
A probabilistic approach to schema matching

Henrik Nottelmann1 and Umberto Straccia2

1 Institute of Informatics and Interactive Systems, University of Duisburg-Essen,
47048 Duisburg, Germany,nottelmann@uni-duisburg.de

2 ISTI-CNR, Via G. Moruzzi 1, 56124 Pisa, Italy,straccia@isti.cnr.it
Number: TR-2004-xx

Abstract. This paper introduces the first formal framework for learning map-
pings between heterogeneous schemas, which is based on probabilistic logics.
This task, also called “schema matching”, is a crucial step in integrating hetero-
geneous collections. As schemas may have different granularities, and as schema
attributes do not always match precisely, a general-purpose schema mapping ap-
proach requires support for uncertain mappings, and mappings have to be learned
automatically. The framework combines different classifiers for finding suitable
mapping candidates (together with their weights), and selects that set of mapping
rules which is the most likely one. Finally, the framework with different variants
has been evaluated on two different data sets.

ACM Categories and Subject Descriptors: H.3.5[Online Information Services]: Data shar-
ing;

Keywords: Schema matching, probabilistic logic, machine learning

1 Introduction

Federated digital libraries integrate a large number of legacy libraries and give users the
impression of one coherent, homogeneous library. These libraries use different schemas
(called source schemas). As users cannot deal efficiently with this semantic heterogene-
ity, they only see one system-wide or personalized target (or global) schema, which is
defined ontologically and independent from the libraries. Then, queries are transformed
from the target (global) schema into the source schemas, and documents vice versa
(which is out of the scope of this paper).

Our framework uses probabilistic logics for describing schema mappings. In con-
trast to most of the approaches available so far, this allows dealing with schemas of dif-
ferent granularity. If the target schema contains the two attributes “author” and “editor”,
and the source schema only the more general attribute “creator”, this source attribute
cannot be mapped onto “author” precisely but only with a specific probability. Systems
with purely deterministic mappings fail in such settings.

Here, we focus on learning these schemas using documents in both schemas, but
not necessarily the same documents. As a by-product, we also compute a theoretically
founded measurement for the quality of a mapping.

For schemas, we adopt the document model presented in [7] with only slight modi-
fications. Like in database systems, data types with comparison operators are explicitly

modelled. However, vagueness of query formulations is one of the key concepts of
Information Retrieval. Thus, it is crucial that comparison operators have a probabilis-
tic interpretation. Vagueness is required e.g. when a user is uncertain about the exact
publication year of a document or the spelling of an author name. These comparison op-
erators are called often called “vague predicates”, we will use the term “operator” later.
For a specific attribute value the vague predicate yields an estimate of the probability
that the condition is fulfilled from the user’s point of view — instead of a Boolean value
as in DB systems. The schema mapping rules also cover the problem of converting one
query condition, a triple of attribute name, operator and comparison value, in another
schema, where potentially also the operator or the comparison value has to be modified.

The paper is structured as follows: The next section introduces a formal framework
for schema mapping, based on probabilistic logics. Section 3 presents a theoretically
founded approach for learning these schema mappings, based on the combination of
different classifiers. This approach is evaluated on two different test beds in section 4.
Then, section 5 describes how this work is related to other approaches. The last section
summarises this paper and gives an outlook over future work.

2 Formal framework for schema mapping

This section introduces a formal, logics-based framework for schema mapping. It shares
a lot of ideas from other approaches, e.g. [5], but is different as it is the first one which
also takes data types, predicates and query mapping into consideration. It is also the first
framework, which is able to cope with the intrinsic uncertainty of the mapping process.
The framework is based on probabilistic Datalog [8], for which tools are available.

2.1 Probabilistic Datalog

Probabilistic Datalog (pDatalog for short) is an extension to Datalog, a variant of predi-
cate logic based on function-free Horn clauses. Negation is allowed, but its use is limited
to achieve a correct and complete model. In pDatalog every fact or rule has a probabilis-
tic weight 0< α≤ 1 attached, prefixed to the fact or rule:

α A← L1, . . . ,Ln .

Here,A denotes an atom (in the rule head), andL1, . . . ,Ln (n≥ 0) are literals, i.e atoms
or negated atoms (the sub goals of the rule body). A weightα = 1 can be omitted.
Each fact and rule can only appear once in the program, to avoid inconsistencies. The
intended meaning of a ruleαr is that “the probability that any instantiation of ruler is
true isα”. The following example pDatalog program expresses the fact that 50% of all
persons are male:

person(mary) ←
0.8 person(ed) ←

0.5 male(X) ← person(X)

Thus,Pr(male(mary)) = 0.5, andPr(male(ed)) = 0.8×0.5 = 0.4. Formally, an in-
terpretation3 in pDatalog is a tupleI = (∆,W ,µ). Here,W denotes a possible world

3 In probabilistic Datalog, only Herbrand interpretations are considered.

(the instantiation of a the deterministic part of a pDatalog program plus a subset of the
probabilistic part, where all probabilities are removed in the latter). In addition,µ is a
probability distribution overW . A model is an interpretation where for every world
w∈W and every variable valuationv (a function mapping variables onto values from
the domain, wherev(L) denotes the ground literal obtained by applying thev on L) the
following conditions hold (whereL,L1, . . . ,Ln are literals,r is a rule, and 0< α ≤ 1 is
a weight):

(I ,w,v) |= L iff v(L) ∈ w,

(I ,w,v) |= L← L1, . . . ,Ln iff whenever(I ,w,v)|= L1, . . . ,Ln, then(I ,w,v)|= L.

