
Developing and maintaining a mixed

Java/Groovy software using Maven

Tiziano Fagni
Network Multimedia Information Systems (NeMIS) laboratory,

ISTI - CNR, Pisa, Italy,
tiziano.fagni@isti.cnr.it

July 6, 2013

Abstract

Developing and maintaining a complex software today is not a trivial
task especially if you don't use the proper tools. This is even more true if
your software depends on a lot of external libraries/frameworks. In such
cases, a special care must be taken in order to proper handle all the third-
party dependencies required by the software you are building. Maven is a
build automation and project management tool that automatically man-
ages the dependencies of a software in a project and that provide a lot
of facilities to support the developers in all phases of software develop-
ment (building, testing, packaging) and communications (e.g. generating
reports, project web site, etc.). In this article, we will show you how
Maven can be used e�ectively to support the application development in
mixed projects which use the Java/Groovy languages, two very popular
programming languages among the developers.

1 Introduction

Today develop a new software in the Java world is quite easy. The Java language
is mature and feature rich with a very complete standard library (known as
JDK). If the JDK is not su�cient, there are a lot of open source or closed
third-party libraries which can allows the developers to add speci�c features to
their software very easily. As developer, the real challenge is not only write
code which does something but ensure that all the code you write and integrate
works correctly over time. You must not spend time by hacking the way you
compile the source code or asking yourself which is the best way to integrate
the testing phase in your project. You should use some tool which standardize
in some way these tasks and let you concentrate on just what it does matter.
If you try to write applications/libraries with mixed source code (like Java and
Groovy), the problems described above are ampli�ed. In these cases, a project
management tool able to drive the development process is simply a necessity.
Apache Maven seems to be a very good answer to these requirements.

The aim of the article is to show how to use Maven to develop/mantain
sofware project written by using both Java and Groovy languages. For these

1

purposes, in the next sections, we will brie�y describe the programming lan-
guages Java and Groovy, then we will see in more depth how Maven works, how
to con�gure it and how to use it to mantain the software projects on which you
are working.

2 The ingredients of this technological recipe

2.1 The Apache Maven tool

Maven [2] is a powerful build automation tool used primarily for Java projects.
Maven serves a similar purpose to the Apache Ant [1] tool, but it is based on
di�erent concepts and works in a di�erent manner. Maven in a certain sense
is a more complete tool than Ant and it provides for free a lot of features that
in Ant are not available or are di�cult to achieve. In particular, Maven main
bene�ts are the following:

• Making the build process easy. In particular, building or deploying a
software is just a pair of shell commands away and a lot of complications
are hidden to the developers.

• Automatic dependencies management. Generally, it is su�cient to de-
clare which are the direct libraries from which your software depends on
and Maven automatically downloads all the declared dependencies (in a
transitive way!) inside your project. Maven knows where to �nd all the
declared libraries because has access to one ore more global software repos-
itories (this is con�gurable by the developers) containing all the libraries
commonly used or private and speci�c to certain projects.

• Providing a uniform build system. Maven uses the POM (Project Ob-
ject Model) to describe completely a project. The POM is an XML �le
where the developers put all the informations related to the project. These
information include the name and version of the software, the set of de-
pendencies of the project, the set of software repositories in use, where
to �nd sources, etc. Given all these info, Maven provides a set of pre-
de�ned goals (i.e. target command) to build and deploy software. These
goals can be customized or enriched by using speci�c plugins. Each plugin
can modify the default behaviour or add new features to the building and
deployment process. In general, you can use very similar POM for very
similar project, so a POM speci�c for a certain type of software (e.g. Web
apps, Jar library, etc.) can be easily reused multiple times with minor
customization in several projects.

• Automatic testing during deployment of the software. During the build
process, Maven can be con�gured to execute all the required tests and
to force the stop of building process in case on some failure. This can
be very useful to avoid deploying buggy software with unwanted runtime
errors and inconsistencies.

• Providing guidelines for best practices development. Maven encourages
the developers to follow good and e�ective rules while developing the soft-
ware. For example, the default project folders organization already pro-
pose standard directories for sources (both the software source and test

2

source) and resources (both the software resources and test resources)
which clearly drives developers to put things in the right places.

2.2 The Java language

Java [6] was proposed by Sun in 1995 at time when Internet started to have
growing popularity among people. According to several sources [3, 5], today
is one of the most popular general purpose programming languages and it is
used to develop the most varied types of software which run in a multitude of
di�erent devices and operating systems. The great success of Java is due to
several factors. Among these, the most important are:

• Executable portability. The Java slogan is "Write once, runs everywhere":
it basically means that in principle you write the application, compile it
just one time and runs it on every system where a compatible Java Virtual
Machine (JVM) is available.

