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1Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
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We present a theory for band-tuned metal-insulator transitions based on the Kubo formalism.
Such a transition exhibits scaling of the resistivity curves, in the regime where Tτ > 1 or µτ > 1,
where τ is the scattering time and µ the chemical potential. At the critical value of the chemical
potential, the resistivity diverges as a power law, Rc ∼ 1/T . Consequently, on the metallic side
there is a regime with negative dR/dT , which is often misinterpreted as insulating. We show that
scaling and this ‘fake insulator’ regime is observed in a wide range of experimental systems. In
particular, we show that Mooij correlations in high-temperature metals with negative dR/dT can
be quantitatively understood with our scaling theory in the presence of T -linear scattering.

Thanks to the advent of highly tunable ‘twisted’ Van
der Waals heterostructures,[1–3] the field of quantum
matter physics is in a position to study continuous zero-
temperature phase transitions with an unprecedented ac-
curacy. Detailed (and smooth!) experimental results al-
low a systematic comparison between different theoreti-
cal predictions, which is particularly true for continuous
metal-to-insulator transitions (MITs).

Interaction-induced MITs, such as the Mott transi-
tions, display quantum critical behavior, including scal-
ing of the resistivity.[4, 5] A full theoretical understand-
ing of Mott criticality, which would include a precise cal-
culation of the scaling exponents, is still lacking.[6] One
of the main challenges lies in the fact that an MIT is, in
general, not a transition described by symmetry break-
ing, which makes it challenging to identify the source of
scaling.

Recently, scaling has been observed in a simple band-
tuned MIT in a MoTe2/WSe2 bilayer at full filling of
the first valence flat band.[7] By tuning the displacement
field, one can open a band gap to the second valence
band. The scaling behavior there has been analysed us-
ing a model with disorder and a bosonic field,[8] inspired
by earlier work on ‘Mooij’ correlations.[9, 10] However,
the observed scaling can also be interpreted in a much
simpler perspective.

From a theoretical viewpoint, calculating the conduc-
tivity is notoriously difficult. An exception is the classical

Drude formula, σ = ne2τ
m , which can also be derived with

fully quantum-mechanical advanced methods such as the
Kubo formula,[11, 12]. A natural question is whether
the observed scaling at a metal-insulator transition can
be explained with the same set of assumptions that is
used to derive Drude theory.

Indeed, in this Letter we show that only a small num-
ber of very natural assumptions leads to scaling behavior
near a band-tuned MIT. The only assumptions are that
the scattering time τ is large, parametrized by Tτ > 1 or
µτ > 1 respectively on the insulating and metallic sides
of the transition (with µ the chemical potential measured
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FIG. 1. In a band-tuned metal-insulator transition (MIT), the
system changes from having overlapping valence (blue) and
conduction (red) bands in the metallic side (right) to having
a gap on the insulating side (left). The tuning parameter is
the chemical potential µ. When either Tτ > 1 or µτ > 1, the
resistivity (in shades on the background) can be described
by a scaling form, as shown in Fig. 2. This scaling relation
breaks down very close to the transition, where localization
and interaction effects will change the picture.

from the band edges), and that the electron self-energy
is local and proportional to the electron density of states.
These conditions naturally arise in weakly correlated,
weakly disordered metals. With this, the critical resistiv-
ity at the MIT is diverging as Rc(T ) ∼ 1/T , in contrast
to oft-cited picture that the critical resistivity curve is in-
dependent of temperature. We derive an explicit scaling
form, showing that in the scaling regime the resistivity is
given by a universal R(T, µ) = Rc(T )f(µ/T ). Contrary
to the physics of universality at continuous phase transi-
tions, the scaling of the resistivity breaks down very close
to the MIT.

