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The ability to establish and leverage communication net-
works to share information and collaboratively accomplish 
sophisticated tasks is a distinguishing feature of humans1. 

While the ability to form social ties with others was originally 
developed when individuals were in close proximity, techno-
logical improvements have allowed increasingly remote forms 
of communication and collaboration, that now include tele- and 
video-conferencing, email and chats2. These changes reinvigo-
rated longstanding debates about the extent to which social rela-
tionships are predicated upon physical proximity3. While earlier 
studies in sociology and organizational science discuss the role of 
spatial propinquity in producing interpersonal ties4,5, the causal 
mechanisms through which co-location affects social networks 
remain understudied6–9.

Addressing this question is all the more relevant today. First, 
in planning the transition towards the post-COVID-19-pandemic 
‘new normal’, institutions and policy-makers world-wide are won-
dering about the best way to reshape work environments following 
COVID-1910–13. Second, the massive shift to remote work during 
the past two years has produced a trove of big data that promises 
to elucidate what happens when we remove physical presence as a 
main conduit of communication14. While recent work has started to 
highlight changes in the communication networks of information 
workers due to mandatory remote work, the data were collected 
across several campuses in the continental USA—making it diffi-
cult to link these network changes to a lack of physical proximity15. 
Hence, the following question remains open: what is the effect of 
co-location on human communication networks?

In this study, we explore the mechanism via which the com-
plete removal and subsequent partial reintroduction of physical 
co-location at a large North American university—the MIT cam-
pus—affects the structure of its digital communication network. We 
find that, despite the robustness of many network measures to the 

shift to remote work, physical co-location plays a crucial role in the 
formation of weak ties.

Since Mark Granovetter’s seminal work in 197316, weak ties 
have been identified as fundamental microscopic structures that 
enable the spread of ideas and opportunities in social networks. 
Our hypothesis is that weak ties form due to chance encounters 
in and around the office, so removing the possibility for chance 
encounters should affect the formation of weak ties. By hindering 
new weak tie formation, the removal of physical co-location leads 
to increased redundancy in email networks—more information is 
spread between fewer people. Put differently, physical proximity 
is vital for updating the people with whom we communicate over 
time. This is in line with earlier work on the notion of propinquity, 
used to denote the tendency to form connections among proximate 
individuals3. Propinquity can be modeled with a modification of the 
link-central preferential attachment model, which includes a co-
location factor τ, accurately reproducing the dynamics of formation 
and stability of weak ties caused by long-term removal and partial 
reintroduction of physical co-location on the MIT campus.

Results
Forming the daily email network. We build and analyze a large 
email network of research workers at MIT in Cambridge, MA. 
Despite the wide-scale adoption of synchronous video-conferenc-
ing technology, email remains a universal mode of digital commu-
nication used by researchers to exchange information and organize 
meetings. To study changes in communication behavior due to 
fully remote work, we study the email habits of 2,834 MIT faculty 
and postdocs over 18 months starting on 26 December 2019. Each 
researcher belongs to a ‘research unit’, which describes their campus 
affiliation (see Supplementary Information for a complete list—the 
partition of the MIT research community into research units is in 
general finer than the partition into departments). During March 
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2020 MIT started implementing COVID-19 contingency plans, 
which led to a progressive decrease in campus attendance and cul-
minated on Monday 23 March 2020 with the halting of in-person 
research activities. For each day, the number of emails sent between 
each pair of (anonymized) individuals is determined exactly for 
>66% pairs of individuals from randomized, aggregated data and 
used to form the edge weights of an undirected network. For the 
remaining pairs we estimate the number of emails sent using non-
negative matrix factorization (Methods).

Robustness of network metrics to the remote work transition. Our 
initial analysis did not show many changes in the network: directly 
comparing connected components and the number of intra-/inter-
research unit connections in the email network in February 2020 
and February 2021 using a paired test on the logarithms of these 
network metrics (Methods) highlights few significant differences 
(Fig. 1a). However, due to the seasonal nature of academic work, 
paired testing comparing only February is not sufficient to estimate 
the short- and cumulative long-term effects of fully remote working 
on the communication network.

