
On StocS: a Stochastic extension of SCEL ?

Diego Latella1, Michele Loreti2, Mieke Massink1, and Valerio Senni3

1 Istituto di Scienza e Tecnologie dell’Informazione ‘A. Faedo’, CNR, Italy
2 Università di Firenze, Italy

3 IMT-Lucca, Italy

Abstract. Predicate-based communication allows components of a sys-
tem to send messages and requests to ensembles of components that
are determined at execution time through the evaluation of a predicate,
in a multicast fashion. Predicate-based communication can greatly sim-
plify the programming of autonomous and adaptive systems. We present
a stochastically timed extension of the Software Component Ensemble
Language (SCEL) that was introduced in previous work. Such an exten-
sion allows for quantitative modelling and analysis of system behaviour
(e.g. performance) but rises a number of non-trivial design and formal
semantics issues with different options as possible solutions at different
levels of abstraction.

1 Introduction

SCEL (Software Component Ensemble Language) [5, 8], is a kernel language
that is equipped with programming abstractions for the specification of system
models within the framework of the autonomic computing paradigm, and for
programming such systems. These abstractions are specifically designed for rep-
resenting behaviours, knowledge, and aggregations according to specific policies,
and to support programming context-awareness, self-awareness, and adaptation.

The main focus of the SCEL language is on supporting the development of
autonomous, loosely-coupled, component-based software systems. For this pur-
pose, a number of underlying assumptions are made on the kind of peculiarities
of these software systems, among which adaptivity, open-endedness, ensemble-
orientedness, high ability of reconfiguration, and support for heterogeneity. Two
novel key aspects of SCEL, that distinguish it from other languages, are de-
signed to support these peculiarities: predicate-based communication and the
role of the component knowledge-base. Predicate-based communication allows
to send messages to ensembles of components that are not predetermined at
modeling time, but are defined at execution time, depending on how the com-
munication predicate evaluates w.r.t. the destination interface. The component
knowledge-base allows to realise various adaptation patterns, by explicit sepa-
ration of adaptation data in the spirit of [3], and to model components view

? This research has been partially funded by the EU projects ASCENS (nr. 257414)
and QUANTICOL (nr. 600708), and the IT MIUR project CINA.

on (and awareness of) the environment. SCEL has been developed in the EU
ASCENS project4 and it has been used to specify many scenarios related to
the project case studies [12, 10, 14, 13]. These specifications witness how SCEL
primitives simplify the programming of autonomous and adaptive systems.

In [11] we addressed the problem of enriching SCEL with information about
action durations, which results in a stochastic semantics for the language. In
fact, our goal is to provide a formal, language based, framework for quantita-
tive (e.g. performance) modelling and analysis of autonomic computing systems.
Even if there exist various stochastic process languages, including some which
incorporate notions of spatial distribution (see [4, 9] and references therein) and
frameworks that support the systematic development of stochastic languages
(see [7] and references therein), the main challenge in developing a stochastic se-
mantics for SCEL is in making appropriate modeling choices, both taking into
account the specific application needs and allowing to manage model complexity
and size. Our contribution in [11] was the proposal of four variants of StocS,
a Markovian extension of a significant fragment of SCEL. These variants adopt
the same syntax of SCEL but denote different underlying stochastic models,
having a different level of granularity.

StocS, and its support framework extend SCEL by providing the system
modeller with means for characterising relevant delays—related to the execution
of SCEL actions—modelling them as random variables (RVs) with negative ex-
ponential distributions. The resulting models are continuous time Markov chains
(CTMCs).

In the design of StocS, we deliberately omit to incorporate certain advanced
features of SCEL, such as the presence and role of policies.

In this book we focus on the network oriented variant of StocS briefly
introduced in [11]. The semantics of this variant entails that actions are non-
atomic. Indeed, they are executed through several intermediate steps, each of
which requires appropriate time duration.

The work we present in this book is only the latest step of a long journey
started more than ten years ago with the AGILE EU project, and carried on first
within the SENSORIA EU project and later within the ASCENS EU project.
The collaboration with Martin Wirsing, who acted as Coordinator of all these
projects, gave us the possibility to study the specific formal tools to use for pro-
viding stochastic semantics of domain specific languages as well as to investigate
general issues concerning such tools. We would like to thank Martin for the many
stimulating discussions we had and for his excellent coordination work. Thank
you Martin.

The outline of this chapter is as follows. Section 2 discusses the intuitions
behind the stochastic extension of SCEL which is presented in 4 after some
preliminary definitions are recalled in Section 3. In Section 5 we present a simple
case study to illustrate the use of the various language primitives of StocS.

Concluding remarks and lines for possible future research are presented in
Section 6.

4 http://www.ascens-ist.eu/

Systems: S ::= C
∣∣ S ‖ S

Components: C ::= I [K, P]

Processes: P ::= nil
∣∣ a.P ∣∣ P + P

∣∣ P | P ∣∣ X ∣∣ A(p̄)

Actions: a ::= get(T)@c
∣∣ qry(T)@c

∣∣ put(t)@c

Targets: c ::= self
∣∣ p

Ensemble Predicates: p ::= tt
∣∣ e ./ e ∣∣ ¬p ∣∣ p ∧ p with ./∈ {<,≤, >,≥}

Expressions: e ::= v
∣∣ x

∣∣ a
∣∣ . . .

Table 1. StocS syntax (Knowledge K, Templates T , and Items t are parameters)

2 StocS: a Stochastic extension of SCEL

In this section we present the main features of StocS. We start by illustrating its
main syntactic ingredients. Then, we discuss the stochastically timed semantics
we present in this chapter.

2.1 Syntax

The syntax of StocS is presented in Table 1. The basic category defines Pro-
cesses that are used to specify the order in which Actions can be performed.
Sets of processes are used to define the behavior of Components, that in turn
are used to define Systems. Actions operate on local or remote knowledge-
bases and have a Target to determine which other components are involved in
the action. As we mentioned in the Introduction, for the sake of simplicity, in
this version of StocS we do not include Policies, whereas, like SCEL, StocS
is parametric w.r.t. Knowledge, Templates and Items.

We define the following domains for variables and for defining functions signa-
ture: A is the a of attribute names (which include the constant id used to indicate
the component identifier), V is a set of values, K is a set of possible knowledge
states, I is a set of knowledge items, T is a set of knowledge templates. So, in
Table 1, a ∈ A, v ∈ V, K ∈ K, t ∈ I, T ∈ T.