Band-tuned MIT – Consider a weakly interacting elec-
tron system described by a band-structure. The system
is metallic if there is a nonzero density of charge carriers,
characterized by a nonzero chemical potential µ. The
system is an insulator if there is a gap towards excit-
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FIG. 2. Theoretical resistance curves close to a band-tuned metal-insulator transition. a. Resistance calculated using Eq. (3),
for a constant scattering time τ = 25 eV−1, and chemical potential µ ranging from −0.8 to +0.8 eV. The resistance at the
critical point µ = 0 diverges as Rc(T ) ∼ 1/T . On the metallic side, the resistance decreases as a function of temperature
(a ‘fake’ insulator), whereas on the insulating side the resistance is activated. b. Resistance for a temperature-dependent
scattering rate τ−1 = τ−1

0 + bT with τ0 = 25 eV−1 and b = 0.1. On the metallic side, there is a transition from a positive
dR/dT to a negative dR/dT . At high temperatures, this gives rise to Mooij correlations (see Fig. 4). c. When Tτ > 1 or
µτ > 1, the resistance curves follow a simple scaling law R(T, µ) = Rc(T )f(µ/T ). This can be verified by plotting R/Rc versus
T/|µ|. All data points collapse onto one of the two curves, associated with either metallic or insulating behavior.

ing charge carriers. By continuously changing the band-
structure we can induce a band-tuned MIT. This can be
achieved with pressure, displacement field, or even due to
spontaneous symmetry breaking such as ferromagnetic
polarization. Without loss of generality, the dispersion
at a band edge is parabolic, with the dispersion set by

ξk = k2

2m − µ where m is the effective mass. With this
notation, µ > 0 corresponds to the metal, µ < 0 to an
insulator, and µ = 0 is the critical point. The chemical
potential µ is thus the tuning parameter of the MIT, as
shown in Fig. 1.

In general, the conductivity is determined by disor-
der, electron-electron interactions and electron-phonon
coupling. Nonzero resistivity from electron-electron in-
teractions requires Umklapp scattering, which becomes
asymptotically irrelevant at low carrier densities (though
there might be nontrivial vertex corrections)[13]. Simi-
larly, at zero temperature there is no thermal occupation
of phonons, and therefore no electron-phonon contribu-
tion to the resistivity. The zero-temperature behavior of
a band-tuned MIT is therefore completely dominated by
disorder. In principle strong disorder might push the sys-
tem into Anderson insulation. However, in d = 2, 3 it is
considered that the combination of weak disorder and
weak interactions generally precludes true localization
[14–17]. Moreover, even in the absence of interactions,
quantum corrections to the conductivity are not relevant
in the regimes µτ > 1 and Tτ > 1 considered here, and
will therefore be neglected throughout this work.

Conductivity – With these natural assumptions, the
conductivity close to the MIT is calculated using the
Kubo formula for local self-energies [11, 21], which reads

for a single band in d dimensions, per spin species,

σxx = π

∫
dξΦx(ξ)

∫
dzA2(ξ, z) (−f ′(z)) , (1)

where A(ξ, z) is the one-particle spectral function and
f is the Fermi function (see [18], Sec. A). The entire
momentum-dependence is included in a transport func-

tion Φx(ξ) =
∫

ddp
(2π)d

j2x(p) δ(ξ− ξp). The transport func-

tion itself displays universal behavior in the vicinity of
a band-tuned MIT: given the parabolic band dispersion,
the current operator equals j(p) = e

mp. Consequently
the transport function reads

Φx(ξ) =
2e2

dm
(ξ + µ)N(ξ), (2)

where N(ξ) is the non-interacting density of states,

N(ξ) =
∫

ddp
(2π)d

δ(ξ − ξp). Assuming a constant, energy-

independent scattering rate τ in d = 2, the imaginary
part of the self-energy is ImΣ(z) = −Θ(z + µ)(2τ)−1.
This scattering time is typically of the order τ ∼ 10−12−
10−14 s ∼ 10 − 103 eV−1. When µτ > 1 or Tτ > 1, the
Kubo formula radically simplifies, and we find

σ(T, µ) =
e2

h
τT log

[
1 + eµ/T

]
. (3)