• Easy syntax and object-oriented programming. The syntax is very easy
to learn and it is similar to the syntax found in C and C++, which were
very popular before the introduction of Java. Moreover, the language is
completely object-oriented with a logical model based on simple single
inheritance and extensive use of interfaces to de�ne common behaviour
for objects.

• Automatic memory management. Java allocates automatically the mem-
ory required by the code that is running and deallocates it when it is no
more referenced by the software (by providing an internal garbage col-
lector). In this way and di�erently from languages like C or C++, the
programmer is free from correctly managing the memory and can concen-
trating on writing better code.

• Make distributed computing easy. Java is designed to make distributed
computing easy with the networking capability that is inherently inte-
grated into it.

• Security and robustness. Java was one of the �rst languages that con-
sidered security as a �rst citizen, providing concept like sandbox to allow
the usage of resources in a controlled environment or to only allow the
execution of software cryptographically signed. The robustness is another
important aspect handled by Java language which provides a robust mech-
anism of exception handling.

• Standard platform library. Java provides for free a big standard library
which covers a lot of speci�city occurring in normal development process:
string processing, I/O, security, collections management of data, etc.

Here it is a simple and revised classic "HelloWorld" in Java:

Listing 1: A revised classic "HelloWorld" in Java

import java.lang .*;

public class Hello {

private String name = "Noname";

3

public void setName(String name) {

this.name = name;

}

public String getName () {

return this.name;

}

public void sayHello () {

System.out.println("Hello world , "+

getName ()+"!");

}

public static void main(String [] args) {

Hello h = new Hello ();

hello.setName("Tiziano");

hello.sayHello ();

}

}

2.3 The Groovy language

Groovy is an object-oriented programming language for the Java platform. It
is a dynamic language with features similar to those of Python, Ruby, Perl,
and Smalltalk. It can be used as a scripting language for the Java Platform, it
is dynamically compiled to Java Virtual Machine (JVM) bytecode, and inter-
operates perfectly with other Java code and compiled JVM libraries. Groovy
uses a Java-like curly-bracket syntax. Most Java code is also syntactically valid
Groovy. The main features of the language are the following:

• The code is compact and clean. The syntax is very similar to Java but
Groovy adds some "syntactic sugar" to make things more readable and
expressive. Moreover the syntax is by far less pedantic than Java, giving
the developers the opportunity to write much less code and to be generally
more productive.

• The language is both statically and dynamically typed. A lot of typical
characteristics of a scripting language are included in Groovy: native syn-
tax for arrays, dictionaries and regular expressions, expressions embedded
inside strings, safe navigational operator, simple and coherent manipula-
tion of natural hierarchical structures (like HTML �le, XML �le, Swing UI,
etc.), operator overloading, and several paradigms coming from functional
world like closures, curry functions and lazy evaluation.

• Groovy o�ers through GroovyBeans technology a faster and cleaner way
to add JavaBeans support to classes. The language automatically creates
the necessary accessor and mutator methods corresponding to a declared
property in a Groovy class.

• Groovy o�ers great support for metaprogramming and DSLs through the
use of ExpandoMetaClass, Extension Modules (only in Groovy 2), Cate-
gories and DelegatingMetaClass.

4

• Groovy uses the powerful Java standard library but adds to to the classes
of the JDK a lot of additional helper methods, which simplify a lot the life
of programmers. For example, a Groovy program that print and numbers
each line of a textual �le is as simple as:

def cont = 1

new File("/path/to/filename"). eachLine{

println "${cont ++}. ${it}"

}

• Being a language for JVM, Groovy is 100% compatible with code written
in Java and in general with all languages that target the JVM platform.
This essentially means that you can freely mix code coming from both
languages in a transparent way, giving the developers all the freedom and
the �exibility to choose the proper language for the task to be resolved.

For comparison with Java, here it is the same "HelloWorld" programs as before
now written in Groovy:

Listing 2: A revised classic "HelloWorld" in Groovy

class Hello {

String name = "Noname"

def sayHello () {

println "Hello world , ${getName ()}!"

}

}

def h = new Hello() {name = "Tiziano"}

h.sayHello ()

3 How Maven works: main concepts

Maven handles projects through the de�nition of a proper Project Object Model
(usually the �le "pom.xml"), a con�guration �le which describes exactly what
to do when building or deploying a software. Maven can be invoked through the
command mvn from the main folder of project (the folder containing the POM
�le, pom.xml).