To provide a statistically robust estimation of long-term effects, 
we design a methodology based on the Bayesian structural time 
series approach. The approach is based on the construction of a syn-
thetic counterfactual time series from a covariate unaffected by the 
treatment. A well constructed synthetic counterfactual can capture 
fluctuations in the time series of interest due to seasonality and con-
founding factors other than the treatment. If the predictive power of 

the covariate wanes over time (which can happen because, for exam-
ple, the model is only fit on data before the treatment is applied), then 
the width of the posterior predictive interval around the synthetic 
counterfactual will increase over time, representing our increased 
uncertainty about the distant future. As the treatment in this case 
corresponds to the termination of campus access for researchers, 
we use email data from weekends, when most researchers were 
not entering the office, to construct our counterfactual (Methods). 
When studying these cumulative effects, there are also no significant 
differences in the number of intra-/inter-research unit connections, 
the number of connected components or the size of the giant com-
ponent due to remote work (Fig. 1b). A detailed plot highlighting the 
evolution of the uncertainty of the Bayesian structural time series 
model over time can be found in Supplementary Information. The 
fact that the sign (loss versus gain) of the change in network metrics 
such as connected components, inter-unit connections and size of 
giant component differs between Fig. 1a and Fig. 1b is indicative of 
the fact that choosing a single month in 2020 and 2021 for compari-
son does not accurately capture cumulative effects.

Weak-tie formation is impeded by remote work. To study the effect 
of remote work on the sorts of connection that might arise from ser-
endipitous encounters on campus, we investigate the structure of 
weak ties in the email network. Because local bridges can be iden-
tified knowing only the topology of a social network, Granovetter 
suggested using the notion of a local bridge as an accessible proxy 
for the notion of a weak tie16 (see Supplementary Information for 
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Fig. 1 | Robustness of global network topology in daily reciprocated email networks. a, The change from the beginning of the spring 2020 semester 
(weekdays between 5 February and 5 March 2020) to the spring 2021 semester (weekdays between 17 February and 19 March 2021) in the number of 
users in the largest component, the number of components, the number of connections (edges) between users who are in the same research unit and 
the number of connections (edges) between users in distinct research units. 95% confidence intervals (CIs) from two-sided z test on the coefficients of 
a generalized least squares model fit to the log difference in means (n = 16 d for all variables). Full results are in Supplementary Tables 1–4. b, Predicted 
cumulative change in network metrics compared with a synthetic counterfactual from 23 March 2020 to 15 July 2021. Posterior predictive intervals with 
95% coverage computed using Bayesian structural time series (npre = 8 weeks, npost = 72 weeks). Fitted values/intervals use the mean as the measure of 
central tendency.
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detailed definitions). To check that our results are robust to alterna-
tive definitions of weak ties, we repeat our analysis (obtaining very 
similar results) using low-contact-frequency ties in Supplementary 
Information. Figure 2a provides an illustration of the way in which 
chance encounters lead to the formation of new local bridges.

The removal of physical co-location (as a consequence of man-
datory fully remote work) caused an immediate and persistent 
drop in the number of weak ties formed in the MIT email network. 
Figure 2b shows the causal effect of a lack of co-location estimated 
with a piecewise polynomial regression discontinuity design (RDD) 
on both the number of weak ties and the number of new (not previ-
ously seen) weak ties. There is a statistically significant 6.2% drop 
in the number of weak ties and a 38.7% drop in the number of 
new weak ties coinciding with the sudden absence of co-location. 
Because we study a fixed population of users, as we see more ties the 
number of new weak ties will naturally decrease—thus the down-
ward trend of new weak ties is expected. However, the significant 
jump discontinuity on 23 March 2020 indicates that the absence of 
physical co-location is negatively associated with the ability to form 
new weak ties. The decrease in the addition of new weak ties hints at 
a stagnation effect—researchers are not updating their pool of weak 
ties as often as would be expected.

Not only is the drop in weak ties sudden and statistically sig-
nificant at the onset of the transition to full remote working, but 
it is also cumulatively significant over the course of more than one 

year. Using Bayesian structural time series to estimate the cumula-
tive effect of a lack of co-location, we see in Fig. 2c a significant 
predicted loss of more than 5,100 weak ties from 23 March 2020 
until 15 July 2021 due to remote work—approximately 1.8 ties per 
person in the 2,834 researchers we study. Thus we find that remote 
work leads to a long-lasting, statistically significant drop in weak 
ties. Figure 2c also shows a non-significant cumulative drop in the 
number of new weak ties formed in the network—we explain this 
phenomenon in detail in the following section.

Finally, we identify a striking difference in the mechanism via 
which local bridges disappear due to remote work: in the short term 
through the end of the spring 2020 semester, local bridges become 
embedded in triangles, while in the long term they are dropped 
from the network (Fig. 2d). We also confirm in Supplementary 
Information that ego networks become more stagnant in the 
absence of co-location—the social contacts of researchers become 
more similar from week to week after remote work. Specifically, 
by computing the intersection over union of the edges in the daily 
reciprocated email networks on day d and day d + 7, we see a lasting, 
significant increase in the stability of network edges from week to 
week after remote work (Supplementary Fig. 1h).