This is our central result for the conductivity close to the
band-tuned MIT. Surprisingly, it contrasts a few com-
monly held convictions on metal-insulator transitions.
First, at the critical point, the conductivity is linear in

temperature, σc(T ) ≡ σ(0, T ) = e2

h τT log 2, rather than
temperature-independent. Furthermore, on the metallic
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FIG. 3. Scaling near the band-tuned MIT is observed in a range of materials. Here, we apply our scaling analysis to three
material systems[18]: (a) the moiré heterobilayer MoTe2/WSe2[5], (b) the heterostructure WSe2/bilayer graphene/WSe2[19],
and (c) GST amorphous phase change materials [20]. The measured resistivities are shown in insets. In panels a and c we see
a genuine MIT, with data collapse on both an insulating and conducting branch. The theoretical scaling curve of Eq. (4) is
shown as a dashed black line, and shows remarkable agreement with the experimental results.

side of the transition (µ > 0), the temperature deriva-
tive of the resistivity can be negative: a ‘fake insulator’
regime that is commonly misinterpreted as insulating.
Furthermore, Eq. (3) satisfies a universal scaling form

σ(µ, T ) = σc(T )F (µ/T ), (4)

which allows the collapse of many resistivity curves onto
a simple scaling function F (x) = log2 [1 + ex]. The the-
oretical resistance curves near the band-tuned MIT, in-
cluding the scaling properties, are shown in Fig. 2.

Hidden in plain view is the fact that Eq. (3) is, at zero
temperature on the metallic side, equivalent to Drude

theory. Explicitly, in d = 2, σ(µ) = e2

h τµ = ne2τ
m . In

fact, the T = 0 limit of Eq. (A1) yields σ = Φ(EF )τ
with Φ(EF ) = ne2/m in any dimension d.
At finite temperature the scaling regime persists, even

with a temperature-dependent scattering time τ(T ), pro-
vided that τ−1 is still proportional to the density of
states. When τ is temperature-independent, in fact, all
resistivity curves on the metallic side are ‘fake insulators’
with dρ/dT ≤ 0 (cf. Fig. 2). Only when the scatter-
ing rate increases with temperature, for example from
electron-phonon interactions shown in Fig. 2b or from
Umklapp scattering, we find traditional metallic behavior
with dρ/dT > 0. In this case, inside the metallic regime
there exists a point where the temperature-derivative of
the resistivity dρ/dT changes sign. We will discuss uni-
versal properties around this point later in the context of
Mooij correlations.[9, 22]

It is important to emphasize that the scaling form of
Eq. (4) is limited to regions not too close to the transi-
tion. This limitation is similar to the one proposed by
Mott-Ioffe-Regel (MIR) [23]. A common formulation of
the MIR limit in metals is kF ℓ ∼ 1 where ℓ is the mean-

free path. This can be rewritten as µτ ∼ 1; we there-
fore find that, upon approaching the transition from the
metallic side, the scaling hypothesis breaks down pre-
cisely at the MIR boundary. What happens close to the
transition is non-universal, and depending on model pa-
rameters one can find various different violations of scal-
ing (see [18], Sec. B).

Band-tuned MIT in moiré bilayers – We are now in a
position to verify our universal scaling result of Eq. (3) in
experimental results on real physical systems. Inspired
by the recent developments in moiré materials, let us first
focus on the MIT in MoTe2/WSe2 at full filling of the first
valence flat band (f = 2).[7] By tuning the perpendicular
displacement field, a gap is opened up, yielding a band-
tuned MIT. In Fig. 3 we fit the observed resistance curves
as a function of displacement field using our theory. In-
deed, the critical resistance diverges as Rc ∼ 1/T , and
the resistance curves obey scaling. As shown in Fig. 3a,
the scaling curve itself quantitatively matches the ana-
lytical form derived in Eq. (3). A similar scaling plot
for these data has been reported in Ref. [8], inspired
by earlier work in Ref. [10], which describes disorder-
induced polaron formation when the chemical potential
is far from the band edges. When the chemical potential
approaches the band edges, the theory of Ref. [8] reduces
to the simpler theory presented here, where polaronic ef-
fects are irrelevant.