(I ,w,v) |= αr iff µ({w′ ∈W |(I ,w′,v)|= r}) = α .

In the remainder, we use an equivalent notion of interpretation. Here, an interpretation
I = (∆, ·I) is a pair of the domain∆ and a function·I which maps every ground atom onto
a probability in[0,1]. The weights are determined based on an general independence
assumption, but can consider ground atoms that are pair wise disjoint.

With abuse of notation, we typically do not distinguish between a relationR (an
n-ary predicate) and the relation instanceRI (all ground instances ofRw. r. t. I).

2.2 Data types

We first assume a finite setD of elementary data types. The domaindom(d) for a data
typed∈D defines the set of possible values ford. Examples areText (for English text),
Name (person names, e.g. “John Doe”),Year (four digit year numbers, e.g. “2004”) or
DateISO8601 for the ISO 8601 format of dates (e.g. “2004-12-31”). We further use a
setO of operators (sometimes also called “data type predicates”). An operator is a bi-
nary relationo⊆ dom(d1(o))×dom(d2(o)) defined on two data typesd1(o),d2(o)∈D,
e.g.contains for text (searching for stemmed terms),> or = for years, orsounds-like
for names. The operator relations have a probabilistic interpretation (which is the prob-
ability that the first value matches the second one) for supporting vague queries. In our
scenario,D contains the data typeDOCID (the set of all document ids); only the identity
operatoridDOCID is defined on it.

As we want to use variables for operators, we use a bijective mapping between
operatorso∈O and new constants ˆo∈ Ô for a set of constantŝO. Then, these operators
are combined in a ternary predicateop:

op =
⋃

o∈O

{ô}×o . (1)

Again, we do not explicitly distinguish between the operatorso and their constants ˆo,
and use the former notation for both of them. In addition, we use a predicateconv for
value conversion between operators:

convI ⊆
⋃

o1,o2∈O {ô1}×dom(d1(o1))×dom(d2(o1))× (2)

{ô2}×dom(d1(o2))×dom(d2(o2)) .

The informal meaning ofconv(O,X,Y,O′,X′,Y′) is that op(O,X,Y) can be trans-
formed intoop(O′,X′,Y′). Also conv can be uncertain, where the weight denotes the

probability that this is a correct conversion. For example,conv may contain the tu-
ples for the data typesYear2 (2-digit year numbers),Year4 (4-digit year numbers),
FirstName(only first names) andName (complete names):

(idYear2, “04′′, “04′′,idYear4, “2004′′, “2004′′) ,

(≥Year2, “04′′, “06′′,>Year4, “2005′′, “2005′′) ,

(idFirstName, “John′′, “John′′,idName, “John Doe′′, “John Doe′′) with probability < 1.

2.3 Schemas and schema mappings

A schemaR = 〈R1, . . . ,Rn〉 consists of a non-empty finite tuple of binary relation sym-
bols. Each relation symbolRi has a data typedRi ∈ D. Then, for a (potentially uncer-
tain) interpretationI , a schema instance is a tupleRI = 〈RI

1, . . . ,R
I
n〉, where each relation

symbolRi is mapped onto a relation instance with the correct data types:

Ri ⊆ DOCID×dom(dRi) . (3)

Informally, this is the relational model of linear schemas with multivalued schema at-
tributes. Each attribute is modelled as a binary relation, which stores pairs of a document
id and a value for that attribute.

Schema mappings follow the GaV approach [11]: A mapping is a tupleM =
(T,S,Σ), whereT denotes the target (global) schema andS the source (local) schema
with no relation symbol in common, andΣ is a finite set of mapping constraints (pDat-
alog rules) of one of the forms (Tj andSi are target and source attributes, respectively):

α j,i Tj (D,X) ← Si(D,X1),conv(iddTj
,X,X, iddSi

,X1,X1) (4)

op(O,X,V) ← conv(O,X,V,O1,X1,V1),op(O1,X1,V1) . (5)

For a schema mapping instance of a mappingM = (T,S,Σ) and a fixed interpreta-
tion I for S, an interpretationJ for T is a solution forI underM if and only if 〈J, I〉
(the combined interpretation overT andS) satisfiesΣ. The minimum solution is de-
noted byJ(I ,Σ), the corresponding relation instance withT(I ,Σ) (which is also called
a minimum solution).

2.4 Queries and query transformation

A queryq is a set of pDatalog rules with common head which define a unary predicate
q with qI ⊆ DOCID. The literals of these rules refer to the relation symbols defined in
R∪{op}. The setqRI

of answers for queryq with respect toRI contains exactly all the
document ids which satisfy the query.