Maven is strongly based on "convention over con�guration" [4], a software
design paradigm which seeks to decrease the number of decisions that develop-
ers need to make, gaining simplicity, but not necessarily losing �exibility. This
property allows the developers to write a minimal number of directives in POM
�le and Maven will still be able to manage adequately your project. This is pos-
sible because Maven, for each directive not speci�ed by developers, will assume
reasonable default values. Here you can see the minimum POM �le that you
can write:

Listing 3: The most simple Maven POM �le.

<project xmlns="http :// maven.apache.org/POM /4.0.0"

xmlns:xsi="http ://www.w3.org /2001/ XMLSchema -instance"

xsi:schemaLocation ="http :// maven.apache.org/POM /4.0.0

5

http :// maven.apache.org/xsd/maven -4.0.0. xsd">

<modelVersion >4.0.0</modelVersion >

<groupId >com.mycompany </groupId >

<artifactId >project_name </artifactId >

<version >1.0- SNAPSHOT </version >

</project >

Excluding information contained in the tags "project" and "modelVersion"
which describe the speci�c version of POM to use, it is su�cient that you spec-
ify the "domain" name of your project (the tag "groupId"), the speci�c name
of project (the tag "artifactId") and the current version of project (the tag
"version"). Even with this minimal set of information, Maven is able to build
a Jar distribution of your classes by performing correctly tasks like cleaning,
compilation, packaging and installation. For example, cleaning and compil-
ing the source code of a project can be easily done by issuing the command
mvn clean compile from a command prompt.

3.1 The dependency management

Maven is able to manage the dependencies between projects. You can easily
specify a dependency on your project by another project (in Maven terms called
"artifacts") by simply declaring it in the POM �le. For example, you can declare
the dependency of your software from version 1.2.17 of artifact log4j in this way:

Listing 4: Declaring a dependency from a speci�c artifact.

<project xmlns="http :// maven.apache.org/POM /4.0.0"

xmlns:xsi="http ://www.w3.org /2001/ XMLSchema -instance"

xsi:schemaLocation ="http :// maven.apache.org/POM /4.0.0

http :// maven.apache.org/xsd/maven -4.0.0. xsd">

...

<dependencies >

...

<dependency >

<groupId >log4j</groupId >

<artifactId >log4j</artifactId >

<version >1.2.17 </version >

</dependency >

...

</dependencies >

</project >

The dependencies management works also for your project. This is why it
is mandatory to declare in the project POM the triple <groupID, artifactID,
version> which uniquely identi�es your artifact among all the other declared
artifacts. In that way, every external project which depends on your project's
artifact can easily use it.
An open question is where Maven can �nd all available artifacts (such which can
be referenced through the dependency mechanism). Maven can make use of the
so called software repositories. They are repositories containing all artifacts and
related metadata and are organized in such way that it is easy for the tool to dis-
cover and retrieve the requested information. The repository can be local (local

6

to the machine) or remote (located on a remote machine.) The local repository
works like a cache for most referenced artifacts by all local projects and as a
private repository for artifacts generated by private local projects. Maven will
use one local repository for each user on a speci�c machine (normally located
under .m2 folder in the user home directory). The remote repository generally
can have public or limited access by the users and can be targeted toward a
speci�c type of software (e.g. public repository for open source software like
Maven Central Repository1, restricted repository for company speci�c software,
etc.). Generally Maven can use an unlimited number of remote repositories in
a given project.
Maven resolves the requested dependency in a project by trying to �nd the re-
quested artifact �rst in the local user repository and then, if it can not satisfy
it, in the list of con�gured remote repositories. If the found artifact is located
remotely, Maven downloads a copy of the artifact on the local repository, and
then it makes the artifact available to the build process of the project. Maven
will reserve a special treatment to artifacts declared with tag <version> con-
taining the su�x SNAPSHOT. They are "work-in-progress" code. Maven breaks
components into "releases" and "snapshots". When it stores release artifacts
on a software repository, it makes use only of the triple <groupID, artifactID,
version> to uniquely identify a speci�c version of the software. When it stores
snapshots of a software, Maven uses the triple <groupID, artifactID, version>
plus build time to uniquely identify a software version. In this way, successive
snapshots build of a project with the same version value (e.g. 1.0-SNAPSHOT)
generate di�erent build versions and Maven will correctly use the last generated
version of the software when required.

3.2 The build lifecycle

Maven is based around the central concept of a build lifecycle. What this means
is that the process for building and distributing a particular artifact is clearly
de�ned. There are 3 main built-in build lifecycle de�ned:

• clean: it handles the cleaning process in a project.

• default: it handles the building, testing and deployment of artifacts in a
project.