There are many claims of MITs in graphene-based
Moiré materials, that upon closer inspection seem to ex-
hibit ”fake insulator” behavior. Consider, for example,
the WSe2/bilayer graphene (BLG)/WSe2 heterostruc-
ture measured in Ref. [19]. At filling ν = 0, the resistivity
turns up at low temperatures reminiscent of an insulating
gap. However, at around T = 20K, the resistivity seems
to saturate, to a displacement-field dependent value. The
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absence of a true diverging resistance at low temperature
suggests that these systems retain a nonzero density of
charge carriers, either from a band overlap or induced by
potential inhomogeneities that are common in graphene
systems. Indeed, when performing the scaling analysis,
we can collapse all the curves of this system to the metal-
lic branch of our scaling form, as shown in Fig. 3b.
Disordered metallic alloys – While Eq. (3) was derived

for d = 2 and weak disorder scattering, it is in fact far
more universal. Often a momentum-independent self-
energy arises through the equation Σ(z) = s2G(z), for
example in iterated schemes such as the self-consistent
Born approximation for disorder scattering or electron-
phonon scattering in the adiabatic limit. Here s is a
(possibly temperature dependent) parameter quantifying
the scattering process. Under this scheme, the inverse
scattering time is in weak coupling proportional to the
density of states ImΣ(z) ∝ N(z) ∼ ImG(z). This leads to

a conductivity of the form σ(T ) = e2

dms2T log
[
1 + eµ/T

]
in general dimensions d, consistent with Eq. (3).
The universal scaling is indeed also observed in three-

dimensional compounds away from the weak disorder
limit. In particular, we look at GST[20], a phase-change
compound where the annealing history affects the effec-
tive number of charge carriers.[24] Here, at high temper-
atures, a smooth evolution from positive dR/dT to nega-
tive dR/dT is observed depending on the precise compo-
sition and history of the sample. Since the main effect of
these compositional changes is in fact a shift of the chem-
ical potential, we show in Fig. 3c that the experimental
data on GST can be accurately described by our scaling
theory.

Mooij correlations – Universal scaling implies the ex-
istence of a ‘fake insulator’ regime: a metal character-
ized by a (dimensionless) negative temperature coeffi-
cient of the resistance α = (T/R)dR/dT < 0. Histor-
ically, the observation of a negative α various disordered
metals, including binary alloys (NixCr1−x, TixAl1−x,
FexSi1−x, etc.)[9, 10] was considered a ‘high temperature
anomaly’.[22] In a seminal paper, Mooij[9] discovered a
correlation between the temperature coefficient α and the
resistivity ρ itself. There is currently no consensus on the
origin of these Mooij correlations, though they have been
interpreted in terms of quantum localization corrections
to the conductivity [22, 31] or the disorder-driven forma-
tion of polarons[10].

Interestingly, the scaling theory proposed in this Letter
allows to quantitatively describe Mooij correlations. To
do so, we assume that at high temperature the scattering
time τ is linear in T :

τ−1 = τ−1
0 + bT. (5)

This form occurs in many metals, where b is either pro-
portional to the electron-phonon coupling strength, or
a more complex, ”Planckian” quantum scattering.[32]
With this assumption, the critical curve becomes flat at
high temperature, Rc(T ) → R∞ ∝ b. This allows us to
introduce a dimensionless resistivity R/R∞. By taking
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○ NiNbZrH (Fukuhara 2012)

□ Ni alloys (Jin 2016)

◇ Fe1-xSix (Sumiyama 2016)

▽ GeSbTe (Siegrist 2011)

FIG. 4. The dimensionless temperature coefficient of the re-
sistance versus the dimensionless resistance, for a variety of
materials[5, 9, 20, 25–30] (for details see [18]), compared to
our theoretical result of Eq. (6) (solid black line). For the
experimental data the only fitting parameter is R∞, the limit
of the critical resistance at high temperature. We find an ex-
cellent agreement of the experimental Mooij correlations and
our theory.