Example 1 (Items and Templates as Tuples and Patterns). Consider a signature
(V,F) where V is a set of variables and F is a set of function symbols with arity
(we indicate by f/n a function symbol f with arity n) such that 〈〉/i ∈ F for
i = 0, 1, 2, We denote by Terms(V,F) the set of all possible finite terms on
the given signature (i.e. the terms with variables, constructed respecting function
symbols arities) and by Terms(F) the set of all possible finite ground terms. A
pattern is a term of the form 〈t1, . . . , tn〉, with ti ∈ Terms(V,F) for i = 1, . . . , n.
A tuple is a term of the form 〈t1, . . . , tn〉, with ti ∈ Terms(F) for i = 1, . . . , n.
In this example we have defined the set of Templates T as the set of patterns
and the set of Items I as the set of tuples.

Systems and components We let Sys , ranged over by S, S1,. . . , S′. . . denote
the set of systems defined by the syntax in Table 1. A system S consists of an
aggregation of components obtained via the (parallel) composition operator
‖ . A component I [K, P] consists of:

1. An interface, which is a function I : K→ (A→ V) used for publishing infor-
mation about the component’s state in the form of attribute values. Among
the possible attributes, id is mandatory and is bound to the name of the
component. Component names are not required to be unique, so that repli-
cated service components can be modelled. The evaluation of an interface
I in a knowledge state K is denoted as I(K). The set of possible interface
evaluations is denoted by E.

2. A knowledge repository K, managing both application data and awareness
data (following the approach of [3]), together with the specific handling mech-
anism.

3. A process P , together with a set of process definitions. Processes may ex-
ecute local computations, coordinate local and remote interaction with a
knowledge repository, or perform adaptation and reconfiguration.

Processes Processes are the active computational units. Each process is built
up from the inert process nil via action prefixing (a.P), nondeterministic choice
(P1 + P2), parallel composition (P1|P2), process variable (X), and parameterised
process invocation (A(p̄)). We feel free to omit trailing occurrences of nil, writing
e.g. a instead of a.nil, whenever there is no confusion arising. Process variables
can be used in templates so that processes can also be stored in / retrieved from
knowledge repositories.

We assume that A ranges over a set of parameterised process identifiers
that are used in recursive process definitions. We also assume that each process
identifier A has a single definition of the form A(f̄) , P where all free variables in
P are contained in f̄ and all occurrences of process identifiers in P are within the
scope of an action prefixing. p̄ and f̄ denote lists of actual and formal parameters,
respectively. In the sequel we will use Proc to denote the set of processes, ranged
over by variables P , Q,. . . , P1,Q1.. . . , P ′,Q′,. . . .

Actions and targets Processes can perform three different kinds of Actions:
get(T)@c, qry(T)@c and put(t)@c, used to act over shared knowledge repos-
itories by, respectively, withdrawing, retrieving, and adding information items
from/to the knowledge repository identified by c.

These actions exploit templates T as patterns to select knowledge items t in
the repositories. The precise syntax of templates and knowledge items depends
on the specific instance of knowledge repository that is used. Indeed, in Example 1
we provided the syntax for items (I) and templates (T) for one possible instance
of the repository. In the next section we show how StocS is in fact parametric
with respect to different types of knowledge repository.

For the sake of simplicity, in this book we restrict targets c to the distin-
guished variable self, that is used by processes to refer to the component hosting

it, and to component predicates p, i.e. formulas on component attributes. A
component I [K, P] is identified by a predicate p if I(K) |= p, that is, the inter-
pretation defined by the evaluation of I in the knowledge state K is a model of
the formula p. Note that here we are assuming a fixed interpretation for functions
and predicate symbols that are not within the attributes (A). E.g. battery < 3 is
a possible predicate, where < and 3 have a fixed interpretation, while the value
of battery depends on the specific component addressed.

The informal, abstract, semantics of the actions is the following:

– put(t)@c is non-blocking, its execution causes knowledge item t be added
to the knowledge repository of all the components (the interface of which is)
identified by c, if any;

– get(T)@c (qry(T)@c, respectively) is blocking, it causes a knowledge item t
matching pattern T be withdrawn (retrieved, respectively) from the knowl-
edge repository of any of the components (the interface of which is) identified
by c, if any. If no such component/item is available, the process executing
it is blocked in a waiting state. The two actions differ for the fact that get
removes the requested item from the knowledge repository while qry leaves
the target repository unchanged.

The set of components satisfying a given target c of a communication action
can be considered as the ensemble with which the process performing the action
intends to interact.

Knowledge behavior Since StocS is parametric w.r.t. the specific knowl-
edge repository used in a specification, we provide no specific syntax/semantics
for knowledge repositories. We only require that a knowledge repository type is
completely described by a tuple (K, I,T,⊕,	,`) where K is the set of possible
knowledge states (the variables K, K1, . . . , K ′, . . . range over K), I is the set
of knowledge items (the variables t, t1,. . . ,t′,. . . range over I) and T is the set of
knowledge templates (the variables T , T1,. . . , T ′,. . . range over T). Knowledge
items have no variable, while knowledge templates have. We assume to have a
partial function match : T × I → Subst(I) (where Subst(X) is the set of sub-
stitutions with range in X) and we denote as match(T, t) = ϑ the substitution
obtained by matching the pattern T against the item t, if any. By a small abuse
of notation, we write ¬match(T, t) to denote that match(T, t) is undefined.

The operators ⊕, 	, ` are used to add, withdraw, and infer knowledge items
to/from knowledge repositories in K, respectively. These functions have the fol-
lowing signature, where Dist(X) denotes the class of probability distributions on
set X with finite support:

– ⊕ : K× I→ Dist(K).
– 	 : K× T ↪→ Dist(K× I);
– `: K× T ↪→ Dist(I);

Function ⊕ is total and defines how a knowledge item can be inserted into a
knowledge repository: K ⊕ t = π is the probability distribution over knowledge

states obtained as the effect of adding t. If the item addition operation is mod-
elled in a deterministic way, then the distribution π is a Dirac function. One
advantage of allowing a probabilistic item addition operation is, for example,
the ability of modeling possible.

Function 	 is partial and computes the result of withdrawing a template
from a knowledge state in terms of a probability distribution K	T over the set
of pairs (K, t) ∈ (K×I) such that the item t matches the template T . Intuitively,
if K 	T = π and π(K ′, t) = p then, when one tries to remove an item matching
template T from K, with probability p item t is obtained and the resulting
knowledge state is K ′. If a tuple matching template T is not found in K then
K 	 T is undefined, which is indicated by K 	 T = ⊥.

Function ` is partial and computes (similarly to) a probability distribution
over the possible knowledge items matching template T that can be inferred from
K. Thus, if K ` T = π and π(t) = p then the probability of inferring t when
one tries to infer from K a tuple matching T is p. If no tuple matching T can
be inferred from K then K ` T is undefined, which is indicated by K ` T = ⊥.

