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ABSTRACT. This work presents an overview of the most representative models employed
for describing the behavior of biological neuronal networks. In particular, the pioneering
work of A. L. Hodgkin and A. F. Huxley on the neuron physiology modeling and the
developments of E. M. Izhikevich for the description of neuronal networks that are affordable
from a computational point of view, will be presented. Moreover, the role played by astrocyte
cells will be dealt. Astrocytes not only play a supporting role in correct neuronal function,
but also show communication activities, through Ca2+ waves, between themselves and with
neurons. Furthermore, this kind of signalling is essential for the proper functioning of the
human brain neuronal activity, as, for example, in memory and learning. An astrocytes
malfunctioning is, in fact, implicated in diseases such as Alzheimer’s, Parkinson’s, stroke
and epilepsy.

1. Introduction

For decades neurons have been considered as the only cells involved in the generation
and control of brain signaling, while the surrounding glia was supposed to provide structural
and metabolic support to neuronal function. Neuroscience research has focused for long
time on neurons and their interacting networks. However the brain also consists of a large
number of other different cell types, among which glial cells that represent roughly 50%
of the brain cells (Kettenmann and Verkhratsky 2008; Azevedo et al. 2009). In recent
years it has be proven that glial cells and specifically astrocytes play several important
roles in the central nervous system. Astrocytic metabolic deregulation is a hallmark of
neurodegenerative diseases and damaging processes such as amyotrophic lateral sclerosis
(ALS), Alzheimer’s disease (AD), Huntington’s disease (HD), Parkinson’s disease (PD)
and traumatic brain injury (Volterra and Meldolesi 2005; Maragakis and Rothstein 2006;
Hamby and Sofroniew 2010; Kimelberg and Nedergaard 2010; Parpura et al. 2012).

Some of the synapses of the central nervous system are in contact with astrocytes
that wrap around them, thus forming a structural ensemble called the “tripartite synapse”:
presynaptic neuron, post-synaptic neuron and the ensheathing astrocyte (Araque et al. 1999).
In a tripartite synapse the neurotransmitters released from neurons also bind receptors on the
adjacent astrocyte process, activating signaling pathways in the astrocyte which modulate
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synaptic behavior. In addition to contacting neurons, astrocytes are interconnected with
each other by gap junctions, specialized channels which allow nutrients and ions to diffuse
between networks of astrocytes, expanding further the range and magnitude of synaptic
regulation of neurons by astrocytes.

The field of computational neuroscience has almost solely been concentrated on modeling
the role of neuronal components in a variety of cellular-, network-, and system-level
phenomena. The role of astrocytes, beyond their part in homeostatic and metabolic control,
has been much less addressed. Instead of action potential excitability, astrocytes express
Ca2+ based excitability which has been shown to be associated in modulation of neuronal
signaling.

In this article we will consider the close interactions between synaptic terminals and
surrounding astrocytic processes, through the use of biophysical models. Calcium signaling
is the most commonly measured readout of astrocyte activity. These models can be used to
reveal complex interactions and emergent dynamics. Moreover, we will evaluate some of
the models in more detail by implementing, in a Python code, the equations of the original
publications. Our work is expected to guide future computational glioscience studies and
help researchers in selecting suitable models for their research questions. We addition-
ally wish to set some criteria for a successful, reproducible model in the computational
neuroscience capable of simulating a tripartite synapse.

2. Hodgkin–Huxley model

With a series of articles published in the 1950s, Hodgkin and Huxley (1952) have opened
the door to a detailed understanding of how electro-physiological signals are transmitted
within the nervous system. It was from these works that the description of the potential
for action was born. The Hodgkin and Huxley model expresses the electrical behavior of a
nerve cell. The first step in their analysis was to divide the total membrane current into a
capacitance current and an ion current. like this:

I =CM
dV
dt

+ Ii (1)

where I is the total membrane current density (inward current positive), Ii is the ionic current
density (inward current positive), V is the displacement of the membrane potential from its
resting value (depolarization negative), CM is the membrane capacity per unit area (assumed
constant), and t is the time.

A further subdivision of the membrane current can be made by splitting the ionic current
into components carried by sodium ions (INa), potassium ions (IK) and other ions (Il):

Ii = INa + IK + Il (2)

The individual ionic currents expressed in terms of ionic conductances (gNa, gk and ḡl) are
obtained by the relations:

INa = gNa(E −ENa)

IK = gk(E −EK)

Il = ḡl(E −El)
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where ENa and EK are the equilibrium reverse potentials for the sodium and potassium ions,
whereas El is the potential at which the “leakage current” due to chloride and other ions is
zero. For practical applications it is convenient to write these equations in the form:

INa = gNa(V −VNa)

IK = gk(V −VK) (3)

Il = ḡl(V −Vl)

where

V = E −Er,

VNa = ENa −Er,

VK = EK −Er,

Vl = El −Er

and Er is the absolute value of the resting potential; V , VNa, VK , and Vl can then be measured
directly as displacements from the resting potential.

