism. The map between codons to aminoacids is given in Figure 5.

This mapping can also be represented in matrix form as in Eq. 8.
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Figure 5: The natural genetic code (codon to aminoacid map). 1:Alanine, 2:Arginine,

3:Asparagine, 4:Aspartate, 5:Cysteine, 6:Glutamate, 7:Glutamine, 8:Glycine, 9:Histidine,

10:Isoleucine, 11:Leucine, 12:Lysine, 13:Methionine, 14:Phenylalanine, 15:Proline, 16:Ser-

ine, 17:Threonine, 18:Tryptophan, 19:Tyrosine, 20:Valine, 21:STOP. We indicated various

aminoacids with numbers in the table to emphasize the fact that names are only labeling

and should not affect our search for optimal codes in the sequel.
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One can define three different channels for this problem. The codon-145

codon channel, the codon-aminoacid channel and the aminoacid-aminoacid

channel. In [16] and [17], Bouaynaya et al., study the information transfer

process between DNA and aminoacids, underlining the breakdown of the

communications system analogy and propose modelling the process with an

aminoacid channel. That is, both the transmitted (X) and received (Y )150

signals are aminoacids assuming a virtual protein source to DNA encoder.

They characterised the communication channel using first the PAM250 ma-

trix due to Dayhoff et al. [18] and then by an aminoacid transition matrix

they constructed based on the assumption of Jukes-Cantor, equal-parameter

nucleotide substitution matrix and they calculated the protein channel ca-155

pacity.

Our approach differs from that of Bouyanaya et al. in that we under-

line that the mutations happen on the codons rather than on aminoacids

and therefore the codon substitution matrix needs to be propagated over

the generations, and not the aminoacid substitution matrix. However, the160

”meaning” of the message is in aminoacids.

Using the Kimura nucleotide substitution model, we generate the corre-

sponding codon (three-nucleotide) 64 × 64. We propagate the message in

the form of codons over generations in each of the three channels and then

encode the received codon to aminoacid and calculate the capacity based on165

this channel and encoder.

5. Optimality of the natural code

It is curious that the natural genetic code (mapping) is not uniform.

While some aminoacids are coded by 6 different codons, some are coded by

13



4, 3, 2 or 1 codons. A natural question to ask is whether the natural genetic170

code is optimal in the information preservation, or channel capacity sense.

We have constructed a number of alternatives to the natural code:

1. a degenerate code where all the aminoacids are coded by only 1 codon

and the remaining 24 codons are the stop codons.

2. a uniform code in which all aminoacids are coded by 3 codons (and the175

stop codon by 64− 20× 3 = 4) which we will call the uniform3-code.

3. an almost uniform code in which the aminoacids are coded by 4 or 2

codons, which we will call the uniform 4− 2-code.

4. a code obtained from the natural code by flipping C and G and A and

T, that is transitions and transversions are interchanged which we will180

call the flipped natural code.

5. similarly flipped version of the uniform 4− 2 code.

We have calculated the channel capacities for these alternative codes us-

ing the Blahut-Arimoto algorithm, which are presented in Figure 9. Several

observations can be made on this figure: The channel capacity of the natural185

code is surpassed only by a uniform 4-2 code which has the same transitions-

transversions structure as the natural code for K > 1. The extreme-1 or the

degenerate code has the lowest channel capacity irrespective of the value of

K. The flipped natural code has higher channel capacity when K > 1, in

which case transversions rather than transitions are favoured. The uniform-3190

code has one of the lower channel capacity curves and takes over the natural

code only for very small K. These observations tell us that the natural code

favours a transitions dominant substitution model. It seems to be better

than most alternative codes, however, fall slightly behind a uniform 4 − 2

code. This final result is important to state that natural code is not neces-195
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Figure 6: The degenerate (extreme) genetic code (codon to aminoacid map). 1:Alanine,

2:Arginine, 3:Asparagine, 4:Aspartate, 5:Cysteine, 6:Glutamate, 7:Glutamine, 8:Glycine,

9:Histidine, 10:Isoleucine, 11:Leucine, 12:Lysine, 13:Methionine, 14:Phenylalanine, 15:Pro-

line, 16:Serine, 17:Threonine, 18:Tryptophan, 19:Tyrosine, 20:Valine, 21:STOP

15



Figure 7: The uniform-3 genetic code (codon to aminoacid map). 1:Alanine, 2:Arginine,