• site: it handles the documentation process of a project.

Every build lifecycle is composed by an ordered set of phases which essentially
speci�es the logical steps to be performed in a speci�c build lifecycle. As an
example, the default build lifecycle is composed by the following ordered phases
(as reported by original Maven documentation):

1This is the default remote repository con�gured for a new project and it contains all the

more popular Java libraries released under open source license.

7

validate Validate the project is correct and all necessary information is
available.

compile Compile the source code of the project.

test Test the compiled source code using a suitable unit testing frame-
work. These tests should not require the code be packaged or
deployed.

package Take the compiled code and package it in its distributable
format, such as a JAR.

integration-test Process and deploy the package if necessary into an
environment where integration tests can be run.

verify Run any checks to verify the package is valid and meets quality
criteria.

install Install the package into the local repository, for use as a depen-
dency in other projects locally.

deploy Done in an integration or release environment, copies the �nal
package to the remote repository for sharing with other developers
and projects.

You can invoke directly some speci�c phase and Maven will ensure that
before executing the requested phase it will have already executed the previous
phases declared in the build lifecycle. So giving the command mvn package,
Maven will execute the goals validate −→ compile −→ test −→ package in
the speci�ed order.

Every phase is described by using an ordered set of goals which specify in
a more granular way how to realize of the considered phase. Every goal can
generally be linked to zero, one or more phases. It depends on the genericity
of considered goal. If the goal is very generic it could be used for very di�erent
purposes and therefore in several di�erent phases. If a goal is not linked to any
speci�c phase, it can be invoked directly through Maven like any other phase.

Maven is a generic project management tool that is not tied to a speci�c type
of software project, nor to a speci�c language such as Java. By default, it can
be used to generate Jar libraries, Web applications (.war archives), enterprise
applications (.ear archives), and, thanks to its plugin architecture, extended by
developers to be able to generate a lot of other types of custom artifacts.
Maven has two ways to associate the speci�c goals to phases of a certain build
lifecycle. The �rst way is to specify in the POM �le the type of artifact that you
want to build through the tag <packaging>. The default possible values are
jar, war, ear and pom. Specify a particular value for this tag implies associate
a speci�c mapping of goals with the set of available phases. For example, to
build a Jar library you must declare:

Listing 5: Declaring the type of main artifact to build.

<project xmlns="http :// maven.apache.org/POM /4.0.0"

8

xmlns:xsi="http ://www.w3.org /2001/ XMLSchema -instance"

xsi:schemaLocation ="http :// maven.apache.org/POM /4.0.0

http :// maven.apache.org/xsd/maven -4.0.0. xsd">

...

<packaging >jar</packaging >

...

</project >

The second way is through the use of 3rd-party plugins which provide new
goals for the project. You can specify in the POM �le to use some goals of a
certain plugin. The plugin knows the phase it must link to, so it can customize
the build process. For example, to generate an additional Jar artifact containing
the source code of the project, you can add:

Listing 6: Customize build process through the use of plugins.

<project xmlns="http :// maven.apache.org/POM /4.0.0"

xmlns:xsi="http ://www.w3.org /2001/ XMLSchema -instance"

xsi:schemaLocation ="http :// maven.apache.org/POM /4.0.0

http :// maven.apache.org/xsd/maven -4.0.0. xsd">

...

<build >

<plugins >

<!-- Used to pack the source code -->

<plugin >

<groupId >org.apache.maven.plugins </groupId >

<artifactId >maven -source -plugin </artifactId >

<version >2.2.1</version >

<executions >

<execution >

<id>attach -sources </id>

<phase >verify </phase>

<goals >

<goal>jar</goal>

</goals >

</execution >

</executions >

</plugin >

</plugins >

</build >

...

</project >

Here we are instructing Maven to execute the goal jar of plugin identi�ed
by triple <org.apache.maven.plugins, maven-source-plugin, 2.2.1> in the verify

phase of default build lifecycle.