Given a schema mappingM and a source schema instanceSI , the setqM ,SI
of

certain answers to a queryq (overT∪{op}) with respect toM andSI is exactly the set
of answers for that query w. r. t. the minimum solutionT(I ,Σ):

qM ,SI
= qT(I ,Σ) . (6)

In this paper, we are interested in correct (i.e. sound) reformulations. A queryq′ is
a correct reformulation of a queryq if we haveq′S

I ⊆ qM ,SI
for every interpretation

I . The tuplest ∈ q′S
I

then are certain answers, butq′ does not necessary return all
certain answers. This subset-property allows for handling cases in which no exact query
transformation is possible. For example, consider the following scenario:

T = 〈year2〉 ,
S = 〈year4〉 ,
Σ = {year2(D,X)← year4(D,X′),conv(idYear2,X,X,idYear4,X′,X′)} ,

SI = {(1,2000),(2,2001),(3,1990)} ,

TJ1 = {(1,00),(2,01),(3,90),(4,02)} ,

TJ2 = {(1,00),(2,01),(3,90),(5,04),(6,99)} ,

TJ3 = T(I ,Σ) = {(1,00),(2,01),(3,90)} .

Then, for source schema instanceSI , both target schema instancesTJ1 andTJ2 are solu-
tions, and TJ3 = T(I ,Σ) is the minimal solution. Given the query
q(X) := year2(D,X)∧op(≥,X,00) 4, the certain answers areqM ,SI

= {(1,00),(2,01)}.
Then,q1(X) := year4(D,X)∧op(≥,X,2000) andq2(X) := year4(D,X)∧op(>,X,2000)
are correct reformulations ofq. The queryq3(X) := year4(D,X) is not even a correct
reformulation, as:

q3SI
= {(1,00),(2,01),(3,90)} 6⊆ qM ,SI

.

3 Learning schema mappings

This paper only deals with learning schema mappings, i.e. finding associations between
attributes. The assumption is that a set of data typesD and a set of operatorsO with the
corresponding relationsop andconv are both already given. Learning schema mapping
consists of three steps: The quality of potential schema mappings (set of rules) has to
be estimated, the “best” schema mapping is selected, and, finally, the weights for rules
in the selected schema mapping have to be estimated.

3.1 Estimating the quality of a schema mapping

For two schemasT = 〈T1, . . . ,Tt〉 andS= 〈S1, . . . ,Ss〉 and two interpretationsI for Sand
J for T, the goal is to find a suitable setΣ of mapping constraints. In many cases, there is
no correspondence between the tuples in both instances, so that no non-trivial mapping
Σ ⊃ /0 exists. Thus, the goal is to find the “best” set of mapping constraintsΣ which
maximizes the probabilityPr(Σ,J, I) that the tuples in the minimum solutionT(I ,Σ)
underM = (T,S,Σ) and the tuples inT are plausible. Here,T(I ,Σ) denotes a schema
instance, andTj(I ,Σ) the instance of relationTj formed by the minimum solution. The
setΣ can be partitioned into setsΣ j with common headTj , whose minimum solutions
Tj(I ,Σ j) only contain tuples forTj :

Σt = {r|r ∈ Σ,Tj ∈ head(r)} , (7)

T(I ,Σ) = 〈T1(I ,Σ1), . . . ,Tt(I ,Σt)〉 . (8)

4 Select all documents published after 2000.

As a consequence, each target relation can be considered independently:

Pr(Σ,J, I) =
t

∏
j=1

Pr(Σ j ,J, I) . (9)

The instancesTj(I ,Σ j) andTj are plausible if the tuples inTj(I ,Σ j) are plausible values
for Tj , and vice versa. Thus,Pr(Σ j ,J, I) can be computed as:

Pr(Σ j ,J, I) = Pr(Tj |Tj (I ,Σ j)) ·Pr(Tj (I ,Σ j)|Tj) (10)

= Pr(Tj (I ,Σ j)|Tj)2 ·
Pr(Tj)

Pr(Tj (I ,Σ j))
(11)

= Pr(Tj (I ,Σ j)|Tj)2 ·
|Tj |

|Tj (I ,Σ j)|
. (12)

As building blocks ofΣ j , we use the setsΣ j,i containing only one rule:

Σ j,i = {α j,i Tj (D,X)← Si(D,X),conv(iddTj
,X,X, iddSi

,X′,X′)} . (13)

For s source relations and a fixedj, there are alsos possible setsΣ j,i , and 2s− 1
non-empty combinations (unions) of them, forming all possible non-trivial setsΣ j . To
simplify the notation, we setSi := Tj(I ,Σ j,i) for the instance derived by applying the
single rule (13). For computational simplification, we assume thatSi1 andSi2 are disjoint
for i1 6= i2. Then, forΣ j =

⋃r
k=1 Σ j,ik with indicesi1, . . . , ir , we obtain:

Pr(Tj (I ,Σ j)|Tj) =
r

∑
k=1

Pr(Sik |Tj) . (14)

Thus, the main task is to compute theO(s· t) probabilitiesPr(Si |Tj).

3.2 Estimating the probability that a mapping rule is plausible

Computing the quality of a mapping requires the probabilityPr(Si |Tj), while the rule
weight isα j,i = Pr(Tj |Si). Both probabilities are estimated in a similar way. To ease
handling of both directions, we use the lettersA andB, respectively, and again identify
Ai with AI

i andB j with BJ
j where necessary.