Weak-tie formation and physical proximity. As people are more 
likely to meet by chance on campus if their offices are nearby9, we 
expect to observe more consistent changes in the formation of new 
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Fig. 2 | Changes in weak ties in the MIT email network after the shift to remote work. a, A candidate mechanism for local bridge formation in a social 
network which requires co-location. b, A drop of 55.70 (6.2%) in the number of local bridges (weak ties) after 23 March 2020 (P = 0.002, 95% CI 
[−91.627, −19.774]). There is a drop of −38.03 (38.7%) in the mean number of new (not previously seen) weak ties appearing each weekday after 23 
March 2020 (P < 0.001, 95% CI [−53.38, −22.68]). ***P < 0.001, **0.001 ≤ P < 0.01. Statistics represent the results of a two-sided z test corresponding 
to a local polynomial RDD (npre = 42 d, npost = 188 d). c, There is a cumulative loss of 5,110 weak ties throughout an entire year (P < 0.001, 95% posterior 
predictive interval [−4,957, −5,267]) and a non-significant loss of 2,930 new weak ties (P = 0.241, 95% posterior predictive interval [−11,588, 5,730]). 
Posterior predictive intervals computed using Bayesian structural time series (npre = 8 weeks, npost = 72 weeks). d, The number of weak ties that become 
strong (become embedded in triangles) or are churned (dropped from the network) in a 30 d rolling window. Fitted values/intervals use the mean as the 
measure of central tendency.
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weak ties for co-located MIT personnel. For each week we predict the 
mean value of the dependent variable (weak ties between research-
ers in a fixed distance range) during business days. We use the mean 
of weekend values as our covariate for the Bayesian structural time 
series approach with treatment on 23 March 2020 outlined previ-
ously. To have a consistent measure of distance across all days in 
the data, we use distance between the campus offices of researchers 
rather than the distance between their active work environments—
during the shift to remote work the distance between researchers’ 
campus offices does not change. We use four distance thresholds: 
0 m (researchers working in the same laboratory), 0–150 m (close/
nearby researchers in distinct laboratories), 150–650 m (researchers 
at medium distance) and >650 m (far-away researchers). The dis-
tribution of distances between researcher offices can be found in 
Supplementary Information.

Using Bayesian structural time series with a synthetic counter-
factual constructed from weekend email network data, we find an 
immediate and lasting drop in the number of new weak ties between 
researchers in distinct but nearby research laboratories (Fig. 3b). 
This is in line with our expectation that propinquity contributes 
to weak-tie formation. Given this decrease, it may seem surprising 
that there is an increase in the number of new weak ties between 
researchers in the same laboratory (Fig. 3b). However, Yang et al.15 
discovered an increase in the use of asynchronous communication 
(for example email) after the COVID-19 pandemic. A plausible 
explanation for the increase in new weak ties between researchers 
in the same laboratory is that after the shift to remote work email 
was used to schedule one-on-one meetings or ask small questions 
between same-laboratory researchers that formerly would have been 
scheduled or asked in person. Figure 3c,d shows a non-significant 

decrease in the number of new weak ties formed between research-
ers in distinct laboratories at medium and far distances. This is also 
compatible with our intuition, as we do not expect researchers who 
work far away from one another to have many chance encounters 
even when working in person.

The effect of hybrid work on the formation of weak ties. MIT 
reopened its campus for the fall 2021 semester starting on 8 
September 2021. However, following MIT recommendation 
many research laboratories adopted a hybrid mode of work with 
researchers only physically present for (at most) three out of five 
business days each week, implying that the chance of serendipitous 
encounters was still lower than before the COVID-19 pandemic. 
Furthermore, limitations on the number of people allowed to eat 
together at a time and ongoing restrictions to international travel 
prevented departments from hosting large-scale events where 
researchers might typically mix. To estimate the causal effect of the 
end of remote work, we calculate a synthetic counterfactual for 2021 
weekday email data from 2020 weekday email data (Methods).