3.3 The default source structure of the project

Until now, we have seen how the Maven build process is structured and works.
In Listing 3, we showed the minimal POM �le that you can write and which
can be used successfully by Maven to do a lot of things. To be able to perform
correctly the build process, Maven assumes that your project is structured in
a certain way. In particular, it targets by default to a Java project (later we

9

will see how to extend this also to Groovy �les). The default Maven project
directory is as follows:

src/main/java Application/Library sources
src/main/resources Application/Library resources
src/main/filters Resource �lter �les
src/main/assembly Assembly descriptors
src/main/config Con�guration �les
src/main/scripts Application/Library scripts
src/main/webapp Web application sources
src/test/java Test sources
src/test/resources Test resources
src/test/filters Test resource �lter �les
src/site Site
target/ The output build directory
LICENSE.txt Project's license
NOTICE.txt Notices and attributions required by

libraries that the project depends on
README.txt Project's readme
pom.xml The Project Object Model �le

The src folder contains all the source material for building the project. In
particular, the Java source �les must be in subfolder src/main/java and the ap-
plication/library resource �les must be stored in subfolder src/main/resources.
Note that Maven separates the source folders of the application/library (all that
is inside the folder src/main/) from the source folder of test code for the appli-
cation/library (all that is inside the folder src/test).
If you follow the previous structure for your project, it is not necessary to spec-
ify anything in your POM about where to �nd the sources (this all the magic of
"convention over con�guration"). You can obviously also put your source �les
in other directories but in that case you must indicate to Maven through the
POM the new folder containing the source code. To add new source folders,
simply add this to your POM �le specifying the folder to add (in this example
src/main/another_folder):

Listing 7: How to add several source directories to your project.

<project xmlns="http :// maven.apache.org/POM /4.0.0"

xmlns:xsi="http ://www.w3.org /2001/ XMLSchema -instance"

xsi:schemaLocation ="http :// maven.apache.org/POM /4.0.0

http :// maven.apache.org/xsd/maven -4.0.0. xsd">

...

<build >

<plugins >

<plugin >

<groupId >org.codehaus.mojo</groupId >

<artifactId >build -helper -maven -plugin </artifactId >

<executions >

<execution >

<phase >generate -sources </phase >

<goals ><goal>add -source </goal></goals>

10

<configuration >

<sources >

<source >src/main/another_folder

</source >

</sources >

</configuration >

</execution >

</executions >

</plugin >

</plugins >

</build >

...

</project >

3.4 Integration of Groovy into Maven build process

In this section we'll see how to integrate the compilation phase of Groovy �les
of the project into global Maven build process. To process correctly Groovy
�les, the POM �le used by Maven need to be extended by a custom plugin
which adds the feature "compile Groovy �les" to the tool. This can be done by
customizing the POM in this way:

Listing 8: How to add several source directories to your project.

<project xmlns="http :// maven.apache.org/POM /4.0.0"

xmlns:xsi="http ://www.w3.org /2001/ XMLSchema -instance"

xsi:schemaLocation ="http :// maven.apache.org/POM /4.0.0

http :// maven.apache.org/xsd/maven -4.0.0. xsd">

...

<build >

<plugins >

<plugin >

<artifactId >maven -compiler -plugin </artifactId >

<!-- 2.8.0 -01 and later require

maven -compiler -plugin 3.0 or higher -->

<version >3.0</version >

<configuration >

<compilerId >groovy -eclipse -compiler </compilerId >

<!-- set verbose to be true if you

want lots of uninteresting messages -->

<!-- <verbose >true</verbose > -->

</configuration >

<dependencies >

<dependency >

<groupId >org.codehaus.groovy </groupId >

<artifactId >groovy -eclipse -compiler </artifactId >

<version >2.8.0 -01</version >

</dependency >

<!-- for 2.8.0 -01 and later you must

have an explicit dependency on

groovy -eclipse -batch -->

<dependency >

<groupId >org.codehaus.groovy </groupId >

11

<artifactId >groovy -eclipse -batch </artifactId >

<version >2.1.5 -03</version >

<!-- or choose a different compiler version -->

<!-- <version >1.8.6 -01</version > -->

<!-- <version >1.7.10 -06</version > -->

</dependency >

</dependencies >

</plugin >

</plugins >

</build >

...

<dependencies >

...

<dependency >

<groupId >org.codehaus.groovy </groupId >

<artifactId >groovy -all</artifactId >

<version >2.1.5</version >

</dependency >

...

</dependencies >

</project >

We extend the behaviour of standard component maven-compiler-plugin to use
the groovy-eclipse-compiler plugin when one of its standard goals is called.
The groovy-eclipse-compiler manages the task of compile the Groovy source
�les. Coherently with Java, it searches for Groovy �les in speci�c directories:
src/main/groovy for source code of the application/library, src/test/groovy
for test source code of the application/library. In order for this process to work
properly, you must also include in the section dependencies of your POM the de-
pendency from Groovy artifact (in this case the 2.1.5, the current last available
version of the language runtime).

4 Useful customizations of the Project Object
Model

4.1 Using multiple software repositories

As discussed in section 3.1, Maven can use multiple software repositories to
resolve dependencies. Let's see how to change the POM to make use of several
software repositories:

Listing 9: Using multiple software repositories.