the derivative of the scaling relation Eq. (3), and invert-
ing it with respect to the tuning parameter µ at a fixed
temperature T , we find that the temperature coefficient
α only depends on R/R∞,

α(R) =
R

R∞

(
1− 2R

∞/R
)
log2

[
2R

∞/R − 1
]
. (6)

In Fig. 4 we compare our analytical result with the orig-
inal data presented by Mooij[9] and those collected in
[10], finding a good agreement between the experimental
results on binary alloys and Eq. (6). The recent data on
Moiré bilayers shows an even more striking quantitative
equivalence between the resistivity data in the high tem-
perature range T = 26−60 K: without a fitting parameter
the experimental results of Ref. [5] match Eq. (6).
Outlook – In this Letter we have shown that a sim-

ple theory of conductivity predicts universal scaling near
band-tuned MITs consistent with experimental results in
a wide range of materials, from recent Moiré materials to
decades old data on binary alloys.
The predicted scaling regime does not extend arbitrar-

ily close to the MIT: when Tτ < 1 and µτ < 1 de-
viations from or a full breakdown of scaling can appear.
Note that the difference between scaling close and further
away from the transition has been discussed in Ref. [6].
The scaling described in this Letter is thus not due to
the divergence of a length scale, and is not related to
Landau order parameters, the renormalization group, or
any other theory of universality in symmetry-breaking
(quantum) phase transitions. The universal behavior of
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resistivity scaling near the MIT throughout many materi-
als is just the consequence of a generic weakly interacting
electrons with weak disorder, in spirit similar to the sta-
bility of the Fermi liquid. The properties of Anderson
and weak localization as well as Wigner crystallization
and the Mott MIT[6] are phenomena that, on the other
hand, are outside the scaling regime discussed here. It
is an interesting open question whether the scaling de-
scribed in this Letter can extend, under certain condi-
tions, arbitrarily close to the MIT, thus connecting to
the standard theoretical framework of continuous phase

transitions.[33]
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experimental data. We thank Yuting Tan, Christophe
Berthod, and Giacomo Morpurgo for fruitful discussions.
LR is funded by the Swiss National Science Foundation
by Starting Grant TMSGI2 211296. SC is funded by the
European Union - NextGenerationEU under the Italian
Ministry of University and Research (MUR) National In-
novation Ecosystem grant ECS00000041 - VITALITY -
CUP E13C22001060006.

[1] L. Balents, C. R. Dean, D. K. Efetov, and A. F. Young,
Superconductivity and strong correlations in moiré flat
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Supplementary information

Appendix A: Derivation of conductivity using Kubo formula

In the absence of vertex corrections the Kubo formula for conductivity reads

σxx = π

∫
ddp

(2π)d

∫
dz A(p, z)jx(p)A(p, z)jx(p) (−f ′(z)) . (A1)

where j(p) = ep
m is the current operator, f(z) = [ez/T +1]−1 is the Fermi function, and A(p, z) is the spectral function

A(p, z) =
1

π

−ImΣ(p, z)

(z − ξp − ReΣ(p, z))2 + (ImΣ(p, z))2
. (A2)

Here Σ(p, z) is the electron self-energy. When the self-energy is independent of momentum, we can replace the
momentum integral by an integral over dispersion ξ and introduce the transport function as discussed in the main
text,

Φx(ξ) =

∫
ddp

(2π)d
j2x(p) δ(ξ − ξp) (A3)

=
2e2

dm
(ξ + µ)N(ξ). (A4)

so that the Kubo formula reads

σxx = π

∫
dξΦx(ξ)

∫
dzA2(ξ, z) (−f ′(z)) (A5)

Now we include the real part of the self-energy in a renormalization of the bare dispersion; and assume the imaginary
part of the self-energy is ImΣ(z) = − 1

2τΘ(z + µ). In this case, relevant for the novel moiré systems, we can exactly
integrate over ξ in d = 2 dimensions,

σ(T, µ) =
e2

2πh

∫
−µ

dz (−f ′(z))
[
1 + 2τ(z + µ)

(π
2
+ atan (2τ(z + µ))

)]
, (A6)

The leading order term in the limit where (µ+ z)τ is large, becomes

σ(T, µ) =
e2

h
τ

∫
−µ

dz (−f ′(z)) (z + µ) =
e2

h
τT log

[
1 + eµ/T

]
(A7)

which is the central result of the main text.