2.2 Informal Timed Semantics

The semantics of SCEL does not consider any time related aspect of compu-
tation. More specifically, the execution of an action of the form act(T)@c . P
(for put/get/qry actions) is described by a single transition of the underlying
SCEL Labelled Transition System (LTS) semantics. In the system state reached
by such a transition it is guaranteed that the process which executed the action
is in its local state P and that the knowledge repositories of all components
involved in the action execution have been modified accordingly. In particular,
SCEL abstracts away details concerning:

1. when the execution of the action starts;
2. if c is a predicate p, when the possible destination components are required

to satisfy p;
3. when the process executing the action resumes execution (i.e. becomes P);

and their consequent time relationship. If we want to extend SCEL with an ex-
plicit notion of (stochastic) time, we need to take into account the time-related
issues mentioned above. These issues can be addressed at different levels of ab-
straction, reflecting a different choice of details that are considered in modeling
SCEL actions.

In the following, the process/component initiating an action will be often
called the source of the action execution, while the other components involved
in the execution will be the destinations.

Point (1) above does not require particular comments. Point (2) requires
to define when a component satisfies p with respect to a process executing an
action, when time and possibly space are taken into consideration. We assume
that source components are not aware of which are the components satisfying
predicate p. Therefore, we define the notion of observation of the component

by the process, the result of which allows to establish whether the component
satisfies the predicate or not. In the context of distributed systems this is often
realised by means of a message, called an envelope, carrying the actual data
item, sent by the process to the other components. According to this view, the
check whether a component satisfies predicate p is performed when the message
reaches it. This means that, as e.g. in PALOMA [9], a StocS action may require
broadcast communication to be executed, even if its effect involves a few and
possibly no components. In distributed systems different components may have
different response times depending on different network conditions.

Finally, point (3) rises the issue on when source component execution is to
be resumed. In particular, it is necessary to identify how the source compo-
nent is made aware that its role in the communication has been completed.
Get/query actions are blocking and they terminate when the source receives a
knowledge item from any component. A reasonable choice is that further re-
sponses received are ignored. We assume appropriate mechanisms that ensure
no confusion arises between distinct actions and corresponding messages. Put
actions are non-blocking, so it is sufficient that the source component is aware
that all reachable components are involved in the evaluation of the predicate. A
possible choice is to set-up the transmission of one request of predicate evalu-
ation for each component and then terminate the execution on the source side
immediately. On the destination side, it is necessary to model the reception
time as well as subsequent evaluation and corresponding knowledge repository
modification.

In this book, we assume a network-oriented (net-or) view on the system, i.e.
the execution of the various phases sketched above is explicitly modelled in detail
by the operational semantics, which entails that actions are non-atomic. Indeed,
they are executed through several intermediate steps, each of which requires
appropriate time duration modelling. This kind of semantics is appropriate for
models with spatial aspects, where distribution is a sensible aspect influencing
the duration of communications on the basis of the location of components.

In order to obtain an underlying CTMC semantics, in StocS relevant delays—
related to the execution of SCEL actions—are modelled as random RVs with
negative exponential distributions. Therefore, in the following, whenever we as-
sociate a rate λ with a duration, the duration is exponentially distributed with
rate λ. Non-determinism in process behaviour gives raise to race-conditions.

2.3 Explanatory example

Let us consider three components (see Fig. 1): C1 = I1 [K1, P1], C2 = I2 [K2, P2],
and C3 = I3 [K3, P3] and let us assume process P1 is defined as put(t)@p . Q5.
Note that different components may be in different locations.

The execution of put(t)@p starts in C1 with the first phase in which one copy
of the envelope message {t@p} is sent, on behalf of P1, to each other component

5 For the sake of notational simplicity, in this book we assume that predicate p in
process actions implicitly refers only to the other components, excluding the one
where the process is in execution.

C1 C2

C3

p	
 ?

λ

p	
 ?

µ3

µ2

(a)

C1 C2

C3

p	
 ?

λ

p	
 ?

µ3

µ2
err2

err3

1-­‐err2

1-­‐err3

(b)

Fig. 1. Dynamics of the put action.

of the system6. In our example two copies are created/sent, one for/to C2 and
one for/to C3. The time required for this phase (denoted in grey in Fig. 1 (a))
is modelled by a RV with rate λ: this value is computed as a function of several
factors, among which is (the size of) t. Each envelope travels in the system and
reaches the component it is associated with. Different envelopes may experience
different transmission delays; therefore, distinct rates µ2 and µ3 are associated
to each target (in Fig. 1 (a) this is illustrated by two arrows) and each rate
may depend on t as well as other parameters like the distance between C1 and
the destination component. After message creation, P1 can proceed—since put
actions are non-blocking—behaving like Q; the light-grey stripe in Fig. 1 (a)
illustrates the resumed execution of P1 in C1. The evaluation of predicate p is
performed in each destination component Cj when the message arrives at Cj ,
and appropriate actions are taken on Kj . For example, it may happen that C2

satisfies p at the time the message reaches C2, which causes item t to be added
to K2—while C3 does not satisfy p at the time the message reaches C3—so that
K3 is left unchanged.

In practice, one can be interested in modeling also the event of failed delivery
of the envelopes. This is interesting for instance for producing more realistic
models with unreliable network communication. Furthermore, the inclusion of
additional branches for failure modelling helps reducing discontinuities, which
may facilitate the application of advanced analysis techniques based on fluid
approximation [2], such as fluid model-checking [1]. Therefore, we add an error
probability to the envelopes delivery, which we indicate as perr (or simply err, in
the figure). This more detailed semantics of the put(t)@p action is illustrated
in Fig. 1 (b).

6 In an implementation of SCEL, this corresponds to a request sent either via a broad-
cast, that is not really efficient, or via a multicast to all the components potentially
involved in the operation. jRESP, the runtime-environment of SCEL, provides both
of these communication mechanisms [8].

C1 C2

C3

p%?

λ

µ2
µ3 bl

oc
ke
d

C4

p%?

p%?
β2

β3

β4

(a)

C1 C2

C3

p%?
λ

µ2
µ3

bl
oc
ke
d

C4

p%? p%?

(b)

Fig. 2. Dynamics of the get action.

Let us now consider a scenario with four components C1 = I1 [K1, P1],
C2 = I2 [K2, P2], C3 = I3 [K3, P3], and C4 = I4 [K4, P4] with P1 of the form
get(T)@p.Q (or qry(T)@p.Q).

Similarly to the execution of put(t)@p, the first phase consists in the cre-
ation of the envelope messages—with rate λ; this is represented by the grey
stripe in Fig. 2 (a). Since the get (resp. qry) action is blocking, P1 is then put
into a waiting state (denoted by a dashed line in the figure). Each copy of the
message is sent to the corresponding component Cj , with transmission rate βj .
Upon envelope arrival, each component checks for satisfaction of predicate p and
availability of an item t matching template T . Those components for which such
a check gives a positive result, say C2 and C3, are eligible to answer the request
with item t2 and t3 respectively, and a race condition takes place, so that only
one component, say C2, succeeds in providing the item, as required by SCEL
semantics. Once the item (t2) reaches C1, P1 can restart its execution from Qϑ,
with a suitable variable binding match(T, t) = ϑ; when the other item (t3) will
reach C1 it will be disregarded. Transmission rate from C2 (C3 respectively) is
µ2 (µ3).