Similar to LSD [3], the probabilityPr(Ai |B j) is estimated by combining different
classifiersC1, . . .Cn. Each classifierCk computes a weightw(Ai ,B j ,Ck), which has to
be normalized and transformed intoPr(Ai |B j ,Ck) = f (w(Ai ,B j ,Ck)), the classifier’s
approximation ofPr(Ai |B j). We employ different normalization functionsf :

fid(x) := x , (15)

fsum(x) :=
x

∑i′ w(Ai′ ,B j ,Ck)
, (16)

flin(x) := c0 +c1 ·x , (17)

flog(x) :=
exp(b0 +b1 ·x)

1+exp(b0 +b1 ·x)
. (18)

The functionsfid, fsum and the logistic functionflog return values in[0,1]. For the
linear function, results below zero have to mapped onto zero, and results above one

have to be mapped onto one. The functionfsum ensures that each value is in[0,1],
and that the sum equals 1. Its biggest advantage is that is does not need parameters,
which have to be learned. In contrast, the parameters of the linear and logistic function
are learned by regression in a system-training phase. This phase is only required once,
and their results can be used for learning arbitrary many schema mappings. Of course,
normalization functions can be combined. In some cases it might be useful to bring the
classifier weights in the same range (usingfsum), and the to apply another normalization
function with parameters (e.g. the logistic function).

The final predictionsPr(Ai |B j ,C) are then combined using the Total Probability
Theorem, which results in a weighted sum:

Pr(Ai |B j)≈
n

∑
k=1

Pr(Ai |B j ,Ck) ·Pr(Ck) . (19)

The probabilityPr(Ck) describes the probability that we rely on the judgment of classi-
fierCk, which can for example be expressed by the confidence we have in that classifier.
We simply usePr(Ck) = 1

n for 1≤ k≤ n, i.e. the predictions are averaged.
Simple pDatalog rules can be used for computing the probabilitiesPr(Ai |B j), as

depicted in equation (19. With additional constants for the relations and classifiers, a
binary predicatealpha for Pr(Ai |B j), a ternary predicatealpha′ for Pr(Ai |B j ,Ck) and
a unary predicatealpha′′ for Pr(Ck) with disjointness of the underlying events (i.e.,
Pr(alpha′′(ck1)∧ alpha′′(ck2)) = 0 for k1 6= k2), the probabilitiesPr(Ai |B j) can be
computed using this pDatalog program:

alpha(ai ,b j) ← alpha′(ai ,b j ,C),alpha′′(C) (20)

α′i, j,k alpha
′(ai ,b j ,ck) ← ∀1≤ k≤ n (21)

α′′k alpha′′(ck) ← ∀1≤ k≤ n (22)

The weightsα′i, j,k are computed by the classifiers. Thus, in most cases, rule (21) can
be replaced by additional rules.

3.3 Classifiers

Most classifiers require instances of both schemas. However, these instances do not
need to describe the same objects. The instances should either be a complete collection,
or a representative sample of it, e.g. acquired by query-based sampling [1]. Below, see
a list of classifiers we considered.

Same attribute names. This binary classifierCN returns a weight of 1 if and only if
the two attributes have the same name, and 0 otherwise:

w(Ai ,B j ,CN) :=
{ 1 , Ai = B j ,

0 , otherwise

Introducing two new unary predicatesschema_a (specifying if a constant corresponds
to an attribute from schemaA) andschema_b (similar for the schemaB), the classifier
can be expressed as:

w(X,X,cn) ← schema_a(A),schema_b(X) .

Exact tuples. This classifierCE (for testing and evaluation) measures the fraction of
the tuples inB j which also occur inAi :

w(Ai ,B j ,CE) :=
|Ai ∩B j |
|B j |

.

Correct literals. This classifierCL (suitable in particular for numbers, URLs and other
facts) measures the fraction of the tuples inB j where the data value (the second argu-
ment, without the document id) also occurs in any tuple inAi :

w(Ai ,B j ,CL) :=
|{s|s= (s1,s2) ∈ B j ,∃t = (t1, t2) ∈ Ai .s2 = t2}|

|B j |
.

kNN classifier. A popular classifier for text and facts is kNN [16]. ForCkNN, each
attribute acts as a category, and training sets are formed for every tuple inAl :

Train =
t⋃

l=1

{(Al , t
′)|t ′ ∈ Al} . (23)

A probabilistic variant of the scalar product is used for computing the similarity values.
The valuest and t ′ are considered as bags of words, andPr(w|Ai) andPr(w|B j) are
computed as the normalized frequencies of the words in the instances:

RSV(t, t ′) = ∑
w∈t∩t ′

Pr(w|Ai) ·Pr(w|B j) . (24)

Naive Bayes text classifier.The classifierCB uses a naive Bayes text classifier [16] for
text content. Again, each attribute acts as a category, and attribute values are considered
as bags of words (with normalised word frequencies as probability estimations). The
final formula is:

w(Ai ,B j ,CB) = Pr(Ai) · ∑
x∈B j

∏
w∈x

Pr(w|Ai) . (25)

3.4 Estimating the weight of a rule

After a schema mapping (a set of rules) is learned, the weightsPr(Tj |Si) for these
rules have to be computed. The probabilityPr(Si |Tj) has already been computed for the
quality estimation and, thus, can easily be transformed in the rule weight:

Pr(Tj |Si) = Pr(Si |Tj) ·
Pr(Tj)
Pr(Si)

= Pr(Si |Tj) ·
|Tj |
|Si |

. (26)

The drawback here is that the resulting rule weight might be greater than one in the
case of|Tj |> |Si |.