However, the model is extremely expensive to implement. It takes 120 floating point
operations to evaluate 0.1 ms of model time (assuming that each exponent takes only ten
operations), hence, 1200 operations/ms. Thus, one can use the Hodgkin–Huxley formalism
only to simulate a small number of neurons or when simulation time is not an issue.

Since the goal of every scientist exploring information processing in the mammalian
brain is to have a computationally efficient neurons network which is biologically plausible
according to the principles of known anatomy. In this regard we have chosen to use the
Izhikevich model. The model combines the biologically plausibility of Hodgkin–Huxley-
type dynamics with high computational efficiency.

3. Izihkevich model

The Izihkevich model (Izhikevich 2003) consists of a system of two first order non-
linear differential equations. It is a quadratic integrate-and-fire type model with a recovery
variable and is able to replicate several characteristics of biological neurons while remaining
computationally efficient:

V ′
m = 0.04 ·V 2

m +0.05 ·Vm +140−u+ I (4)

u′ = a(bVm −u)

where u and v are dimensionless variables, I is the input to the system, and a and b are
dimensionless parameters which are manipulated to describe different firing patterns. The
variable v is of most interest as it represents the membrane potential of the neuron in
microvolts (mV) and u represents a membrane recovery variable, which accounts for the
activation of K+ ionic currents and inactivation of Na+ ionic currents, and provides negative
feedback to v. After the spike reaches its apex (30 mV), the membrane voltage and the
recovery variable are set according to the following rule: if v ≥ 30 mV, then Vm → c AND
u → u+d.

By changing the parameters a, b, c and d different firing patterns can be simulated. Each
parameter corresponds to different aspects of neural behaviour:
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• The parameter a describes the time scale of the recovery variable u; smaller values
result in slower recovery time.

• The parameter b describes the sensitivity of the recovery variable to the sub thresh-
old fluctuations of the membrane potential v.

• The parameter c describes the after-spike reset value of the membrane potential v
caused by the fast high-threshold K+ conductances.

• The parameter d describes after-spike reset of the recovery variable u caused by
slow high-threshold Na+ and K+ conductances.

Neocortical neurons in the mammalian brain can be classified into several types according
to the pattern of spiking and bursting seen in intracellular recordings of electrical activity.
For our work we consider the Regular Spiking (RS) type of neurons, which are the most
typical neurons in the cortex. When presented with a prolonged stimulus the neurons
fire a few spikes with short inter spike period and then the period increases, known as
spike frequency adaptation. Increasing the strength of the injected dc-current increases
the inter spike frequency, though it never becomes too fast because of large spike-after
hyperpolarizations. Real neuron can be stimulated by injecting pulses of direct current
through an electrode, with the “patch clamp” techniques. Then the membrane potential
response is recorded as function of current intensity and pulse duration. When a stepped
input current is used to stimulate a neuron, the cell continues to fire a sequence of spikes
called spike trains, as illustrated in Fig. 1.

FIGURE 1. Spike discharge pattern of RS neuron of rat in layer 2/3 of area 17
during injection of depolarizing current pulse (200 msec, 0.5 nA).

The observed behavior can be as well simulated with the Izhikievich model by setting the
deep voltage reset parameter c to 65 mV and the “after-spike reset” d to 8. The output of such
a calculation, performed by using Python code, is show in Fig. 2. From the comparison with
rat RS neuron patterns it is evident that the response to the neuro-computational simulation
obtained with the Izhikievich model is resembling with great accuracy the experimental
reference used.
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FIGURE 2. Simulation with the Python program of the Izhikevich model for RS
neurons.