In order to simplify the semantics of the get/qry actions and to make it more
similar to the two-steps semantics of the put action, we decided to model the
two phases of envelope delivery and response collection as a single one. So, on
message creation, the source (P1) is blocked on waiting for some destination to
synchronise with it on the exchange of the retrieved item t matching the template
T , as illustrated in Fig. 2 (b). During this synchronization, the predicate p is also
checked, on the side of the destination, and the knowledge is changed accordingly.
The synchronization attempt of all other candidates (C3, in the example) is
simply lost. In terms of the underlying stochastic model, we are replacing a
phase-type distribution, consisting of the sequence of two exponential RVs, with
an exponential RV. This choice is also convenient for simplifying the definition
of the formal semantics, since it avoids the need of giving a unique id to envelope
messages, to be used in the subsequent response collection phase.

3 Preliminary Definitions for Operational Semantics

In this section we provide preliminary notions to support the presentation of the
semantics of StocS formalising the ideas described in the previous section. The
semantics definition is given in the FuTSs style [7] and, in particular, using its
Rate Transition Systems (RTS) instantiation [6].

In RTSs, a transition is a triple of the form (P, α,P), the first and second
components of which are the source state and the transition label, as usual,
and the third component P is the continuation function7 that associates a real
non-negative value with each state P ′. A non-zero value represents the rate of
the exponential distribution characterising the time needed for the execution of
the action represented by α, necessary to reach P ′ from P via the transition.
Whenever P P ′ = 0, this means that P ′ is not reachable from P via α. RTS
continuation functions are equipped with a rich set of operations that help to
define these functions over sets of processes, components, and systems. Below we
show the definition of those functions that we use in this chapter, after having
recalled some basic notation, and we define them in an abstract way, with respect
to a generic sets X, X1, X2, . . .

Let TF(X,R≥0) denote the set of total functions from X to R≥0, and F , P,
Q, R, . . . range over it. We define FTF(X,R≥0) as the subset of TF(X,R≥0)
containing only functions with finite support: F is an element of FTF(X,R≥0)
if and only if there exist {d1, . . . , dm} ⊆ X, the support of F , such that F di 6= 0
for i = 1 . . .m and F d = 0 for all d ∈ X \{d1, . . . , dm}. We equip FTF(X,R≥0)
with the operators defined below. The resulting algebraic structure of the set
of finite support functions will be crucial for the compositional features of our
approach.

Definition 1.

1. For elements d1, . . . , dm ∈ X and γ1, . . . , γm ∈ R≥0 we use the notation
[d1 7→ γ1, . . . , dm 7→ γm] for denoting the following function:

[d1 7→ γ1, . . . , dm 7→ γm] d =def

{
γi if d = di ∈ {d1, . . . , dm},
0 otherwise.

the 0 constant function in FTF(X,R≥0) is denoted by [];
2. We define addition on FTF(X,R≥0) as the point-wise extension of + on R,

i.e. (F1 + F2) d =def (F1 d) + (F2 d);
3. For any injective binary operator • : X1 ×X2 → X we define its lifting to

FTF(X1,R≥0)× FTF(X2,R≥0)→ FTF(X,R≥0) by letting

(F1 •F2)d =def

{
(F1 d1) · (F2 d2) if ∃d1 ∈ X1, d2 ∈ X2. d = d1 • d2,
0 otherwise.

4. We use the characteristic function X on X with X : X → FTF(X,R≥0)
such that X d =def [d 7→ 1]

7 In the sequel, Currying will be used for continuation function application.

Definition 2. An A-RTS is a tuple (S,A,R≥0,�) where S and A are count-
able, non-empty, sets of states and transition labels, respectively, and relation
�⊆ S ×A× FTF(S,R≥0) is the A-labelled transition relation.

In order to distinguish and identify the rules of the semantics definition, we
label them by unique names. Note that a rule with name r may have one or more
associated blocking rules rB which have the role of allowing the execution of no
actions other than those explicitly allowed by existing inference rules. These
b-rules will not be further commented in the following sections.

4 Network-oriented Operational Semantics

We recall that the evaluation of an interface I in a knowledge state K is denoted
as I(K). The set of possible interface evaluations is denoted by E. Interface
evaluations are used within the so-called rate function R : E×Act × E→ R≥0,
which defines the rates of actions depending on the interface evaluation of the
source of the action, the action itself (where Act denotes the set of possible
actions), and the interface evaluation of the destination. For this purpose, in-
terface evaluations will be embedded within the transition labels to exchange
information about source/destination components in a synchronisation action.
The rate function is not fixed but it is a parameter of the language. Considering
interface evaluations in the rate functions, together with the executed action,
allows us to take into account, in the computation of actions rates, various as-
pects depending on the component state such as the position/distance, as well as
other time-dependent parameters. We also assume to have a loss probability func-
tion ferr : E×Act ×E→ [0, 1] computing the probability of an error in message
delivery. In the semantics, we distinguish between output actions (those issued
by a source component) and input actions (those accepted by a destination com-
ponent). To simplify the synchronisation of input and output actions, we assume
input actions are probabilistic, and output actions are stochastic, therefore their
composition is directly performed through multiplication.

In order to realise this semantics we extend the set of labels of actions per-
formed by processes and systems as described in the following.

4.1 Operational semantics of processes

The net-or semantics of StocS processes is the RTS (Proc ,ActProc ,R≥0,−⇁e).
Proc is the set of process terms defined according to the syntax of StocS given
in Table 1 ActProc is the set of labels defined according to the grammar below
(where t ∈ I, T ∈ T, gq∈{get,qry}, c is a Target, and e is the evaluation of
an interface) and it is ranged over by α, α′, . . . :

ActProc ::= τ
∣∣ {t@p}

∣∣ e : put(t)@c
∣∣ e : gq(T : t)@c

The transition relation−⇁⊆ Proc×ActProc×FTF(Proc ,R≥0) is the least relation
satisfying the rules of Table 2. −⇁e is parametrized by e, which is the interface

Inactive process and envelopes:

nil
α−⇁ []

(nil)
{t@p}µ

{t@p}−−−−⇁ [nil 7→ µ]

(env) α 6= {t@p}

{t@p}µ
α−⇁ []

(envB)

Actions (where, gq ∈ {get,qry}, c is a Target, and p is a Predi-
cate):

λ = R(σ,put(t)@c,)

put(t)@c . P
put(t)@c−−−−−−⇁σ [P 7→ λ]

(put) α 6= put(t)@c

put(t)@c.P
α−⇁ []