This completes the schema mapping learning process.

4 Experiments for learning schema mappings

This chapter describes the experiments conducted so far for evaluation the presented
learning approach.

4.1 Evaluation setup

This section describes the test sets (source and target instances) and the classifiers used
for the experiments. It also introduces different effectiveness measurements for evaluat-
ing the learned schema mappings (error, precision, recall). Experiments were performed
on two different test beds5:

– BIBDB contains over 3,000 BibTeX entries about information retrieval and related
areas. The documents are available both in BibTeX (source schema) and in the
standard schema from the project MIND (target schema), derived from BibTeX via
simple rules. Both schemas share a large amount of common attribute names.

– LOC is an Open Archive collection of the Library of Congress with about 1,700
documents, available in MARC 21 (source schema) and in Dublin Core (target
schema). MARC 21 has a higher granularity as DC, thus a lot of DC attribute
values are the concatenation of several MARC 21 attributes. Both schemas use a
completely different name scheme, thus they do not have attribute names in com-
mon.

Each collection is split randomly into four sub-collections of approximately the same
size. The first sub-collection is always used for learning the parameters of the normal-
ization functions (same documents in both schemas). The second sub-collection is used
as source instance for learning the rules, and the third sub-collection is used as the target
instance. Finally, the fourth sub-collection is employed for evaluating the learned rules
(for both instances, i.e. we evaluate on parallel corpora).

Each of classifiers introduced in section 3.3 are used alone, plus the combinations
CkNN+CB +CL andCkNN+CB +CL +CN. The three normalization functions from sec-
tion 3.2 (fsum, fminmaxand fid) are used; in every experiment, every classifier used the
same normalization function.

The probability of a tuplet in the given target instanceTJ
j is denoted byPr(t|Tj). Of-

ten the target instance only contains deterministic data, then we havePr(t|Tj) ∈ {0,1}.
Similarly, Pr(t|Tj(I ,Σ j)) ∈ [0,1] denotes the probability of tuplet w. r. t. the minimal
solution of the given source instance and the learned schema mapping, i.e. by apply-
ing the schema mapping on the source instance. Rule application includes mapping the
resulting tuple weights onto 0 or 1, respectively, in the case where a rule weightα out-
side[0,1] (due to a wrong estimation) leads to a tuple weight which is less than zero or
higher than one.

The error of the mapping is defined by:

E(M) =
1

∑ j |U j |∑j
∑

t∈U j

(Pr(t|Tj)−Pr(t|Tj (I ,Σ j)))2 , (27)

U j = Tj ∪Tj (I ,Σ j) . (28)

5 http://faure.isti.cnr.it/~straccia/download/TestBeds/ecir05-exp.tar.gz

Here, the setU j contains the union of the given target instance tuples and the tuples cre-
ated by applying the mapping rules. For each of these tuples, the squared difference of
the given weightPr(t|Tj) in the target instance and the computed weightPr(t|Tj(I ,Σ j))
is computed. Furthermore, we evaluated if the learning approach computes the correct
rules (neglecting the corresponding rule weights). Similar to the area of Information
Retrieval, precision defines how many learned rules are correct, and how many correct
rules are learned. So, letRL denote the set of rules (without weights) returned by the
learning algorithm, andRA the set of rules (again without weights) which are the actual
ones. Then

precision:=
|RL∩RA|
|RL|

, recall :=
|RL∩RA|
|RA|

. (29)

4.2 Results

In the experiments presented in this section, the learning steps are as follows:

1. Find the best schema mapping
(a) Estimate the plausibility probabilitiesPr(Si |Tj) for everySI ∈ S, Tj ∈ T using

the classifiers.
(b) For every target relationTj and for every non-empty subset of schema mapping

rules havingTj as head, estimate the probabilityPr(Σ j ,J, I).
(c) Select the rule setΣ j which maximizes the probabilityPr(Σ j ,J, I).

2. Estimate the weightsPr(Tj |Si) for the learned rules by convertingPr(Si |Tj), using
equation (26).

3. Compute the error, precision and recall as described above.

The results depicted in the tables 1 and 2 show that the LOC collection is much harder
as the schemas have different granularities, and both schemas do not have any at-
tribute name in common. The error for the BIBDB collection can be quite low (be-
low 0.1 for CL), while the error is always above 0.5 for LOC. Precision is high for
both collections, but higher for BIBDB. As the learnerCN cannot learn any rule for
LOC (as both schemas use completely different attribute names), the precision is not
defined. For the BIBDB collection, recall can be quite high (over 0.7 for the com-
bined classifiers). For LOC, however, the best recall achieved is 0.4146. Averaged on
both collections and all normalization functions, the error is minimized by the com-
binationCkNN +CB +CL +CN with an error of 0.4334, followed byCkNN +CB +CL

andCkNN. Not surprisingly,CN andCE performed worst (more than 42% worse than
CkNN +CB +CL +CN). These results are replicated considering recall. Interestingly,
CE yields the highest precision with 0.4339, followed byCL andCkNN+CB +CL +CN