4. Astrocytes computational model

An increasing number of experiments confirm that astrocytes are not just passive read-out
units; they are heavily involved in the modulation of neuronal synapses and their activity
(Fellin et al. 2004; Perea et al. 2009; Clarke and Barres 2013). Although astrocytes are not
electrically excitable cells, in particular they cannot generate action potentials, they possess
a form of chemical excitability based on changes in their intracellular calcium concentration.
From a physiological point of view, astrocytes regulate the current of the synaptic signal
between two neurons by modulating the amount of neurotransmitters in the synaptic cleft
through the dynamics of inter and intracellular calcium. The groundbreaking discovery
in the 1980s that astrocytes express a wide repertoire of neurotransmitter receptors, often
mirroring those present on surrounding synapses, marked a new era in glia research. It was
subsequently shown that these receptors can be activated by the diffusion of neurotransmit-
ters during synaptic activity and cause an increase in Ca2+ in astrocytes. This event can in
turn cause the release by astrocytes of chemical transmitters called “glyotransmitters”, such
as glutamate, ATP, D-serine, and lead to intercellular communication between astrocytes
and neurons (Araque et al. 1999). The gliotransmitters released by astrocytes are capable of
activating neuronal receptors and thus modify neuronal electrical excitability and synaptic
transmission (Fellin et al. 2004; Schipke and Kettenmann 2004; Jourdain et al. 2007). These
observations led to the concept of "tripartite synapses", according to which astrocytes are
considered to be the third element of the signal integration unit (Araque et al. 1999; Volterra
et al. 2002).

In recent years, numerous studies have been carried out on the release mechanism
of chemical transmitters from astrocytes, among all the gliotransmitters, glutamate is
undoubtedly the one that has received the most attention. Recently, through electron
microscopy, it has been shown that astrocytes possess specific receptors for glutamate on
the outer surface of the plasma membrane. The binding of glutamate to its membrane
receptor initiates a series of reactions: the receptor interacts with the G protein which
triggers IP3 signaling. The formed IP3 molecules diffuse into the cytosol and bind to a
specific receptor for IP3 located on the surface of the smooth endoplasmic reticulum (ER)
triggering a mechanism called “calcium-induced calcium release” (CICR).
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In 1994 Yue-Xian Li and John Rinzel deduced a two-variable system, analogous in form
to the classic Hodgkin-Huxley model, to describe calcium dynamics in astrocytes. Their
work consists in the reduction to just two variables of a more complicated model developed
by De Young and Keizer (1992), with nine variables, describing Ca2+ oscillations mediated
by IP3 receptors in endoplasmatic reticulum. The original model is based on experimental
measurements of the open probability of Ca2+ channel and IP3 binding constant. The
subunits of the IP3 receptor channel have one IP3 binding site and two Ca2+ binding site,
one for the activation and one for inhibition at high Ca2+ concentration. The dynamic
variables of the LR model are only the concentration C of free cytosol and the fraction h of
the open inositol triphosphate receptor subunits. With the assumption that IP3 binding is not
related to Ca2+ occupancy at the inactivation site, Li and Rinzel (1994) obtain a “minimal”
model which still retains the ability to reproduce experimental observations:

dC
dt

= Jchan(C, I)+ Jleak − Jpump(C) (5)

and
dh
dt

=
h∞ −h

τh
(6)

The dynamics of C is controlled by three fluxes, corresponding to:

Jchan: a release of Ca2+, mutually controlled by Ca2+ and by IP3 concentration;
Jleak: a passive loss of Ca2+ from the endoplasmic reticulum (ER) to the cytosol;
Jpump: an active absorption of Ca2+ in ER due to the action of the pumps;

Jchan(C) = Ωcm3
∞n3

∞h3[CT − (1+ρA)C] ,

Jleak(C) = ΩL[CT − (1+ρA)C] ,

Jpump(C) =
OpC2

K p2 +C
,

along with the gating variables:

m∞ =
I

I +d1
, n∞ =

C
C+d5

, h∞ =
Q2

Q2 +C
, τh =

1
a2(Q2 +C)

, Q2 =
I +d1

I +d3
d2 .

In the above sets of equations the symbols denote:

ΩL: calcium loss rate;
CT : total cell free Ca2+ concentration in ER, ρA;
Op: max. SERCA pump absorption rate (Sarco-Endoplasmic-Reticulum Ca2+-ATPase);
K p: activation constant of the SERCA pump;
ΩC: maximal IP3 flux;
a2: receptor binding constant for Ca2+ at the inhibition site when IP3 is occupied;
:: ratio of receptor dissociation/binding constants for:
d1: IP3 when the Ca2+ inhibition site is empty;
d3: IP3 when the Ca2+ inhibition site is occupied;
d2: Ca2+ at inhibition site when IP3 is occupied;
d5: Ca2+ at the activation site.
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TABLE 1. Biophysical parameters for the modulation of Ca2+ oscillations in
AM; parameters for FM are in square brackets.