<project xmlns="http :// maven.apache.org/POM /4.0.0"

xmlns:xsi="http ://www.w3.org /2001/ XMLSchema -instance"

xsi:schemaLocation ="http :// maven.apache.org/POM /4.0.0

http :// maven.apache.org/xsd/maven -4.0.0. xsd">

...

<repositories >

<repository >

<id>my-internal -site -1</id>

12

<url>http :// myserver1/repo</url>

</repository >

<repository >

<id>my-internal -site -2</id>

<url>http :// myserver2/repo</url>

</repository >

</repositories >

...

</project >

After being declared, Maven will access the repositories in the speci�ed order
when need to resolve an artifact. Sometimes it is necessary to access to a
restricted repository (for example because you need to access to a proprietary
artifact). In that case, you can provide the required credentials inside the Maven
settings �le (the �le <home_user_directory>/.m2/settings.xml) as follows:

Listing 10: How to specify credentials to a speci�c repository

<settings xmlns="http :// maven.apache.org/SETTINGS /1.0.0"

xmlns:xsi="http ://www.w3.org /2001/ XMLSchema -instance"

xsi:schemaLocation ="http :// maven.apache.org/SETTINGS /1.0.0

http :// maven.apache.org/xsd/settings -1.0.0. xsd">

...

<servers >

<server >

<id>my-internal -site -1</id>

<username >my_login </username >

<password >my_password </password >

</server >

</servers >

...

</settings >

In this case, we are assuming that the server http://myserver1/repo has
needs of the declared credentials (user: my_login and password: my_password)
to allow access to artifacts. Note that the link among the information declared
in both �les is made through the id tag (the value must be the same in both
�les).

4.2 Using multiple pro�les

Another useful thing you can do in a project is to de�ne di�erent pro�les for spe-
ci�c contexts. The classic example is when you exploit this feature to generate
two pro�les, one for snapshot builds and the other for release builds. Inside each
build pro�le, you can de�ne where deploy the generated artifacts and rede�ne
the value of certain properties (like the name of the artifact to be generated) or
create new properties speci�c for the considered pro�le. Such scenario can be
made by declaring:

Listing 11: Using multiple software repositories.

<project xmlns="http :// maven.apache.org/POM /4.0.0"

xmlns:xsi="http ://www.w3.org /2001/ XMLSchema -instance"

xsi:schemaLocation ="http :// maven.apache.org/POM /4.0.0

13

http :// maven.apache.org/xsd/maven -4.0.0. xsd">

...

<profiles >

<profile >

<id>devel </id>

<!-- Devel profile is active by default -->

<activation >

<activeByDefault >true</activeByDefault >

</activation >

<properties >

<artifact.name>artifact -devel </artifact.name>

</properties >

<distributionManagement >

<repository >

<id>my-internal -site -1</id>

<url>

http :// http :// myserver1/repositories/snapshots

</url>

</repository >

</distributionManagement >

</profile >

<profile >

<id>release </id>

<properties >

<artifact.name>artifact -release </artifact.name>

</properties >

<distributionManagement >

<repository >

<id>my-internal -site -1</id>

<url>

http :// myserver1/repositories/releases

</url>

</repository >

</distributionManagement >

</profile >

</profiles >

...

</project >

Here we de�ne the pro�les devel and release. On each pro�le we rede�ne the
variable artifact.name to be coherent with the speci�c pro�le we are considering.
More importantly, each pro�le de�nes the repository where an artifact built
with that pro�le should be deployed. For example, in pro�le devel, activated by
default if not di�erently speci�ed, we assume that the artifact will be deployed
on url http://http://myserver1/repositories/snapshots. Eventually, if
the server has restricted access, we can specify the corresponding credentials on
the Maven settings �le as explained in section 4.1.

14

4.3 Building a bundle of main artifact

Sometimes it is useful to generate an artifact containing the union of several
artifacts used in the project. For example, assume that the main artifact of a
project should be a library Jar �le. By default, Maven will build an artifact
containing all your compiled code but it will exclude from the artifact gener-
ated all the code coming from artifacts from which your code depends on. This
default setting is reasonable because Maven thinks that you want to distribute
your software (the Jar library) through the Maven's software repositories and so
easily included as dependency in other Maven projects. Sometimes we simply
want to generate a secondary artifact containing all compiled code (called bun-

dle, it will contain your own code plus code of external dependencies) because
you want to be able to immediate use the artifact (e.g. call a Java/Groovy
program located in the artifact).
To generate a bundle of main artifact, you should update your POM �le in this
way:

Listing 12: Generating a bundle of our software.