3:Asparagine, 4:Aspartate, 5:Cysteine, 6:Glutamate, 7:Glutamine, 8:Glycine, 9:Histidine,

10:Isoleucine, 11:Leucine, 12:Lysine, 13:Methionine, 14:Phenylalanine, 15:Proline, 16:Ser-

ine, 17:Threonine, 18:Tryptophan, 19:Tyrosine, 20:Valine, 21:STOP

16



Figure 8: The uniform-42 genetic code (codon to aminoacid map). 1:Alanine, 2:Arginine,

3:Asparagine, 4:Aspartate, 5:Cysteine, 6:Glutamate, 7:Glutamine, 8:Glycine, 9:Histidine,

10:Isoleucine, 11:Leucine, 12:Lysine, 13:Methionine, 14:Phenylalanine, 15:Proline, 16:Ser-

ine, 17:Threonine, 18:Tryptophan, 19:Tyrosine, 20:Valine, 21:STOP

17



sarily the optimal code at least in terms of channel capacity or information

preservation or robustness to mutations.
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These observations make us ask the question why the natural code was

preferred to any other code. This question was asked before by several re-

searchers including F. Crick who proposed the ”frozen accident” model [19].200

The ”frozen accident” model was questioned by various researchers in the

literature who noted the ”superiority” of the natural code to alternatives.

For example, Hurst and Freeland and Hurst [20] generated 1, 000, 000 dif-

ferent configurations and taking account of the mutation biases as in the

Kimura model and using a mean square distance measure concluded that205

”the genetic code is one in a million”. Various researchers use the Polar

Requirement, a measure of hydrophobicity as the error measure and try to

find/produce codes that minimize this cost function (e.g. [21]).

Our approach is different from previous work in a number of aspects.

Rather than using MSE (mean square error) on specific biochemical prop-210

erties such as hydrophobicity, we use an information theory based measure

which captures information on all statistics rather than only second order

statistics. The use of MSE measure intrinsically makes a Gaussian distribu-

tion assumption which is not necessarily suggested by the nature of the data.

We also do not use hydrophobicity but the Hamming distance between the215

codes since we think that the unequal transition rates for transitions and

transversions modelled in the substitution matrix already takes care of the

physical facts. The searches made in the literature seem to be random picks

of codes from the space of possible codes such as in [20] which generated

1, 000, 000 different configurations but as noted in [22], the explored code220

structures are rather rigid. Considering that there are 2164 ∼= 4× 1084 con-

figurations, this is a very limited sample to draw any conclusions on. We

propose an intelligent search algorithm which learns through its search and

searches at increasingly more probable parts of the space for solutions.

20



Firstly, we start with a more realistic estimate of the available different

configurations. We would like to partition m(64) labelled ”items” (codons),

to n(21) unlabelled non-empty ”sets” (aminoacids), unlabelled since we can

rename the aminoacids without loosing any biological meaning. This a clas-

sical problem in combinatorial mathematics and is called Stirling numbers

of the 2nd kind. The number of configurations can be calculated using the

formula:

S(m,n) =
1

n!

n∑
i=0

(−1)iC(n, i)(n− i)m (9)

where C(n, i) is the combinatorial (n, i). We calculate S(64, 21) = 2.9×1029.225

This number despite being much smaller than 2164, is still too large a number

to test all configurations.

We start by doing a limited search around the natural code searching

all configurations of Hamming distance 2 to the natural code. We basically

move a single 1 in the matrix in Eq. (8) to a new position, by remapping230

a codon to a new aminoacid and calculate the channel capacity for all such

generated new configurations. There are 64×20 = 1280 such configurations

(2 Hamming distance neighbours of the natural code). No configurations at

Hamming distance 2 gave a higher channel capacity then the natural code.

Below in Figure 10, we provide the histogram of the capacities of all such235

configurations:

This result shows us that the natural code is at least at a local optimal.