(putB)

match(T, t) = ϑ λ = R(σ,gq(T : t)@self,)

gq(T)@self.P
σ : gq(T :t)@self−−−−−−−−−⇁σ [Pϑ 7→ λ]

(gql)

¬match(T, t)

gq(T)@self.P
: gq(T :t)@self−−−−−−−−−⇁ []

(gqlB1) α 6= : gq(T : t)@self

gq(T)@self.P
α−⇁ []

(gqlB2)

λ = R(σ,gq(T :)@p,)

gq(T)@p.P
τ−⇁σ [{gq(T)@p}.P 7→ λ]

(gqw)
α 6= τ

gq(T)@p.P
α−⇁ []

(gqwB)

match(T, t) = ϑ β = R(σ, {gq(T : t)@p}, δ)

{gq(T)@p}.P δ:{gq(T :t)@p}−−−−−−−−−⇁σ [Pϑ 7→ β]

(gqd)

¬match(T, t)

{gq(T)@p}.P :{gq(T :t)@p}−−−−−−−−−⇁ []

(gqdB1) α 6= : {gq(T : t)@p}

{gq(T)@p}.P α−⇁ []
(gqdB2)

Choice, definition, and parallel composition:

P
α−⇁e P Q

α−⇁e Q

P +Q
α−⇁e P + Q

(cho)
A(−→x)

def
= P P [−→v /−→x]

α−⇁e P

A(−→v)
α−⇁e P

(def)

P
α−⇁e P Q

α−⇁e Q

P | Q α−⇁e P | (X Q) + (X P) | Q
(par)

Table 2. Operational semantics of StocS processes.

evaluation of the component in which the process resides: we feel free to omit
the parameter, if not used in the rule.

We now briefly illustrate the rules of Table 2. We assume to have additional
syntactical terms (not available at the user syntax level) which we call envelopes.
They are of the form {t@p}µ, can be put in parallel with processes, and denote

messages that are currently traveling towards targets. A second syntactical con-
struct we introduce is {get(T)@p} ({qry(T)@p}, respectively) which denotes a
waiting state of the process and it is treated as an action.

(nil) nil is the terminated process, since no process is reachable from it via any
action;

(env) allows to complete envelope delivery with duration specified by µ;
(put)/(putB) describe possible transitions of a process of the form put(t)@c.P .

The first rule states that put(t)@c.P evolves with rate λ to P after a tran-
sition labeled put(t)@c. This rate is computed by using rate function R.
The execution of a put(t)@c action depends on the source component and
all the other components in the system, which are involved as potential des-
tinations. Consequently, the execution rate λ can be seen as a function of
the action and of the source component (interface evaluation) only; in par-
ticular, the action rate does not depend on (the interface evaluation of) a
specific (destination) component; this is represented by using the symbol
in the destination argument of R. On the contrary, rule (putB) states that
put(t)@c.P cannot reach any process after a transition with a label that is
different from put(t)@c.

(gql) allows a process to issue a get (qry, respectively) action over the local
knowledge repository (i.e. with target self). The rule models the execution
of action get(T)@self (qry(T)@self, respectively) by process get(T)@self.P
(qry(T)@self.P , respectively). The duration of this action is described by a
rate λ computed using the function R depending on the interface evaluation
of the source σ (i.e. the container component) and on the action; the con-
tinuation associates λ with Pϑ, i.e. the process obtained by applying to P
the substitution ϑ resulting from match-ing template T against item t;

(gqw) realises the first step of a get (qry, respectively) action over a remote
knowledge in a component satisfying a predicate p, which consists in prepar-
ing an envelope {get(T)@p} ({qry(T)@p}, respectively), which takes a time
interval exponentially distributed with rate λ, and brings process P to a wait
state {get(T)@p}.P ({qry(T)@p}.P , respectively). Recall that get/qry ac-
tions are blocking and the execution of P is resumed only when a counterpart
satisfying p has a knowledge item t matching T available and the delivery
of t is completed. The duration of this first step is described by a rate λ
computed using the function R depending only on the interface evaluation
of the source σ (i.e. the container component) and the sent template T ;

(gqd) realises the second step of a get (qry, respectively) action, which consists
in the delivery of the knowledge item t matching T and has a duration
described by a rate β computed by the function R. Note that in this case
the function R is computed considering interface evaluation of the source σ
and the destination δ, as well as the sent item t, which means that this rate
can be made dependent (for example) on the distance of the two parties.

(cho) cumulates the relevant rates by means of the application of the choice
operator + on the continuation of P (P) and that of Q (Q), thus conforming
to the race condition principle of CTMCs;

put actions:

σ = I(K) P
put(t)@self−−−−−−−⇁σ P K ⊕ t = π

I [K, P]
←−−−−−−−−→
σ:put(t)@self−−−−−−−−→ I[π,P]

(c-putl)

σ = I(K) P
put(t)@p−−−−−−⇁σ P

I [K, P]
σ :put(t)@p−−−−−−−→ I[(XK),P]

(c-puto)

δ = I(K) µ = R(σ, {t@p}, δ) perr = ferr(σ, {t@p}, δ)

I [K, P]
σ :put(t)@p−−−−−−−→ [I [K, P] 7→ perr, I[K,P |{t@p}µ] 7→ (1− perr)]

(c-puti)

P
{t@p}−−−−⇁ P I(K) |= p K ⊕ t = π

I [K, P]
{t@p}−−−−→ I[π,P]

(c-enva)

P
{t@p}−−−−⇁ P I(K) 6|= p

I [K, P]
{t@p}−−−−→ I[(XK),P]

(c-envr)

Table 3. Operational semantics of StocS components (Part 1).

(def) is the rule for process instantiation;

(par) realises process parallel composition P | Q and uses Def. 1, item (3)
applied to the process parallel composition syntactic constructor | (which is
obviously injective). Therefore, given two functions R1 and R2, the function
R1 | R2 applied to process term R returns the product (R1R1) · (R2R2),
whenever R is of the form R1 | R2, for some terms R1 and R2, and 0
otherwise. In the rule, also the characteristic function X is used. Function
P | (XQ) applied to R returns P R′ if R = R′ | Q for some R′ and 0
otherwise; i.e. the function behaves as the continuation of P (P) for terms
where Q does not progress (for one step). In conclusion, P | (X Q)+(X P) |
Q correctly represents process interleaving, keeping track of the relevant
rates.