<project xmlns="http :// maven.apache.org/POM /4.0.0"

xmlns:xsi="http ://www.w3.org /2001/ XMLSchema -instance"

xsi:schemaLocation ="http :// maven.apache.org/POM /4.0.0

http :// maven.apache.org/xsd/maven -4.0.0. xsd">

...

<build >

<plugins >

<!-- Used to build a bundle containing the

code of software and all

its library dependencies -->

<plugin >

<groupId >org.apache.maven.plugins </groupId >

<artifactId >maven -shade -plugin </artifactId >

<version >2.0</version >

<configuration >

<shadedArtifactAttached >true</shadedArtifactAttached >

<finalName >

software_name -bundle

</finalName >

<createDependencyReducedPom >

false

</createDependencyReducedPom >

</configuration >

<executions >

<execution >

<phase >package </phase>

<goals >

<goal>shade </goal>

</goals >

</execution >

</executions >

</plugin >

</plugins >

</build >

15

...

</project >

In the example, the bundle name will have the pre�x software_name-bundle.

4.4 Generating a secondary artifact containing the source

code

Sometimes we want to make available the source code of our software as a Jar
artifact (e.g. useful for debugging purposes when our library code is used by
other software). To do this, you should update your POM �le as follows:

Listing 13: Generating a secondary artifact containing the source code of our
software.

<project xmlns="http :// maven.apache.org/POM /4.0.0"

xmlns:xsi="http ://www.w3.org /2001/ XMLSchema -instance"

xsi:schemaLocation ="http :// maven.apache.org/POM /4.0.0

http :// maven.apache.org/xsd/maven -4.0.0. xsd">

...

<build >

<plugins >

...

<!-- Used to pack the source code -->

<plugin >

<groupId >org.apache.maven.plugins </groupId >

<artifactId >maven -source -plugin </artifactId >

<version >2.2.1</version >

<executions >

<execution >

<id>attach -sources </id>

<goals >

<goal>jar</goal>

</goals >

</execution >

</executions >

</plugin >

...

</plugins >

</build >

...

</project >

16

5 A complete template Maven project using Java/-
Groovy code

5.1 The POM of the template project

Following we show the complete template of Maven's POM which can be used
to maintain projects based on code written in the programming languages Java
and Groovy:

Listing 14: The complete Maven POM template.

<project xmlns="http :// maven.apache.org/POM /4.0.0"

xmlns:xsi="http ://www.w3.org /2001/ XMLSchema -instance"