However, this result does not generalise to neighbours at greater Hamming

distances than 2. We can construct a higher capacity code at 4-Hamming

distance from the natural code with a simple observation. We have al-240

ready shown the superiority of an 4 − 2 code above. When we look at the

the natural code, we see that the codons are mostly coded in groups of 4

21



Figure 10: Histogram of the genetic codes 2 Hamming distance from the natural code.

or 2 to an aminoacid with redundancies mostly at the third codon posi-

tion and less at the first codon position, with the exceptions of Isoleucine

(ATA,ATC,ATT), Methionine (ATG), Tryptophan (TGG) and the STOP245

codons (TAA,TAG,TGA). To keep the 4 and 2 redundancies, let’s construct

a neighbour code to the natural code by moving TGA from STOP to Tryp-

tophan and ATA from Isoleucine to Methionine as depicted in Figure 11.

The resulting code is at 4-Hamming distance from the natural code. As can

be seen in Figure 12, the channel capacity curve of this code is slightly above250

that of the natural code. Therefore, one can conclude that the optimality

of the natural code is very local and does even extend to a neighbourhood

22



Figure 11: A genetic code 4-Hamming distance from the natural code (codon to

aminoacid map). 1:Alanine, 2:Arginine, 3:Asparagine, 4:Aspartate, 5:Cysteine, 6:Glu-

tamate, 7:Glutamine, 8:Glycine, 9:Histidine, 10:Isoleucine, 11:Leucine, 12:Lysine, 13:Me-

thionine, 14:Phenylalanine, 15:Proline, 16:Serine, 17:Threonine, 18:Tryptophan, 19:Tyro-

sine, 20:Valine, 21:STOP
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Figure 12: Comparison of channel capacities for the natural genetic code and a constructed

genetic code 4-Hamming distance from the natural code.

4-Hamming distance. This observation motivates one to look for a globally

optimal codon-aminoacid code.

As mentioned above although several attempts exist in the past to search255

for an optimal code, only random non exhaustive searches were made cov-

ering far less than a statistically meaningful space. The searches were not

intelligent leading to non-conclusive results. To search for a global optimal,

we propose to use a non-convex optimization algorithm, namely Simulated

Annealing algorithm to do an intelligent search of the best code. Simulated260

Annealing algorithm has had success in a wide variety application areas

where the optimization problem at hand was NP-hard, that is not solvable

in polynomial time. These application areas include the traveling salesman

problem, graph partitioning, scheduling in operations research, VLSI circuit

design in electronics, optimal source coder design in telecommunications,265

etc.

Simulated Annealing is motivated by experimental solid state physics

where solids are first heated to a very high temperature and then cooled

24



down slowly so that all electrons settle to their lowest energy states. The

algorithm is motivated by the earlier ideas of Ulaby and Metropolis on chem-270

ical process modelling and is formulated by Kirkpatrick et al. in [23]. Sim-

ulated Annealing proceeds with series of random walks, namely Metropolis

loops during which new configurations are proposed. If the new configura-

tion leads to a better cost (in our case the channel capacity), it is accepted.

Unlike the steepest descent type of algorithms, simulated annealing occa-275

sionally accepts also worse configurations with certain probability given by

Boltzmann statistics. This provides hill-climbing potential and the algo-

rithm can avoid being stuck in local minima. The Boltzmann statistics

provides the analogy with the problem of the electron distribution in solid

state physics. After each Metropolis loop, the temperature in the acceptance280

ratio is dropped so less and less proposals are accepted. It has been proved

that if a logarithmic cooling schedule is applied the algorithm converges to

the global optimal. However, logarithmic cooling scheme can get infinitely

slow and suboptimal schemes such as geometric cooling scheme is applied.

For detailed information on the simulated annealing algorithm, one is re-285

ferred to [24]. A brief sketch of the algorithm is given below:

Simulated Annealing Algorithm

• Let M = M0, where M0 is the natural code matrix,

• While T > Tmin290

– T ← T × α

– Pick a random neighbour, Mnew ← N(M), where the neighbour

set N(.) includes all 2-Hamming distance codes from the code M

25



– If P (C(M), C(Mnew), T ) ≥random(0, 1), where C(.) is the chan-

nel capacity and P (.) is the Boltzmann function, move to the new295

state

∗ M ←Mnew

• Output: the final code M .

We have run the simulated annealing algorithm with geometric cool-

ing scheme with a cooling coefficient of α = 0.99. The starting configu-300

ration has been selected as the natural code. The new configurations are

randomly selected by moving one 1 to a 0in the aminoacid-codon matrix.