The percentage of new weak ties at close distances is higher than 
expected in fall 2021 given the percentage at close distances in fall 
2020 (Fig. 4a), with no significant differences observed at other 
distance thresholds. The number of weak ties rises more sharply 
than expected on 8 September 2020 (Fig. 4b) given the rise at the 
beginning of the fall 2020 semester. Despite this, the total number 
of new weak ties is lower than or similar to the predicted value 
after hybrid work (Fig. 4b). Taken together, the results of Fig. 4 hint 
at the partial but incomplete success of the hybrid work model in 
allowing researchers to once more form new weak ties with other 
proximal researchers.
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Fig. 3 | Formation of new weak ties stratified by distance. a, The estimated effect between researchers in the same laboratory. b, The estimated effect 
between researchers in distinct laboratories within 150 m. c, The estimated effect between researchers in distinct laboratories between 150 and 650 m.  
d, The estimated effect between researchers in distinct laboratories further apart than 650 m. Shaded regions represent 95% posterior predictive intervals 
computed using Bayesian structural time series with a synthetic counterfactual constructed from weekend data (npre = 8 weeks, npost = 72 weeks for all 
panels). Fitted values/intervals use the mean as the measure of central tendency.
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Modeling the effect of distance on tie formation. Our empirical 
results are consistent with the existence of some kind of mecha-
nism via which co-location promotes weak-tie formation. Here 
we seek to address the following question: given a collection of 
potential communicating pairs of researchers, how can we choose 
which pairs of researchers communicate each weekday to accu-
rately capture the topological structure and temporal dynamics of 
real world networks?

Previous work has identified at least four factors relevant to tie 
formation17–19: focal closure, triadic closure, link-centric prefer-
ential attachment and physical co-location. Figure 5 gives a dia-
grammatic depiction of these four factors. However, determining a 
simple functional form via which these factors combine to govern 
the evolution of a dynamic communication network is still an open 
problem. Here we describe a simple network evolution model via 
which co-location multiplicatively scales the effect of homophily 
to determine which pairs of people communicate on a given day 
(see Methods for details). We simulate the formation of email net-
works on weekdays by creating an edge memory dictionary from 
the last two weeks of February 2020, then generating new graphs 
each day using our model. Previous work on the effect of distance 
on tie formation has primarily focused on distance and homoph-
ily as separate, additive factors that both contribute positively to tie 
formation3,20,21. However, bringing people with clashing personali-
ties close together is more likely to make them enemies than friends 
and hence unlikely to make them contact one another via email. 
For this reason we view co-location as a multiplicative factor that 
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scales the effects of homophily to form new ties. See Supplementary 
Information for an ablation study of our model together with a dis-
cussion of other random graph models.

Our goal is to reproduce the dynamics of weak-tie formation 
in networks with a simple network evolution model. To reproduce 
the qualitative features observed in the data, we set the τ for each 
pair of individuals to 0 (corresponding to no physical co-location) 
starting from 23 March 2020 then back to 1 on 8 September 2021. 
Upon the removal of co-location, our model produces a drop in the 
number of weak ties (Fig. 6a) and new weak ties (Fig. 6b), which 
is qualitatively similar to what we observe in the empirical data. It 
also reproduces the increase in edge stability (Fig. 6c), as well as the 
robustness of long-distance ties to a sudden absence of co-location 
(Fig. 6d). Here the weekly periodicity is measured as the intersec-
tion over union of the edge sets of the networks on days d and d − 7. 
By looking at the number of weak ties, the clustering coefficient and 
the week to week periodicity (Fig. 6a,b) produced by our model 
after 8 September 2021, we see that our model predicts that com-
plete reintroduction of co-location results in a complete recovery 
of weak ties. The signs of the logarithm of the distance interaction 
coefficients allow us to identify the following potential mechanism 
for the drop in weak ties: two researchers are more likely to form 
new weak ties when they are co-located. To further confirm this 
hypothesis, we have simulated a scenario without the sudden transi-
tion to fully remote work modeled through the change in the value 
of the physical co-location variable on 23 March 2020. The results, 

reported in Supplementary Information, show no observable drop 
in weak ties, providing further evidence in support of our explana-
tory hypothesis.

Discussion
Several sociologists have argued that the lack of connections during 
the COVID-19 pandemic negatively impacted mental and physical 
well-being as well as innovation, collaboration and creativity22,23. 
However, the mechanism via which such effects have occurred has 
yet to be explicitly identified. As businesses and universities make 
crucial decisions about the amount of in-person work after the 
COVID-19 pandemic, understanding the lasting effects of remote 
work on research communities is of paramount importance.