4.2 Operational semantics of components and systems

The net-or semantics of StocS systems is the RTS (Sys ,ActSys ,R≥0,−→). Sys
is the set of system terms defined according to the syntax of StocS given in
Table 1. Set ActSys of labels is defined according to the grammar below (where
gq∈{get,qry}, t ∈ I, T ∈ T, p is a Predicate, and e is the evaluation of an
interface):

get/qry actions (where, gq∈{get,qry}):

σ = I(K) P
σ : get(T :t)@self−−−−−−−−−−⇁σ P K 	 T = π

I [K, P]
←−−−−−−−−−−→
σ : get(T :t)@self−−−−−−−−−−→ I[π(t),P]

(c-getl)

σ = I(K) P
σ :qry(T :t)@self−−−−−−−−−−⇁σ P K ` T = π

I [K, P]
←−−−−−−−−−−→
σ :qry(T :t)@self−−−−−−−−−−→ I[(XK) · π(t),P]

(c-qryl)

K 	 T = ⊥

I [K, P]
←−−−−−−−−−−→
σ : get(T :t)@self−−−−−−−−−−→ []

(c-getlB)
K ` T = ⊥

I [K, P]
←−−−−−−−−−−→
σ :qry(T :t)@self−−−−−−−−−−→ []

(c-qrylB)

σ = I(K) P
δ : {gq(T :t)@p}−−−−−−−−−⇁σ P

I [K, P]
δ : {gq(T :t)@p}−−−−−−−−−→ I[(XK),P]

(c-gqo)

δ = I(K) δ |= p K 	 T = π

I [K, P]
δ : {get(T :t)@p}−−−−−−−−−−→ I[π(t), (XP)]

(c-geti)

δ 6= I(K) ∨ I(K) 6|= p ∨ K 	 T = ⊥

I [K, P]
: {get(T :t)@p}−−−−−−−−−−→ []

(c-getiB)

δ = I(K) δ |= p K ` T = π

I [K, P]
δ : {qry(T :t)@p}−−−−−−−−−−→ [I [K, P] 7→ π(t)]

(c-qryi)

δ 6= I(K) ∨ I(K) 6|= p ∨ K ` T = ⊥

I [K, P]
: {qry(T :t)@p}−−−−−−−−−−→ []

(c-qryiB)

τ actions: ρ = I(K) P
τ−⇁ρ P

I [K, P]
τ−→ I[(XK),P]

(c-tau)

Table 4. Operational semantics of StocS components (Part 2).

ActSys ::= e : put(t)@p
∣∣ e : {gq(T : t)@p}

∣∣ (input actions)

e : put(t)@p
∣∣ e : {gq(T : t)@p}

∣∣ (output actions)

τ
∣∣ ←−−−−−−−−−−−→e : {gq(T : t)@p}

∣∣ (synchronisations)

{t@p} (envelopes)

The transition relation −→⊆ Sys ×ActSys ×FTF(Sys ,R≥0) is the least relation
satisfying the rules of Tables 3, 4 and 5, where the process relation defined in
Table 2 is also used.

put synchronization:

S1
σ :put(t)@p−−−−−−−→ S o

1 S1
σ :put(t)@p−−−−−−−→ S i

1 S2
σ :put(t)@p−−−−−−−→ S o

2 S2
σ :put(t)@p−−−−−−−→ S i

2

S1 ‖ S2
σ :put(t)@p−−−−−−−→ S o

1 ‖ S i
2 + S i

1 ‖ S o
2

(s-po)

S1
σ :put(t)@p−−−−−−−→ S1 S2

σ :put(t)@p−−−−−−−→ S2

S1 ‖ S2
σ :put(t)@p−−−−−−−→ S1 ‖ S2

(s-pi)

get/qry synchronization (gq∈{get,qry}):

S1

←−−−−−−−−−−→
δ:{gq(T :t)@p}−−−−−−−−−→ S s

1 S1
δ:{gq(T :t)@p}−−−−−−−−−→ S o

1 S1
δ:{gq(T :t)@p}−−−−−−−−−→ S i

1

S2

←−−−−−−−−−−→
δ:{gq(T :t)@p}−−−−−−−−−→ S s

2 S2
δ:{gq(T :t)@p}−−−−−−−−−→ S o

2 S2
δ:{gq(T :t)@p}−−−−−−−−−→ S i

2

S1 ‖ S2

←−−−−−−−−−−→
δ:{gq(T :t)@p}−−−−−−−−−→ S s

1 ‖ (X S2) + S o
1 ‖ S i

2 + S i
1 ‖ S o

2 + (X S1) ‖ S s
2

(s-gqs)

S1
δ:{gq(T :t)@p}−−−−−−−−−→ S1 S2

δ:{gq(T :t)@p}−−−−−−−−−→ S2

S1 ‖ S2
δ:{gq(T :t)@p}−−−−−−−−−→ S1 ‖ (X S2) + (X S1) ‖ S2

(s-gqi)

Internal actions, for α ∈ { τ,
←−−−−−−−−−→
e : put(t)@self,

←−−−−−−−−−−−→
e : gq(T : t)@self, {t@p} } :

S1
α−→ S1 S2

α−→ S2

S1 ‖ S2
α−→ S1 ‖ (X S2) + (X S1) ‖ S2

(s-spl)

Table 5. Operational semantics of StocS systems.

The definition of the semantics of system parallel composition S1 ‖ S2 uses
Def. 1, item (3) applied to the system parallel composition constructor ‖, which
is injective. As usual, interleaving is modelled as a combination of lifted ‖, + on

functions and the characteristic function. In the rules, we also use Def. 1, item (3)
applied to the component syntactic constructors I[·, ·], which is injective.

In Table 3 and Table 4, rules are grouped to illustrate how the various action
types are realised.

(c-putl) describes the execution of put actions operating at self. Let I [K, P]
be a component; this rule states that P executes action put(t)@self with
local interface evaluation σ = I(K) and evolves to P, then a local execu-
tion of the action can occur and the entire component evolves with label←−−−−−−−−−→
σ : put(t)@self to I[π,P], where π = K ⊕ t is a probability distribution
over the possible knowledge states obtained from K by adding the knowl-
edge item t, while I[π,P] is the function which maps any term of the form
I [K, P] to (πK) · (PP) and any other term to 0.

(c-puto) this rule is used when the target of a put is not self but a predi-
cate p; the rule simply lifts an output put action from the process level to
the component level and transmits to its counterpart its current interface
evaluation σ by including it in the transition label.

(c-puti) models the initiation of the execution of action put(t)@c, which re-
quires several steps to complete, it allows the reception of a put action,
and it is responsible for the creation of the envelope (carrying the incoming
message) in parallel to the local process of a component, thus modeling its
travel towards that component in terms of the time necessary to reach it,
parametrized by rate µ (the fact that the envelope is in parallel with the pro-
cess of the potential receiver component by no means should be interpreted
as the representation of the fact that the message reached the component;
simply, the association between the message and the component is repre-
sented by means of a parallel composition term; in other words, the fact
that a specific message is ‘addressed’ to a component is represented syntac-
tically by such a parallel composition); this action is executed with rate λ,
computed using the function R depending on the interface evaluation of the
source σ (i.e. the container component) and the sent item t; this is postu-
lated by the rule (put) and realised at system level by the broadcast rules
of Table 5.