Appendix B: Nonuniversal behavior close to the transition

The scaling ansatz is in general not valid arbitrarily close to the transition. Explicit breakdown of scaling can be
seen in theoretical models even within the weak-coupling Kubo formula without vertex corrections (meaning: even if
we ignore Anderson localization, Mott localization, Wigner crystallization, and percolation).

The scaling ansatz σ(µ, T ) = σc(T )F (µ/T ) in the limit of T → 0 implies, with σc(T ) ∼ T , that σ(T = 0) ∝ µ. This
is trivially true for the Drude formula in d = 2, whereas in d = 3 it requires ImΣ ∝ √

µ. The breakdown of scaling
close to the transition can thus be inferred from having nonlinear behavior of σ as a function of µ at zero temperature.
In 2nd order perturbation theory with disorder we obtain ImΣ = − 1

2τ0
. The zero-temperature conductivity is thus,

for µ > 0,

σ(µ, T = 0) =
e2

2πh

[
1 + 2µτ0

(π
2
+ arctan 2µτ0

)]
(B1)

and σ = 0 on the insulating side. This result features a jump at µ = 0 of magnitude ∆σ = e2

2π , breaking the scaling
ansatz.
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a. Fixed τ, d=2
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FIG. 5. The theoretical zero-temperature conductivity displays a breakdown of scaling (in black dashed lines) near the MIT,
in d = 2 for fixed τ = 1 (a.), the self-consistent Born approximation (b.), and in d = 3 for τ−1 =

√
µ (c.). The red shaded area

indicates the deviation from scaling. The inset in b. shows the imaginary part of the self-energy for the SCBA with γ = 1 in
the same energy range as the main figure.

This jump persists even when the density of states do not have a discontinuity at the band edge. In the self-consistent
Born approximation (SCBA) the self-energy is given by Σ(z) = γG(z) where G(z) is the fully dressed Green’s function
and γ the strength of the disorder. Note that within this scheme, the density of states A(z) = − 1

γπ ImΣ(z), which is

now continuous at the band edge. Nevertheless, there is still a (nonuniversal) jump in the conductivity.
In d = 3, integrating over momenta in the Kubo formula yields the zero-temperature conductivity for µ > 0,

σ(µ, T = 0) =

√
m

(
ImΣ(µ)

2
+ µ2

)3/4
(√

|ImΣ(µ)|√
ImΣ(µ)2+µ2

+ 1 +

√
1− |ImΣ(µ)|√

ImΣ(µ)2+µ2

)3

24
√
2π2ImΣ(µ)

(B2)

Note that indeed when µ > ImΣ this reduces to the Drude formula σ = e2
√
2mµ3/2τ
3π2 = e2nτ

m . In the main text we

assumed for scaling to hold τ−1 to be proportional to the density of states, which is proportional to
√
µ near the band

edge. This results in a conductivity proportional to 1/
√
τ close to the transition, violating the scaling ansatz

All three cases are visualized in Fig. 5.

Appendix C: Analysis of the experimental data: Scaling

In order to perform scaling, we used publicly available resistance/resistivity data from Refs. [5, 19, 20]. For each
data set, we first identified the critical curve of the form

Rc(T ) =
1

τ0T
+ b (C1)

where τ0 is the disorder-induced scattering time and b is some linear-T scattering rate that can come from phonons or
general ‘Planckian’ dissipation. Written like Eq. (C1), these two parameters have units that depend on the dimension
(d = 2, 3). For the three experimental systems, we used the following parameters for the critical curve:

System τ0 b

MoTe2/WSe2[5] 192 kΩ/K 2.72 kΩ

WSe2/BLG/WSe2[19] 84.1 kΩ/K –

GeSbTe[20] 1.35 Ωcm/K 0.003 Ωcm

We rescaled the temperature with a parameter T0 (which can be interpreted as the chemical potential µ) as a
function of tuning parameter to achieve a collapse of all resistance/resistivity curves. The relevant values of T0 are
shown in Fig. 6.