(about 20% worse). The worst precision (0.5 on average is obtained byCN (474% worse
thanCE). This last result is due to the fact that this classifier does not work on the LOC
collection (with no attribute names in common), but perfectly works on the BIBDB
collection. Overall, combining classifiers can reduce the error and increase recall and
precision. Averaged on both collections and all classifiers, the best normalization func-
tions w. r. t. the error areflin ◦ fsum(0.4740) andflog◦ fsum(about 1% worse). Precision
is maximized forfid (0.7074), while recall is maximized forfsum and flin ◦ fsum (both

fid fsum flin ◦ fsum flog ◦ fsum

CE 0.8613 / 0.0% 0.3675 / -57.3% 0.3719 / -56.8% 0.3713 / -56.9%
CL 0.4035 / 0.0% 0.0999 / -75.2% 0.1077 / -73.3% 0.0767 / -81.0%
CN 0.2641 / 0.0% 0.2641 / 0.0% 0.2874 / 8.8% 0.2874 / 8.8%
CkNN 0.3549 / 0.0% 0.2752 / -22.4% 0.2875 / -19.0% 0.2800 / -21.1%
CB 0.9224 / 0.0% 0.2871 / -68.9% 0.3036 / -67.1% 0.3123 / -66.1%
CkNN+CB+CL 0.4211 / 0.0% 0.1495 / -64.5% 0.1622 / -61.5% 0.1678 / -60.2%
CkNN+CB+CL+CN 0.3585 / 0.0% 0.1494 / -58.3% 0.1765 / -50.8% 0.1830 / -48.9%

(a) Error

fid fsum flin ◦ fsum flog ◦ fsum

CE 1.0000 / 0.0% 1.0000 / 0.0% 1.0000 / 0.0% 1.0000 / 0.0%
CL 0.7778 / 0.0% 0.7778 / 0.0% 0.7778 / 0.0% 0.7000 / 10.0%
CN 1.0000 / 0.0% 1.0000 / 0.0% 1.0000 / 0.0% 1.0000 / 0.0%
CkNN 0.5000 / 0.0% 0.5000 / 0.0% 0.5000 / 0.0% 0.6250 / -25.0%
CB 0.5000 / 0.0% 0.4167 / 16.7% 0.4167 / 16.7% 0.4444 / 11.1%
CkNN+CB+CL 0.5714 / 0.0% 0.5000 / 12.5% 0.5000 / 12.5% 0.5714 / 0.0%
CkNN+CB+CL+CN 0.8182 / 0.0% 0.8182 / 0.0% 0.7500 / 8.3% 0.8182 / 0.0%

(b) Precision

fid fsum flin ◦ fsum flog ◦ fsum

CE 0.3636 / 0.0% 0.3636 / 0.0% 0.3636 / 0.0% 0.3636 / 0.0%
CL 0.6364 / 0.0% 0.6364 / 0.0% 0.6364 / 0.0% 0.6364 / 0.0%
CN 0.6364 / 0.0% 0.6364 / 0.0% 0.6364 / 0.0% 0.6364 / 0.0%
CkNN 0.5455 / 0.0% 0.5455 / 0.0% 0.5455 / 0.0% 0.4545 / 16.7%
CB 0.0909 / 0.0% 0.4545 / -400.0% 0.4545 / -400.0% 0.3636 / -300.0%
CkNN+CB+CL 0.7273 / 0.0% 0.7273 / 0.0% 0.7273 / 0.0% 0.7273 / 0.0%
CkNN+CB+CL+CN 0.8182 / 0.0% 0.8182 / 0.0% 0.8182 / 0.0% 0.8182 / 0.0%

(c) Recall

Table 1.ST-Rule(ST) – BIBDB

0.4067). The experiments show that using the trivial normalization functionfid dramat-
ically increases the error (35%) and recall (6%), but performs best w. r. t. the precision.

The best classifier/normalization function combination isCkNN+CB+CL with flin ◦
fsumwith an error of 0.3907. Best precision is yield for usingCE with any normalization
function (virtually no difference on average). Recall is maximized forCkNN +CB +
CL +CN with fid (surprisingly), followed by the other normalization functions for the
classifier combination. Thus, it is useful to combine classifiers.

fid fsum flin ◦ fsum flog ◦ fsum

CE 0.7474 / 0.0% 0.7805 / 4.4% 0.7264 / -2.8% 0.6975 / -6.7%
CL 0.7106 / 0.0% 0.7518 / 5.8% 0.7016 / -1.3% 0.7135 / 0.4%
CN 1.0000 / 0.0% 1.0000 / 0.0% 1.0000 / 0.0% 1.0000 / 0.0%
CkNN 0.5766 / 0.0% 0.6215 / 7.8% 0.5708 / -1.0% 0.5805 / 0.7%
CB 0.9561 / 0.0% 0.8040 / -15.9% 0.6203 / -35.1% 0.6308 / -34.0%
CkNN+CB+CL 0.6368 / 0.0% 0.6928 / 8.8% 0.6192 / -2.8% 0.6539 / 2.7%
CkNN+CB+CL+CN 0.6449 / 0.0% 0.6577 / 2.0% 0.6286 / -2.5% 0.6684 / 3.6%