Our study shows that the transition to fully remote work on 
the MIT campus—with consequent complete removal of physical 
co-location between co-workers—had notable effects on the email 
communication network: while some common topological features 
were preserved, the formation of weak ties was hindered, causing 
weak-tie deterioration and network stagnation in the long term. 
Employees who are not co-located are less likely to form ties, weak-
ening the spread of information in the network24–26. The mechanism 
of weak-tie formation can be successfully reproduced using a link 
formation model through which co-location multiplicatively scales 
the effects of homophily between researchers.

Our findings have implications for the design of future research 
campuses and work environments, as well as for the development 
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Fig. 6 | A tie choice model in which distance multiplicatively scales the effects of homophily. The output of our model when artificially setting office 
distances to a large fixed constant after 23 March 2020, then returning researcher offices to their initial positions on 8 September 2021. ***P < 0.001. 
a, A simulated drop in the number of local bridges on 23 March 2020 (effect = −65.2, P < 0.001, 95% CI [−76.109, −54.316], npre = 42, npost = 238) 
followed by an increase in the fall (effect = 51.9, P < 0.001, 95% CI [42.091, 61.693], npre = 129, npost = 38). b, The number of new weak ties entering the 
network (effect = −47.0, P < 0.001, 95% CI [−60.566, −33.510], npre = 42, npost = 238). All statistics are two-sided z tests. c, The weekly periodicity and 
daily clustering coefficient. IOU is intersection over union. d, The number of simulated weak ties between users in distinct research units first appearing 
between 4 February 4 and 23 March 2020 versus between 23 March 2020 and 22 May 2020. Fitted values/intervals use the mean as the measure of 
central tendency.
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of new virtual technologies that seek to recreate interactions that 
happen in physical offices. Today it is of the utmost importance to 
identify what is the ‘minimum amount’ of in-presence work that 
enables the formation of weak ties, so that individual and societal 
benefits related to remote work can be preserved without impact-
ing the generation of new ideas and innovation in general. While 
previous studies have documented the effects of reduced in-person 
collaboration in the short term15, we show that the shift to remote 
communication produces a long-lasting impact on the formation of 
local bridges in collaborative networks, with effects accumulating 
over time. Expanding on the existing methodology, we demonstrate 
that paired testing estimates, conventionally used to evaluate the 
short-term effects of stay-at-home restrictions, do not accurately 
represent the long-term changes in the social network. We provide 
an alternative estimation strategy that produces more robust infer-
ence about the long-term effects.

We also would like to highlight several important considerations 
on our causal inference strategy. We use the Bayesian structural 
time-series method to estimate the long-term effects of the man-
datory shift to remote work by constructing a counterfactual pre-
diction of weekday email exchanges using weekend email data. The 
validity of our methodology is supported by three main arguments. 
First, at a weekly level, weekend email exchanges are sufficiently pre-
dictive of the weekday emails due to common unobserved seasonal-
ity and the fact that work communication tends to spill over into 
weekends. Second, even if weekend email exchanges are affected 
by the shift to mandatory remote work, this is not due to changes 
in co-location of researchers since people typically do not come 
to the office on weekends. Finally, while there are other potential 
pandemic-related confounding factors such as changes in childcare 
that could a priori contribute to changes in the MIT email network, 
it is reasonable to expect such confounding factors to be distributed 
independently of the distance between researcher offices. Thus, by 
stratifying connections by the distance between researcher offices, 
we directly attribute the observed loss in new weak-tie formation 
to a lack of co-location. Still, our approach is not without its limi-
tations. In particular, the predictive power of the weekend email 
exchanges is limited by the fact that we only observe the network 
for three months before intervention and could benefit from adding 
data for previous years.

Our results suggest that the loss of social connections that oth-
erwise spontaneously emerge in shared spaces can not be imme-
diately restored by simply returning to offices. When designing 
work-from-home policies, firms and organizations should consider 
ways to promote serendipitous interactions across organizational 
units if they want to retain efficient discovery and transmission 
of novel information. Still, our initial findings on the hybrid work 
model that followed the reintroduction of partial in-person col-
laboration at MIT show a slight recovery in the number of weak 
ties—especially between researchers who are once again co-located. 
This hints at the possibility of establishing a work balance trade-off 
by combining in-person and remote interactions among colleagues, 
which could inform the transition to a hybrid, post-COVID-19  
new normal.

Methods
Ethical review. This research was reviewed and classified as exempt by the 
Massachusetts institute of Technology (MIT) Committee on the Use of Humans as 
Experimental Subjects (MIT’s institutional review board), because the research was 
secondary use research involving the use of de-identified data.