(c-enva)/(c-envr) realise envelope delivery by specifying the conditions under
which a component accepts or refuses, respectively, an arriving envelope;

(c-getl)/(c-qryl) realise the local get (qry) action retrieving an item t ∈ I
matching the pattern T , if possible, in the execution of process P (in the
label of the process action we include the item t and we include the interface
evaluation σ of the component for computing the action rate) and, since the
get (qry) action may result in several distinct knowledge bases, these need
to be summed together considering all possibilities: π is a distribution over
pairs (knowledge base and knowledge item) and the possible components in
the continuation are weighted by using π;

(c-gqo) realises an output get/qry action as in the act-or semantics, but
with a different label ({. . .}) which denotes the synchronization on a waiting
state;

(c-geti)/(c-qryi) realise an input get/qry action, again as in the act-or
semantics, but with a different label ({. . .});

(c-tau) allows a component to make a τ whenever its process makes such an
action.

Finally, we discuss the rules in Table 5:

(s-po)/(s-pi) realise the broadcast communication of put: (s-po) ensures that
if any subsystem executes an output put action (i.e. it executes a transition
with label σ : put(t)@p), then the remaining subsystem must execute the
corresponding input put action (i.e. it should execute a σ : put(t)@p la-
beled transition); the composed system does not exhibit a synchronization
label, but it rather propagates the output σ : put(t)@p to allow further syn-
chronization with all the other components in parallel; in the computation
of the final rate it is necessary to consider output on the left sub-system
and input on the right as well as the symmetric case; while (s-pi) allows an
input put action forcing all of the components of a sub-system to perform
that action;

(s-gqs) realises one-to-one synchronization of get/qry actions (which are not

broadcast), denoted by a
←−−−−−−−−−→
e : gq(T : t)@p label, and performs aggregation of:

(1) the synchronization rate of the left (right) sub-system, with the right
(resp. left) subsystem that must not progress (this is realised using the X
characteristic function), and (2) output rates of the left sub-system and input
rates of the right subsystem (as well as the symmetric case), combined with
the ‖ operator;

(s-gqi) realises the input get (resp. qry) action for systems in which one com-
ponent, among those satisfying the target predicate and having a matching
knowledge item, can answer;

(s-spl/s-sgql) allow a system to execute an internal action and exposes the
label denoting the type of action to allow appropriate aggregation of the
observed rates.

5 StocS at work

In this section we use a simple example to show how StocS can be used to
specify and verify quantitative properties of adaptive systems. We consider a
cloud scenario where users can execute their task in a distributed environment.
A QoS profile is associated to each user. Possible profiles are: basic, standard,
premium and super premium. Our system has two main requirements. First, we
have to reduce the number of tasks submitted by premium and super premium
users that are waiting for the execution. Moreover, we have to minimise the
number of computational resources allocated for the execution of tasks.

In StocS both users and computational resources can be rendered via com-
ponents. We refer to the first group of components as user components, while
the components in the second group are referred as computational components.

Components associated to users publish in the interface the user QoS level.
Moreover, users communicate the need to execute a task via their knowledge.
Computational components retrieve the corresponding knowledge element. The
following process, executed at users components, models this behaviour:

UTask()
def
= put(“TASK”)@self.UTask()

We assume that tasks requests arrive at a rate λtr = 50.0. We also assume that
40% of the requests come from basic users; 35% come from standard users while
15% and 10% arrive from premium and super premium users respectively.

Computational resources can execute at most k tasks at the same time (in
the following we consider k = 15). This value corresponds to the number of Ser-
viceAgents that are executed at each computational component. These processes
retrieve and execute tasks. We can vary the method used by ServiceAgent to
retrieve pending tasks from users to obtain different kinds of specifications. In
particular, we consider three possible approaches: static allocation, progressive
allocation and dynamic allocation. When static allocation is used, each com-
putational component only handles tasks from users of a given level. In the
progressive allocation, like in the previous case, each computational component
is associated with a QoS level. However, differently from the static allocation,
each process is able to handle tasks from users with a QoS level that is equal or
higher than the associated one. Finally, in the dynamic allocation, the class of
users that a component can handle depends on the computation load : the higher
is the number of executed tasks in a component, the higher is the QoS level that
the same component can handle.

Process ServiceAgent is defined as follows:

ServiceAgent()
def
= get(“TASK”)@c.

put(“EXECUTE”)@self.
ServiceAgent()

The get action is activated with rate λ = 1 that is also the rate of data trans-
mission. The execution time of action put(“EXECUTE”)@self mimics the task
execution time and it is exponentially distributed with rate λe = 1

3 . All the
above mentioned rates do not appear explicitly in the syntax of the specifica-
tions. These are obtained via the appropriate rate function R according to the
kind of action performed, the data transmitted and the interfaces of the involved
components, provides the actual action rate. Due to lack of space we omit the
explicit definition of function R that can be easily inferred from the informal
description.

Note that in process ServiceAgent, the term c varies according to the consid-
ered allocation method :

static allocation:
this.level == I.level

progressive allocation:
this.level <= I.level

dynamic allocation:

((this.load <= 50%) ∧ I.level >= base)∨
((this.load <= 66%) ∧ I.level >= standard)∨
((this.load <= 88%) ∧ I.level >= premium)∨
(I.level == superpremium)

The formulas listed above identifies the specific predicates used by ServiceAgent
to retrieve requests from user components. Above, this is used to refer to the
interface of the local component (i.e. the computational component executing
a ServiceAgent) while I refers to the target interface, i.e. the component from
which the request is retrieved. Two attributes are used in the considered pred-
icates: level and load. These identify the user QoS level and the workload of a
component, respectively.

Note that in the case of dynamic allocation, self-awareness is rendered di-
rectly in the target predicated used to retrieve user requests. A ServiceAgent
handles base (resp. standard, premium) users only when the component’s load
is under 50% (resp. 66%, 88%), while super premium users are always executed.
The actual value of attribute load is transparently published on the component
interface and dynamically computed according to the number of executed tasks.

To perform analyses of the considered system we use jRESP 8. This is a Java
environment that provides a simulation environment that, while implementing
the stochastic semantics presented in Section 4, can be used to analyse StocS
specifications.

We consider three configurations:

C1 static allocation with 16 components: 6 for base, 5 standard, 3 premium and
2 super premium;

C2 progressive allocation with 13 components: 7 for base, 4 standard, 2 premium;
C3 dynamic allocation with 12 components.

The results of simulations are reported in Figure 3 and Figure 4. If we com-
pare the three configurations with respect to the average number of waiting
tasks, the model C1 is the one guaranteeing better quality of service (see Fig-
ure 3). However, if we consider the workload, C3 is the one that, by using a less
number of computational resources, guarantees a well balanced use of resources
(see Figure 4).