(a) Error

fid fsum flin ◦ fsum flog ◦ fsum

CE 0.9000 / 0.0% 0.9000 / 0.0% 0.9000 / 0.0% 0.8462 / 6.0%
CL 0.7273 / 0.0% 0.7273 / 0.0% 0.7273 / 0.0% 0.6667 / 8.3%
CN not defined not defined not defined not defined
CkNN 0.7083 / 0.0% 0.7083 / 0.0% 0.7083 / 0.0% 0.5833 / 17.6%
CB 1.0000 / 0.0% 0.5000 / 50.0% 0.5000 / 50.0% 0.6667 / 33.3%
CkNN+CB+CL 0.7000 / 0.0% 0.6471 / 7.6% 0.6471 / 7.6% 0.6667 / 4.8%
CkNN+CB+CL+CN 0.7000 / 0.0% 0.6471 / 7.6% 0.6471 / 7.6% 0.6667 / 4.8%

(b) Precision

fid fsum flin ◦ fsum flog ◦ fsum

CE 0.2195 / 0.0% 0.2195 / 0.0% 0.2195 / 0.0% 0.2683 / -22.2%
CL 0.1951 / 0.0% 0.1951 / 0.0% 0.1951 / 0.0% 0.1951 / 0.0%
CN 0.0000 / 0.0% 0.0000 / 0.0% 0.0000 / 0.0% 0.0000 / 0.0%
CkNN 0.4146 / 0.0% 0.4146 / 0.0% 0.4146 / 0.0% 0.3415 / 17.6%
CB 0.0244 / 0.0% 0.1463 / -500.0% 0.1463 / -500.0% 0.0976 / -300.0%
CkNN+CB+CL 0.3415 / 0.0% 0.2683 / 21.4% 0.2683 / 21.4% 0.2439 / 28.6%
CkNN+CB+CL+CN 0.3415 / 0.0% 0.2683 / 21.4% 0.2683 / 21.4% 0.2439 / 28.6%

(c) Recall

Table 2.ST-Rule(ST) – LOC

As an illustrative example, in one of BIBDB runs, these two rules are returns for the
target attributebooktitle:

0.51standard_booktitle(D,X) ← BIBDB_booktitle(D,X′),

conv(idText,X,X,idText,X′,X′)

0.98standard_booktitle(D,X) ← BIBDB_journal(D,X′),

conv(idText,X,X,idText,X′,X′)

Notice that, for instance, a query forbooktitle is then converted into the source
schema, using the above rules, by unfolding the query into two source queries (one for
booktitle, the other forjournal).

5 Related work

In the field of federated databases, two approaches are distinguished (see [11, 15]). In
“local as view” (LaV), the source schemas are defined as views (mappings) over a fixed
global schema. This makes it easy to add a new source, but query transformation has
exponential time complexity. In contrast, the global schema is defined as a view over
local schemas in the “global as view” (GaV) approach. Here, query transformation can
be reduced to rule unfolding, but the adding of new sources might require to modify
the global view. The GLaV approach [6] combines the advantages of both worlds. The
global schema is specified ontologically and independent from the sources, the source
schema models the documents returned by the source, and mappings are defined by
logical rules between query expressions. We adopt the main GLaV idea of independent
schemas, but use probabilistic GaV rules, and restrict the schema structure to binary
relations (for attributes).

A general approach for learning rules (not only for schema mapping) is described
in [12]. ILP (Inductive Logic Programming) is employed for learning rules, while PAC
learning algorithm is used for learning the rule weights. The approach requires the same
documents in both schemas (“parallel corpora”), which is infeasible in most environ-
ments. A second drawback is that it is based on exact match only.

Similar to our approach, the heuristic system LSD [3] for finding 1:1 matchings in
XML documents uses a linear combination of the predictions of multiple base learners
(classifiers). The combination weights are learned via regression on manually specified
mappings between a small number of learning schemas. LSD has several extensions,
e.g. iMAP [2] for complex matchings in relational databases and GLUE [4] for match-
ing ontologies on the semantic web (which relies on joint probability distributions).

Information theory measures and graph matching is used in [10]. Graphs are con-
structed from the schemas, where the attributes form the nodes, labelled with the en-
tropy of the attribute. All nodes are connected, the edges are labelled with the mutual
information (correlation between two distributions). Both measures do not require any
interpretation of the data, i.e. data type do not have to be considered. A distance measure
is defined, and optimum graph matchings is applied for finding schema mappings.

A completely different approach is taken in MGS [9]. It aims at finding a “hid-
den model”, a schema that probabilistically generates the observed schemas. A hidden
model is a partition of the attribute space with a probability function of the partitions
and their attributes. The first step finds cliques in the graph where two nodes (attributes)
are connected if they are not occurring in the same schema. These cliques do not con-
tradict the schemas. The problem of selecting those cliques which form a partitions is
then reduced to a set-cover problem, and the probability functions are computed by
maximum-likelihood. In a final step,χ2 statistical testing is employed for finding suffi-
ciently consistent models.