Data preprocessing. Data were analyzed using Python 3.7.9, NumPy 1.21.5, 
pandas 1.1.5, statsmodels 0.12.1, OSMnx 1.0.1, python-flint 0.3.0, SciPy 1.6.0  
and GeoPandas 0.8.1.

We start with a fixed set of anonymized researchers R (research staff,  
faculty and postdocs) from 112 different research units. As required by MIT  
staff for privacy reasons, these researchers are grouped via ten random partitions 
(no researchers are shared between the groups in a partition) of R, Ri =

⨿
jG

i
j, 

1 ≤ i ≤ 10. We describe below how to estimate individual-level data from aggregated 
data, which was necessary to ensure that the studied users were active through 
the entire time period of interest. Each group Gj

i contains at least five researchers, 
and all researchers in Gj belong to the same research unit. Let gij ∈ R denote the 
collection of researchers in Gj

i. For a pair of groups Gj
i, Gk

i and a day d, our data 
contain the sum Wjk

i of all emails sent between groups j and k for randomization i:

Wi
jk =

∑

gij∈Gi
j

∑

gik∈Gi
k

emailsd(gij, gik). (1)

For each research unit U, let RU  denote the collection of researchers in the 
research unit. Because each group contains only researchers from a single research 
unit, each equation (1) is a sum over researchers from at most two research units. 
Grouping the equations (1) by pairs of research units U, V on each day d we obtain 
a collection of constrained linear systems of Diophantine equations,

WU
V = AU

Vx
U
V (2)

xUV ≥ 0 (3)

where xUV  is the column vector whose entries are emailsd(gij, gik), 1 ≤ i ≤ 10, gij ∈ R
U ,  

gjk ∈ R
V  and AU

V  is the matrix of coefficients of the equations (1). Each of these 
linear systems is guaranteed to have at least one solution (the actual number of 
emails sent), but may be underdetermined. If there is a unique solution, we use 
the Hermite normal form27 of AU

V  to find it. If the system is underdetermined, we 
use non-negative matrix factorization28 with an ℓ1 penalty to quickly estimate a 
sparse non-negative solution, as the algorithms that compute exact sparse integer 
solutions are slow. This procedure yields an estimate for each day d and each 
pair u, v ∈ R of emailsd(u, v). In Supplementary Information we show that our 
approximate solutions are very close to true solutions.

Network formation. To rule out changes in the data due to departures from the 
university or new hires, we ensure that each user sent at least one email over the 
university network before the end of the 2020 spring semester and at least one 
email after 20 May 2021. We denote this set of active users by A.

We are missing data from 23 December 2020 and 19–21 January 2021; because 
these days are during the winter holiday at MIT this does not heavily affect our 
analysis. For each of the remaining 562 days from 26 December 2019 through 
15 July 2021, we obtain a weighted, undirected network whose nodes represent 
(anonymized) individuals. Fix a day d; for each user u in A, let Nbd(u) denote  
the number of people whom u emailed on day d. For a pair of users u, v ∈ A,  
let emailsd(u, v) denote the number of emails sent (estimated as in the previous 
section) from u to v on day d. To rule out massmails, let Ad ⊆ A be the subset

Ad = {u ∈ A|1 ≤ Nb(u) < 100}.

Define a weighted, undirected network Nd with nodes Ad. For two nodes u, v, 
there is an edge (u, v) if emails(u, v) ≥ 1 and emails(v, u) ≥ 1. The weight of the 
edge is defined to be min(emailsd(u, v), emailsd(v, u)). Although the email data are 
partially estimated due to randomization and aggregation, for >66% of the edges 
with non-zero weight in the estimated network Nd we were able to recover the 
true number of emails sent. If we include all edges between users contributing to a 
non-zero weight edge in at least one random aggregation of the network (but which 
may have weight zero in the estimated network), >99.9% of edges have the ground 
truth number of emails. When building the undirected network Nd, we consider 
four possible time windows during which emails can be reciprocated: the same 
day (daily), within 5 business days (weekly), within 10 business days (biweekly) or 
within 21 business days (monthly). For results on weekly, biweekly and monthly 
networks see Supplementary Information. Previous studies have found that more 
than 90% of emails are replied to on the same day that they are sent, with more than 
half being replied to within 47 min (ref. 29). Requiring emails to be reciprocated the 
same day hides interactions between users who typically respond slowly to emails; 
however, it is useful for filtering out massmails, observing sharp discontinuities in 
the data and increasing the power of hypothesis tests. Allowing longer periods of 
reciprocation captures weaker ties missed in the daily reciprocated email network, 
but we are forced to sacrifice some statistical power either to autocorrelation or 
lower sample size; additionally, the networks become more saturated, destroying 
some topological features of interest. Examples of daily, weekly, biweekly and 
monthly email networks are reported in Supplementary Information.