ΩC 6 s−1 d1 0.13 µM
ΩL 0.11 s−1 d2 1.49 µM
Op 0.9 s−1 d3 0.9434 µM
ρA 0.185 O2 0.2 µM−1s−1

CT 2.0 µM− [4.0] d5 0.08234 µM
Kp 0.1− [0.051] - -

IP3 production and degradation

Oβ 0.8 µMs−1 Oδ 0.025 µMs−1

O3k 0.86 µMs−1 Kδ 0.5 µM
K3k 1.0 µM O5p 0.86 s−1

The IP3-induced calcium release channels (IICR) and CICR are represented by m∞ and n∞,
respectively. Therefore, the level of IP3 is directly controlled by the signals affecting the
cell from its external environment. In turn, the level of IP3 determines the dynamic behavior
of the LR model. The calcium signal can therefore be considered as coded information
relating to the level of IP3.

It has been shown experimentally that Ca2+ signals in response to external stimuli encode
information either via frequency modulation (FM) (Parpura et al. 2004) or amplitude
modulation (AM) (Carmignoto 2000). In the following we have explored the range of
biophysical parameters for which the LR model system can exhibit a frequency modulation
(FM) and/or an amplitude modulation (AM) with the level of IP3 (I) as a control parameter.
As an example we report in Figs. 3 and 4 the Ca2+ concentration vs time, in presence of
a step ramp of IP3 levels. The values of used parameters, which give rise to the expected
amplitude and frequency modulation, are illustrated in Table 1.

From the above analysis we found that K p, d5 (the receptor affinity for IP3), and CT can
all regulate the transition between AM and FM coding dynamics.

FIGURE 3. The original LR parameters (Table I) provide amplitude variability of
oscillations that occur at almost fixed frequency, IP3 = 0.355, 0.5, 0.637, 0.675.
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FIGURE 4. A higher SERCA pump Ca2+ affinity (K p = 0.051 µM) is responsible
for oscillations with variable frequency but nearly constant amplitude, IP3 =
0.6634, 0.75, 0.85, 1.2.

5. IP3 regulation: the ChI model

It has been shown that Li-Rinzel model is able to describe Ca2+ oscillations in astrocytes
with an affordable computational cost. As consequences this allows to extend the model by
including further biochemical processes that are relevant for a more realistic description of
astrocytes activity. Those extensions have to include IP3 production and degradation within
the astrocyte cell, which are mediated by two membrane-associated enzymes PLCβ and
PLCδ . In astrocytes, IP3 together with diacylglycerol (DAG) is produced by hydrolysis
of phosphatidylinositol 4,5-bisphosphate (PIP2) by two phosphoinositide-specific phos-
pholipase C (PLC) isoenzymes, PLCβ and PLCδ (Rebecchi and Pentyala 2000). PLCβ

is primarily controlled by cell surface receptors; hence, its activity is linked to the level
of external stimulation (i.e., the extracellular glutamate) and as such, it pertains to the
glutamate-dependent IP3 metabolism. PLCδ is the enzyme responsible of endogenous IP3
production in astrocytes, it is essentially activated by increased intracellular Ca2+ levels
(Rhee and Bae 1997). Here we will analize a three-variable model for glutamate-induced
intracellular calcium dynamics caused by the synaptic activity (De Pittà et al. 2009).

The model proposed for PLCδ -mediated IP3 production was derived from structural and
mutational studies (Pawelczyk and Matecki 1997; Höfer et al. 2002), and describe the flux
of IP3 as given by

Jδ = Oδ

(︃
1− I

I +Kδ

)︃(︃
C2

C2 +Kδ

)︃
(7)

where Oδ is the maximal rate of IP3 production by PLCδ and Kδ is the inhibition constant
of PLCδ activity. Experiments revealed that high IP3 concentrations – i.e., larger than 1µM
– inhibit PLCδ activity by competing with PIP2 to bind with the enzyme (Allen and Barres
2009)

The degradation of IP3 in astrocytes is realized by two pathways: the dephosphorylation
of IP3 by inositol polyphosphate 5-phosphatase (IP-5P), and the phosphorylation of IP3
by the IP33-kinase ( IP3-3K). For the description of the two IP3 degradation dynamics the
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FIGURE 5. Schematic representation of the biophysical network model.

following relation has been used:

J5p = O5p

(︃
I

I +K5p

)︃
(8)

where O5p is the maximal rate of IP-5P mediated IP3 degradation in the linear approxima-
tion. For IP3-3K degradation we can write:

J3k = O3k

(︃
C4

C4 +K4
3k

)︃(︃
I

I +K3k

)︃
(9)

where O3k is the maximal rate of IP3 degradation by IP3-3K.
In summary, the ChI model of Ca2+ dynamics with endogenous IP3 metabolism is based

on the two Li-Rinzel equations (5) and (6) but the IP3 concentration (I) is now provided by
the differential equations (7), (8), (9):

dI
dt

= Jδ − J3k − J5p

= Oδ

(︃
1− I

I +Kδ

)︃(︃
C2

C2 +Kδ

)︃
−O3k

(︃
C4

C4 +K4
3k

)︃(︃
I

I +K3k

)︃
−O5p

(︃
I

I +K5p

)︃
(10)

6. G-ChI: a model for glutamate regulation of IP3 production

Glutamate is by far the most present neurotransmitter in the brain and is the main
agent of excitatory neurotransmission. Recently, through electron microscopy, it has been
shown that astrocytes possess specific receptors for glutamate on the outer surface of the
plasma membrane. The bond of glutamate to its membrane receptor initiates a series of
reactions. The receptor interacts with the heterotrimeric G-protein, so called because it is
composed of three different polypeptide subunits called α , β and γ , forming a receptor-
protein complex, on the inner surface of the membrane. The interaction with the receptor
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induces a conformational change of the α subunit which causes the release of bounded
GDP and its substitution with GTP which in turn activates the phospholipase effector Cβ

phosphatidyl-inositol- specific (PI-PLCβ )2; PI-PLCβ is also localized on the inner surface
of the membrane, bounded by the interaction between its PH domain (P leckstrin-h omology)
and a PIP2 molecule immersed in the bilayer. The PI-PLCβ enzyme catalyzes a reaction
that splits PIP2 into two molecules, inositol 1,4,5-triphosphate (IP3) and diaglycerol (DAG).

Several are the available models for G protein-coupled receptors, and the choice of what
model to use rather than another depends on the level of biological detail and the questions
one is interested in. Here our focus is on the rate of IP3 production. The contribution of
glutamate signals to IP3 production can be taken into account as an additional production
term in the IP3 equation of the above three-variable ChI model. The resulting new model is
referred to as the G-ChI model (De Pittà et al. 2009).

The IP3 production by PLCβ (Jβ ) can be taken proportional to the fraction of bound
receptors, defined as ΓA = [R∗]/[R]T where [R∗] is the activation of PLCβ and [R]T the total
number of receptors that is constant:

Jβ = Oβ .ΓA (11)

where Oβ is the maximal rate of IP3 production by PLCβ and lumps information on receptor
surface density as well as on the size of the PIP2 reservoir. In conclusion the G-ChI model
for IP3 / Ca2+ signaling is constituted by three ODEs: for the intracellular Ca2+ (C), for
the IP3R gating (h) and for the mass balance equation for intracellular IP3 lumping terms,
respectively:

dC
dt

= Ωcm3
∞h3[CT − (1+ρA)C]+ΩL[CT − (1+ρA)C]−

OpC2

K p2 +C
(12)

dh
dt

=
h∞ −h

τh
(13)

dI
dt

= Oβ [θ(t)−θ(T − t)]+Oδ (1−
I

I +Kδ

)(
C2

C2 +Kδ

)

−O3k(
C4

C4 +K4
)(

I
I +K3

)O5p(
I

I +K5p
)

(14)

7. Conclusions

In this work we have presented, through computational models and simulations, the
complex dynamics of Ca2+ in astrocytes in response to the extracellular signals of the
neurotransmitter glutamate. A prerequisite for unraveling the response of astrocytes to
such signals is an in-depth understanding of the complex IP3-related metabolic pathways
that regulate the intracellular dynamics of Ca2+. In response to agonists, like hormones or
neurotransmitters, and spontaneously as well, the majority of astrocytes exhibit oscillations
of intracellular Ca2+. There are two major types for these oscillations: those that are
dependent on periodic fluctuations of the cell membrane potential and are associated with
periodic entry of Ca2+ through voltage-gated Ca2+ channels, and those that occur in the
presence of a voltage clamp. Our focus here is on the latter type and, in particular, on the
so called process of Ca2+-induced Ca2+ release (CICR) from the astrocyte’s endoplasmic

Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat., Vol. 100, No. 2, LC1 (2022) [12 pages]



NEURON AND ASTROCYTE COMPUTATIONAL MODELS . . . LC1-11

reticulum stores, which depends on cytosolic concentration of the second messenger inositol
1,4,5-trisphosphate. Two main types of IP3-mediated CICR are observed in astrocytes:
(i) transient Ca2+ oscillations that are confined to their (primary) processes and (ii) Ca2+

elevations propagating along these processes as regenerative Ca2+ waves, often reaching
the cell soma and triggering whole-cell Ca2+ signaling (Pasti et al. 1997; Sul et al. 2004).
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