xsi:schemaLocation ="http :// maven.apache.org/POM /4.0.0

http :// maven.apache.org/xsd/maven -4.0.0. xsd">

<modelVersion >4.0.0</modelVersion >

<groupId >com.company </groupId >

<artifactId >software_name </artifactId >

<!-- ********** CHANGE THESE PROPERTIES WHEN UPDATE

TO A NEW SOFTWARE VERSION. IMPORTANT: IN DEVEL LEAVE

"-SNAPSHOT" AT THE END OF VERSION. MAVEN WILL THREAT

IT DIFFERENTLY! ***** -->

<version >0.1.0</version >

<packaging >jar</packaging >

<name>software_name </name>

<url>http ://www.software_name.com</url>

<properties >

<project.build.sourceEncoding >

UTF -8

</project.build.sourceEncoding >

<project.reporting.outputEncoding >

UTF -8

</project.reporting.outputEncoding >

</properties >

<!-- Put all your software repositories. -->

<repositories >

<repository >

<id>my-internal -site -1</id>

<url>http :// myserver1/repo</url>

</repository >

<!--

<repository >

<id>my-internal -site -2</id>

<url>http :// myserver2/repo</url>

</repository >

-->

</repositories >

17

<!-- Profiles configuration -->

<!-- Specify to Maven which profile to use when

building the library. If you want to build

a devel snapshot specify 'mvn package -P devel ',

if you want to build a release specify

'mvn package -P release '. If you not specify the

-P parameter , the profile devel will be used. -->

<profiles >

<profile >

<id>devel </id>

<!-- Devel profile is active by default -->

<activation >

<activeByDefault >true</activeByDefault >

</activation >

<properties >

<software.build.generateversion >

${project.version}

</software.build.generateversion >

<software.build.finalname >

${project.name}-dev

</software.build.finalname >

</properties >

<distributionManagement >

<repository >

<id>my-internal -site -1</id>

<url>http :// myserver1/repositories/snapshots </url>

</repository >

</distributionManagement >

</profile >

<profile >

<id>release </id>

<properties >

<software.build.generateversion >

${project.version}

</software.build.generateversion >

<software.build.finalname >

${project.name}

</software.build.finalname >

</properties >

<distributionManagement >

<repository >

<id>my-internal -site -1</id>

<url>http :// myserver1/repositories/releases </url>

</repository >

</distributionManagement >

</profile >

</profiles >

<build >

<finalName >${software.build.finalname}</finalName >

18

<plugins >

<!-- Used to build a bundle containing the code

of the software and all its dependencies -->

<plugin >

<groupId >org.apache.maven.plugins </groupId >

<artifactId >maven -shade -plugin </artifactId >

<version >2.0</version >

<configuration >

<shadedArtifactAttached >

true

</shadedArtifactAttached >

<finalName >

${software.build.finalname}-bundle

</finalName >

<createDependencyReducedPom >

false

</createDependencyReducedPom >

</configuration >

<executions >

<execution >

<phase >package </phase>

<goals >

<goal>shade </goal>

</goals >

</execution >

</executions >

</plugin >

<!-- Used to pack the source code -->

<plugin >

<groupId >org.apache.maven.plugins </groupId >

<artifactId >maven -source -plugin </artifactId >

<version >2.2.1</version >

<executions >

<execution >

<id>attach -sources </id>

<goals >

<goal>jar</goal>

</goals >

</execution >

</executions >

</plugin >

<plugin >

<artifactId >maven -compiler -plugin </artifactId >

<!-- 2.8.0 -01 and later require

maven -compiler -plugin 3.0 or higher -->

<version >3.0</version >

<configuration >

<compilerId >

groovy -eclipse -compiler

</compilerId >

<source >1.6</source >

19

<target >1.6</target >

<!-- set verbose to be true if you

want lots of uninteresting messages -->

<!-- <verbose >true</verbose > -->

</configuration >

<dependencies >

<dependency >

<groupId >org.codehaus.groovy </groupId >

<artifactId >

groovy -eclipse -compiler

</artifactId >

<version >2.8.0 -01</version >

</dependency >

<!-- for 2.8.0 -01 and later you must

have an explicit dependency on

groovy -eclipse -batch -->

<dependency >

<groupId >org.codehaus.groovy </groupId >

<artifactId >

groovy -eclipse -batch

</artifactId >

<version >2.1.5 -03</version >

<!-- or choose a different compiler

version -->

<!-- <version >1.8.6 -01</version > -->

<!-- <version >1.7.10 -06</version > -->

</dependency >

</dependencies >

</plugin >

</plugins >

</build >

<dependencies >

<dependency >

<groupId >org.codehaus.groovy </groupId >

<artifactId >groovy -all</artifactId >

<version >2.1.5</version >

</dependency >

<dependency >

<groupId >junit</groupId >

<artifactId >junit</artifactId >

<version >4.10</version >

<scope >test</scope>

</dependency >

</dependencies >

</project >

20

The above template includes all the facilities discussed in the previous sections.
Moreover note that in the dependencies set we have already included also JUnit
library2 but with a scope of test. This essentially means that Maven will use
the library only when testing the code but not when building the artifacts (data
and metadata)to distribute externally.

5.2 The Maven commands available by using the provided

template

This is the list of main Maven commands which can be used by using the
proposed POM template:

mvn clean Used to clean all the compiled code and generated
data.

mvn compile Used to compile Java and Groovy source code.
mvn test Execute all tests contained in src/test/ directory.
mvn package Used to package the compiled code into a proper

archive �le (Jar for libraries, War for Web applica-
tions, etc.) and to generate all secondary artifacts
like bundle artifact and source artifact.

mvn install Used to install the artifacts generated in package

phase into local Maven repository.
mvn deploy Deploy all the generated artifacts to con�gured

repository.
mvn site Generate a web site containing information about the

project.

Remember that by default (as speci�ed in the POM �le) the above Maven
commands are run in the context of devel pro�le. To switch to another pro�le,
you must pre�x the commands with -P <profile_name> where profile_name
can be either devel or release. For example, to package all code into release

mode, just execute the command mvn -P release package.

References

[1] Apache. Ant. http://ant.apache.org/.

[2] Apache. Maven. http://maven.apache.org/.

[3] Tiobe Software BV. Tiobe programming community index. http://www.

tiobe.com/index.php/content/paperinfo/tpci/index.html.

[4] The software paradigm "convention over con�guration". http://en.

wikipedia.org/wiki/Convention_over_configuration.

[5] DedaSys LLC. Programming language popularity. http://www.langpop.

com/.

[6] Oracle. Java. http://www.java.com/.

2This is the de-facto standard Java library used to easily write unit testings for the code.

21