To examine whether this hybrid mode of work returned tie formation to 
prepandemic levels, we first restrict ourselves to a collection of 2,206 researchers 
who sent at least five emails after September 2021 and before May 2020, then 
proceed as above to form networks from 23 December 2020 to 31 October 2021. 
We choose a stricter requirement for inclusion in the network than previously,  
as we observe many users becoming inactive starting in summer 2021.

When comparing February 2020 with February 2021, we pair the days in the 
two months as follows: the first Tuesday of the MIT semester in February 2020  
is paired with the first Tuesday of the MIT semester in February 2021, and so on.  
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For each pair of days (d2020
i, d2021

i), we consider the set of users Adi2020 ∩ Adi2021 
who were active on both days and, as above, form a pair of undirected networks 
(G2020

i, G2021
i) whose edges (u, v) correspond to reciprocated emails on d2020

i 
(for G2020

i) or d2021
i (for G2021

i). Directly comparing these networks allows us to 
completely remove the effects of seasonality or any difference in makeup of active 
users in February 2020 and February 2021.

Link-centric preferential attachment. The goal of our model is not to serve as a 
tool for prediction, but to understand the mechanism via which distance impacts 
link formation. Through experimentation, we found that using link-centric 
preferential attachment alone to propagate a dynamic network produced daily 
networks that had too many local bridges. Thus we use a two-step approach,  
which first produces an intermediate network using link-centric preferential 
attachment, then adds edges in a way that increases the clustering coefficient of  
the network. This is analogous to the reverse of the Watts–Strogatz method30, 
where the intermediate network has high clustering coefficient and local bridges 
are added afterwards.

Our link formation model has the following parameters.
•	 P, the periodicity of the model. P controls how much the graph on day d  

looks like the graph on day d − 7. In other words, the higher the value of P,  
the closer the dynamic network is to being 7-periodic (or 5-periodic if week-
ends are removed).

•	 O, the tendency to connect with old links. The higher the value of O, the more 
likely it is that a given link will connect with a previous partner rather than 
someone new. This is one of the standard parameters from a vanilla link-cen-
tric preferential attachment model, and this parameter decays exponentially 
in the number of days between contact: O = c e−d, where c is a constant and d is 
the number of days since the link last appeared.

•	 N, the tendency to reach out to new people. This is typically the complement 
of O in vanilla link-centric attachment models (we have more parameters than 
the standard two).

•	 D, the tendency to connect with people in the same department.
•	 F, the tendency to be introduced to a mutual friend.

The parameters O, N and P rely on a memory dictionary, which stores the days 
on which a given edge has appeared. For all of the above parameters {P, O, N, D, F}, 
we include interaction terms

{CP, CO, CN, CD, CF}

controlling the extent to which co-location amplifies or dampens the effect. For 
example, from the empirical data we conclude that co-location should dampen 
periodicity while amplifying the probability of reaching out to new partners.

Let e = (u, v) ∈ A × A be a pair of nodes. For each parameter 
Q ∈ {P, O, N, D, F} let Q denote the associated indicator variable. Specifically,

P(e) =

{ 1 if u, v connected 7 d in the past

0 otherwise

N(e) =

{ 1 if u, v have never connected

0 otherwise

O(e, dc) =






∑
dp

e−(dc−dp)/562 if u, v have previously connected

0 otherwise

D(e) =

{ 1 if u, v are in the same research unit

0 otherwise

τ(e) =

{ 1 if u, v have offices within 150m

0 otherwise

where dc is the current day, and dp are the past days on which the tie e was  
present in the network. The 150 m cutoff is chosen on the basis of the  
empirical results.

Consider the set E of all edges that appear on at least one day in the empirical 
data. Note that the use of E rather than the set of all possible edges makes this 
model unsuitable for prediction tasks. On each day d, we start by adding an edge 
e ∈ E to the random network G1

d with probability

pe ∝ τ(e)
∑

Q∈{P,O,N,D}
CQ Q(e)Q

+(1 − τ(e))
∑

Q∈{P,O,N,D}

1
CQ Q(e)Q.

If CQ > 1 then co-location amplifies the effect of parameter Q, while if CQ < 1 
it dampens the effect. In total, in the first step we add ε1 edges to G1

d, where 
ε1 ∼ N (1000, 10).