6 Conclusion and outlook

In this paper we introduced a formal GLaV-like framework for schema mappings, where
the mappings are defined as uncertain rules in probabilistic Datalog. These schema

mapping rules do not only cover transforming data from one attribute into another,
but can also be used for transforming query conditions (potentially also modifying the
operator or the comparison value). Although the framework is based on logics, real-
world documents and queries with a linear schema can easily be converted into the
logical formalism.

We also presented an approach for learning schema mappings. Different classifiers
are used for predicting the probability that tuples in a target relation are plausible for a
source relation. Similar to LSD, these predictions are combined to an overall approxi-
mation of probability. From these probabilities, a probability that a set of such schema
mapping rules is plausible is derived. Finally, the rule weights have to be computed.
The evaluation shows that the system can be used in practice.

The results in this paper can be used in different ways:

1. Specific schema mapping services can be automatically built. Each schema map-
ping service has associated two schemas, and it is responsible for mapping between
these two schemas. The mapping “function” should be learned automatically in-
stead of being defined manually.

2. Peer-to-peer networks are dynamic scenarios where services can dynamically join
and leave, so the system can–for each query–only consider the services, which are
currently available. Using a decision-theoretic model as for the narrower task of
resource selection, we have to find a quality measurement for a schema mapping
service.

We mainly target at the information exchange problem: Two schemas are given, and an
object instance in one schema is transformed into an instance of the other schema. Our
mechanism could also be used for the problem of information integration: Given two
source schemas, a mediated schema of them has to be created. A solution would be to
build the union of both schemas, learn mapping rules, and remove useless attributes.

In future, more variants should be developed and evaluated to improve the quality
of the learning mechanism. Additional classifiers could consider the data types of two
attributes, could use a thesaurus for finding synonym attribute names, or could use other
measures like KL-distance or mutual information. Instead of averaging the classifier
predictions, the weights could be learned via regression. Odds or statistical significance
tests could be employed for determining the best schema mapping.

In this work, theconv predicate is given. In environments with large numbers of
data types, or a dynamically changing set of data types, learning the conversion predi-
cate would be desirable, e.g. the conversion from centimeter to inch.

A more basic extension is the application onto ontologies. Instead of linear schemas,
classification hierarchies are given. The task then is to map instances from one class
onto classes in the other hierarchy.

7 Acknowledgements

This work is supported in part by ISTI-CNR (project “Distributed Search in the Seman-
tic Web“) and in part by the DFG (grant BIB47 DOuv 02-01, project “Pepper”).

References

[1] J. Callan and M. Connell. Query-based sampling of text databases.ACM Transactions on
Information Systems, 19(2):97–130, 2001.

[2] R. Dhamankar, Y. Lee, A. Doan, A. Halevy, and P. Domingos. iMAP: Discovering complex
semantic matches between database schemas. InSIGMOD 2004, 2004.

[3] A. Doan, P. Domingos, and A. Y. Halevy. Reconciling schemas of disparate data sources:
A machine-learning approach. InSIGMOD Conference, 2001.

[4] A. Doan, J. Madhavan, R. Dhamankar, P. Domingos, and A. Halevy. Learning to match
ontologies on the semantic web. 2004.

[5] R. Fagin, P. G. Kolaitis, W.-C. Tan, and L. Popa. Composing schema mappings: Second-
order dependencies to the rescue. InProceedings PODS, 2004.

[6] M. Friedman, A. Y. Levy, and T. D. Millstein. Navigational plans for data integration. In
Proceedings of 16th Natl Conf on Artificial Intelligence, pages 67–73, 1999.

[7] N. Fuhr. Towards data abstraction in networked information retrieval systems.Information
Processing and Management, 35(2):101–119, 1999.

[8] N. Fuhr. Probabilistic Datalog: Implementing logical information retrieval for advanced
applications.Journal of the American Society for Information Science, 51(2):95–110, 2000.

[9] B. He and K. C.-C. Chang. Statistical schema matching across web query interfaces. In
Papakonstantinou et al. [13].

[10] J. Kang and J. F. Naughton. On schema matching with opaque column names and data
values. In Papakonstantinou et al. [13].

[11] M. Lenzerini. Data integration: a theoretical perspective. InProceedings of the 21st
ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems (PODS-
02), pages 233–246. ACM Press, 2002.

[12] H. Nottelmann and N. Fuhr. Learning probabilistic Datalog rules for information classifi-
cation and transformation. In Paques et al. [14], pages 387–394.

[13] Y. Papakonstantinou, A. Halevy, and Z. Ives, editors.Proceedings SIGMOD 2003, 2003.
[14] H. Paques, L. Liu, and D. Grossman, editors.Proceedings of the 10th International Con-

ference on Information and Knowledge Management, New York, 2001. ACM.
[15] E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema matching.The

VLDB Journal, 10(4):334–350, 2001.
[16] F. Sebastiani. Machine learning in automated text categorization.ACM Computing Surveys,

34(1):1–47, 2002.