That is, changing the mapping of one codon from one aminoacid to another

aminoacid making sure that there is at least one codon assigned to each

aminoacid.305

Figure 13 gives the evolution of capacity with progress of the simulated

annealing algorithm to find the optimal code. It is interesting to note that

the algorithm started with wild oscillations as expected in a simulated an-

nealing run (the ”temperature” is high in the beginning), then on the average

improving the channel capacity by moving to ”better” codes. Initially the310

average improvement is fast, reducing slowly and then saturating to sig-

nificantly better codes or high capacity with small oscillations around the

”near-optimal” codes.
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The best such found configuration is given in Figure 14. It is very inter-

esting to note that as in the case of the natural code, the codons producing315

the same aminoacid are close in the table and have ambiguities in the nu-

cleotides. The ambiguities in this optimal code are in the first (10), second

(8) and third (13) places. This is in contrast with the ambiguities seen in

the natural code which are mostly at the third position (20) with some am-

biguities also at the first position (2) but not at the second (0) position.320

We provide a comparison capacity profiles of this near optimal code with

the natural code in Figure 15. To give a scale of comparison, the capacity

curves of the degenerate code (one codon synthesizing one aminoacid) and a

random 4−2 code are also plotted on the same figure. The figures show the325

channel capacity values at a certain number of generations for various values

of the parameter K in the Kimura model corresponding the ratio of tran-

sitions/transversions. It can be seen that the near-optimal code obtained

by the Simulated Annealing algorithm has found has significantly higher

information capacity then the natural code. The difference is at the same330

scale as the difference between the natural code and the degenerate code

and hence can be considered very significant. It is also worth noting that

it is also significantly higher than the random 4 − 2 code discussed before

constructed with ambiguities in the third place as in the case of the natural

code.335
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Figure 14: The uniform-42 genetic code (codon to aminoacid map). 1:Alanine, 2:Arginine,

3:Asparagine, 4:Aspartate, 5:Cysteine, 6:Glutamate, 7:Glutamine, 8:Glycine, 9:Histidine,

10:Isoleucine, 11:Leucine, 12:Lysine, 13:Methionine, 14:Phenylalanine, 15:Proline, 16:Ser-

ine, 17:Threonine, 18:Tryptophan, 19:Tyrosine, 20:Valine, 21:STOP
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These observations need a discussion on the biological significance. In

particular, they underline clearly that the natural codon-aminoacid code/map

is far from being optimal. The natural code can be ”one in a million” [];

however, considering that there are more than 1029 possible configurations,

this is not a statistically significant measure. There are many other codes340

that have far better information preservation capabilities.

This observation may indirectly give support to two hypothesis.

1. frozen accident hypothesis of Crick [25].

2. that some point in the past the codons were composed of 2 nucleotides

only and the third nucleotide was acquired afterwards. This may be345

the reason why the natural code does not seem to be optimised for

3-codons and that almost all redundancies are in the third position.

Another biological problem to be discussed is whether the use of channel

capacity as the optimality criterion of the protein code is justified. A higher

capacity code definitely preserves the genetic information better over the350

generations; however, it also means less possibility for diversity. The error-

correcting mechanism in the coding DNA is a sword with two edges. A

completely preserved information would not allow diversity and selection.

6. Conclusions

In this paper, we have provided a complete modelling of the evolution355

process borrowing an analogy with communications, in terms of Shannon’s

coding theorems. Our model is different from previous work in that we

consider a codon-aminoacid channel rather than aminoacid-aminoacid or

codon-codon channels as studied by researchers in the literature. We use

the channel capacity as a measure of information preserving capability of360
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the code and use it as a cost function to test the optimality of the natural

protein (codon to aminoacid) code. Given this cost function, we demonstrate

the suboptimality of the natural code without any space for doubt. Its

channel capacity is significantly below that of various other codes. Unlike

previous work, we have significantly extended our search space (close to 60365

million tested configurations) but more importantly we have done our search

not ”blindly” but ”intelligently” using a non-convex learning/optimisation

algorithm, namely Simulated Annealing. Our observations provide strong

evidence for the theory that once the codons were formed of 2-codons only

and that the third nucleotide was acquired later.370
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