6 Conclusions and Future Work

We have introduced StocS, a stochastic extension of SCEL, for the modeling
and analysis of performance aspects of ensemble based autonomous systems.
One of the original features of the language is the use of stochastic predicate
based multi-cast communication which poses particular challenges concerning
stochastically timed semantics. The proposed semantics models the execution

8 http://jresp.sourceforge.org

0 20 40 60 80 100
Time Units

0

0.2

0.4

0.6

0.8

W
ai

tin
g

Ta
sk

s

Base
Standard
Premium
Super Premium

0 20 40 60 80 100
Time Units

0

0.5

1

1.5

2

2.5

W
ai

tin
g

Ta
sk

s

Base
Standard
Premium
Super Premium

0 20 40 60 80 100
Time Units

0

0.5

1

1.5

2

2.5

3

W
ai

tin
g

Ta
sk

s

Base
Standard
Premium
Super Premium

C1 C2 C3

Fig. 3. Simulation results: Number of waiting tasks

0 20 40 60 80 100
Time Units

0

0.2

0.4

0.6

0.8

W
or

kl
oa

d
%

Min. Load
Avg. Load
Max. Load

0 20 40 60 80 100
Time Units

0

0.2

0.4

0.6

0.8

1

W
or

kl
oa

d
%

Min. Load
Avg. Load
Max. Load

0 20 40 60 80 100
Time Units

0

0.2

0.4

0.6

0.8

1

W
or

kl
oa

d
%

Min. Load
Avg. Load
Max. Load

C1 C2 C3

Fig. 4. Simulation results: Workload

StocS actions through several intermediate steps modelling the behaviour of
an underling framework providing the machinery for realising the StocS com-
munication primitives. A case study concerning an abstract model of a cloud
system was presented to illustrate the use of the various language primitives of
StocS. As a future work we plan to develop fluid semantics of StocS together
with the related verification techniques that can be used to address the analysis
of large scale collective systems along the lines of work in [1, 2].

References

1. Luca Bortolussi and Jane Hillston. Fluid model checking. In Maciej Koutny and
Irek Ulidowski, editors, CONCUR, volume 7454 of Lecture Notes in Computer
Science, pages 333–347. Springer, 2012.

2. Luca Bortolussi, Jane Hillston, Diego Latella, and Mieke Massink. Continuous ap-
proximation of collective system behaviour: A tutorial. Perform. Eval., 70(5):317–
349, 2013.

3. Roberto Bruni, Andrea Corradini, Fabio Gadducci, Alberto Lluch-Lafuente, and
Andrea Vandin. A conceptual framework for adaptation. In Juan de Lara and
Andrea Zisman, editors, FASE, volume 7212 of Lecture Notes in Computer Science,
pages 240–254. Springer, 2012.

4. R. De Nicola, J.-P. Katoen, D. Latella, M. Loreti, and M. Massink. Model Checking
Mobile Stochastic Logic. Theoretical Computer Science. Elsevier, 382(1):42–70,
2007. http://dx.doi.org/10.1016/j.tcs.2007.05.008; DOI 10.1016/j.tcs.2007.05.008.

5. Rocco De Nicola, Gian Luigi Ferrari, Michele Loreti, and Rosario Pugliese. A
language-based approach to autonomic computing. In Bernhard Beckert, Ferruccio
Damiani, Frank S. de Boer, and Marcello M. Bonsangue, editors, FMCO, volume
7542 of Lecture Notes in Computer Science, pages 25–48. Springer, 2011.

6. Rocco De Nicola, Diego Latella, Michele Loreti, and Mieke Massink. Rate-based
transition systems for stochastic process calculi. In Susanne Albers, Alberto
Marchetti-Spaccamela, Yossi Matias, Sotiris E. Nikoletseas, and Wolfgang Thomas,
editors, ICALP (2), volume 5556 of Lecture Notes in Computer Science, pages 435–
446. Springer, 2009.

7. Rocco De Nicola, Diego Latella, Michele Loreti, and Mieke Massink. A uniform
definition of stochastic process calculi. ACM Comput. Surv., 46(1):5:1–5:35, July
2013.

8. Rocco De Nicola, Michele Loreti, Rosario Pugliese, and Francesco Tiezzi. A formal
approach to autonomic systems programming: The SCEL language. TAAS, 9(2):7,
2014.

9. Cheng Feng and Jane Hillston. PALOMA: A process algebra for located markovian
agents. In Gethin Norman and William H. Sanders, editors, Quantitative Evalu-
ation of Systems - 11th International Conference, QEST 2014, Florence, Italy,
September 8-10, 2014. Proceedings, volume 8657 of Lecture Notes in Computer
Science, pages 265–280. Springer, 2014.

10. Nora Koch, Matthias Hölzl, Annabelle Klarl, Philip Mayer, Tomas Bures, Jaques
Combaz, Alberto Lluch Lafuente, Rocco De Nicola, Stefano Sebastio, Francesco
Tiezzi, Andrea Vandin, Fabio Gadducci, Valentina Monreale, Ugo Montanari,
Michele Loreti, Carlo Pinciroli, Mariachiara Puviani, Franco Zambonelli, Nikola
Šerbedžija, and Emil Vassev. JD3.2: Software engineering for self-aware SCEs,
2013. ASCENS Deliverable JD3.2.

11. Diego Latella, Michele Loreti, Mieke Massink, and Valerio Senni. Stochastically
timed predicate-based communication primitives for autonomic computing. In
Nathalie Bertrand and Luca Bortolussi, editors, Proceedings Twelfth International
Workshop on Quantitative Aspects of Programming Languages and Systems, QAPL
2014, Grenoble, France, 12-13 April 2014, volume 154 of EPTCS, pages 1–16, 2014.

12. Rocco De Nicola, Matthias Hölzl, Michele Loreti, Alberto Lluch Lafuente, Ugo
Montanari, Emil Vassev, and Franco Zambonelli. JD2.1: Languages and knowledge
models for self-awareness and self-expression, 2012. ASCENS Deliverable JD2.1.

13. Nikola Šerbedžija, Nicklas Hoch, Carlo Pinciroli, Michal Kit, Tomas Bures,
Valentina Monreale, Ugo Montanari, Philip Mayer, and José Velasco. D7.3: Third
report on wp7 - integration and simulation report for the ascens case studies, 2013.
ASCENS Deliverable D7.3.

14. Nikola Šerbedžija, Mieke Massink, Carlo Pinciroli, Manuele Brambilla, Diego
Latella, Marco Dorigo, Mauro Birattari, Philip Mayer, José Angel Velasco, Nick-
las Hoch, Henry P. Bensler, Dhaminda Abeywickrama, Jaroslav Keznikl, Ilias
Gerostathopoulos, Tomas Bures, Rocco De Nicola, and Michele Loreti. D7.2: Sec-
ond report on wp7 - integration and simulation report for the ascens case studies,
2012. ASCENS Deliverable D7.2.