For MoTe2/WSe2 and WSe2/BLG/WSe2 (BLG stands for bilayer graphene), the tuning parameter is a vertical
displacement field. The data reported are at filling ν = −2 and ν = 0, respectively, relative to charge neutrality.

The label GST refers to a collection of different compounds GeSb4Te7, GeSb2Te4, Ge2Sb2Te5, and Ge3Sb2Te6.
Different resistivity curves correspond to those four materials each annealed at a different temperature, as outlined
in the Supplementary Information of Ref. [20].
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a. MoTe2/WSe2
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FIG. 6. In the experimental scaling plots in the main text, we divide for each curve the temperature by a scaling parameter T0.
Here we show the value of T0 as a function of tuning parameter for the three considered experimental systems. a. The ν = 2
metal-insulator transition observed in MoTe2/WSe2[5], the tuning parameter is the vertical displacement field D measured in
V/nm. We identify the critical Dc as where the extrapolated σ(T = 0) vanishes. b. In WSe2/BLG/WSe2, the tuning parameter
is the vertical displacement field. We could not identify a critical value of Dc. Instead, we found Rc(T ) by optimizing the data
collapse of all the experimental curves. Note that we restricted our dataset to a regime of D where the change in resistance is
monotonic. The value T0 can be identified as a chemical potential for conducting charge carriers. These are possibly the result
of potential fluctuations present in bilayer graphene. c. The different samples of GST each have a different annealing history
and composition of Ge, Sb and Te, as outlined in Ref. [20]. Here we ordered the data sets based on the scaling parameter T0

ranging from insulating (T0 < 0) to metal (T0 > 0).

a. Scaling breakdown
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FIG. 7. At low temperatures (Tτ ≤ 1) we expect a breakdown of the scaling regime. This is indeed observed in MoTe2/WSe2[5].
a. Here we show only the low-temperature data (T ≤ 3 or 7 K, respectively on the insulator or metal side of the MIT), scaled
with the same T0 and Rc as is used for the figure in the main text. The experimental data points are clearly not on the
theoretical scaling curve (dashed line). b. We can quantify the deviation from scaling by calculating the distance-squared
between the experimental data points and the theoretical curve. Here we show in colorscale (blue equals good fit, red is bad
fit) the quality of the scaling ansatz as a function of displacement field and temperature. Using the estimate of τ0, we show
with a dashed line where one would expect scaling to break down.

Appendix D: Breakdown of scaling

Note that in the case of MoTe2/WSe2, as expected, the scaling breaks down at low temperatures. Details of this
are shown in Fig. 7. Note that the breakdown of scaling in the epxerimental system is consistent with the theoretical
picture of Fig. 1.

Appendix E: Analysis of the experimental data: Mooij correlations

The data presented in Fig. 4 of the main manuscript is collected from a variety of sources. The analysis to arrive
at the dimensionless temperature coefficient of the resistivity α is for most materials[20, 25–30] based on our earlier
analysis presented in Ref. [10].

The TiAl data presented is from Fig. 6 of Ref. [9]. The three different sets of data presented there are shown in
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Fig. 4 of the main manuscript with filled circles of different colors.
The Mooij correlations for MoTe2/WSe2 are based on the same data analyzed for the scaling of Fig. 3[5], limited

to the temperature range T = 26 – 63 K, and the range of displacement fields D = 0.476 – 0.408 V/nm. The
temperature derivative of the resistance is calculated with a two-point forward finite difference. The only fitting
parameter is R∞ = 1.44 kΩ is obtained by collapsing the data for different displacement fields onto the same curve.
In Fig. 4 of the main manuscript, the data for MoTe2 is presented with an empty upward triangle where the different
colors represent the different displacement fields.
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