In the second step, we add the parameter F,

F(e) =

{ 1 if dG1 (u, v) = 2

0 otherwise

where G1
d is the random network constructed in step 1, and dG is the usual 

(unweighted) shortest path distance in the graph G. In words, F(e) = 1 if adding 
e will close a triangle in the network. A new edge e is added to the network in step 
two with probability

pe ∝ τ(e)
∑

Q∈{P,O,N,D,F}
CQ Q(e)Q

+(1 − τ(e))
∑

Q∈{P,O,N,D,F}

1
CQ Q(e)Q.

In total we add ε2 edges to G1
d in the second step, where ε2 ∼ N (500, 10). 

including the parameter F has the effect of increasing the expected number  
of triangles in the random graph, and hence reducing the percentage of edges  
that are local bridges.

With parameters fixed, we proceed to form networks one day at a time, adding 
the edges from the current network to a memory dictionary after formation. To 
model the effect of remote work, for each day d after 23 March 2020, we set the 
distance between researcher offices to be a fixed constant larger than 650 m  
(all other parameters remain fixed). For parameter values we set

P = 80,000 N = 2,000 O = 1 D = 90,000 F = 200,000

CP = 2
3 CN = 2 CO = 1 CD = 10

11 CF = 2
3 .

Regression discontinuity. Figure 2a,b (respectively Fig. 4c) shows the drop  
in weak-tie and new weak-tie formation (respectively increase in weak ties)  
due to the policy change on 23 March 2020. We used RDDs31–33 to estimate 
the causal impact of the policy change. RDDs are a classic, quasiexperimental 
procedure for estimating treatment effects in observational studies. In an RDD, 
treatment assignment is determined by an assignment variable rather than  
through randomization.

For an RDD to be valid, we need only assume that the response is 
continuous with the assignment variable near the cutoff and that subjects  
cannot precisely manipulate the assignment variable32,33. Figures 2a,b and 4c 
show that the responses (weak ties and new weak ties) are continuous with the 
assignment variable time, albeit observed with noise. The assignment variable, 
time, is not precisely manipulable by subjects since the announced policy 
was not known far in advance. Furthermore, there would be little reason to 
manipulate assignment since subjects are free to send emails at the same rate 
before and after the policy change.

In Fig. 2a and Fig. 4c, we model the weekly mean number of weak ties with the 
discontinuous linear regression

Y = α + ηD + β2D(X − c) + ϵ (4)

where c is the cutoff date (either 23 March 2020 or 8 September 2021) and D is the 
binary variable

D =

{ 1 X ≥ c

0 X < c

that indicates if the date X is before or after the policy change date c. The error term 
ϵ is assumed to be heteroskedastic white noise. The coefficient η is the impact of the 
policy and measures the gap between the two sides of the regression. We estimate 
η and the other coefficients with generalized least squares with AR(n) structured 
covariance matrix with n = 5 and report the value of η̂ and its P value in Fig. 2. 
We use heteroskedasticity-robust estimators for standard errors, so that in total 
standard errors are robust to autocorrelation (from the AR(5) generalized least 
squares) and heteroskedasticity34.

In Fig. 2a, we assumed a discontinuous order-one polynomial trend line 
because the data did not display any apparent higher-order nonlinear behavior. 
The data were subset to 3 January 2020 to 1 October 2020, to semilocalize our 
regression around the discontinuity, which reduces bias in η̂ (ref. 33), and to 
avoid influence from the two outlying regions (before 3 January 2020 and during 
December 2020). These outliers correspond to winter break at MIT and represent a 
natural and expected decrease in weak ties not due to the policy change.

In Fig. 2b, we similarly model the rate of new weak-tie formation over time. We 
assumed a second-order discontinuous polynomial trend (equation (5)) due to the 
observed parabolic behavior before the cutoff point. Using the same notation as in 
equation (4), our linear regression is given by

Y = α + ηD + β1(X − c) + β2(X − c)2 + β3D(X − c) + β4D(X − c)2 + ϵ.
(5)
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The coefficient η is, again, the causal impact of the policy change. We report the 
value of η̂  and its P value in Fig. 2.

Bayesian structural time series. We stress that, when using Bayesian methods, 
reported CIs are credible intervals of the predicted dependent variable (also 
called posterior predictive intervals), and P values are posterior tail probabilities. 
Bayesian structural time series combines a state-space model for time-series data 
and Bayesian model averaging for parameter selection and estimation35.

As a state-space model, Bayesian structural time series combines three 
components of state: a local linear trend,

μt+1 = μt + δt + ημ,t

δt+1 = δt + ηδ,t ,

with ημ,t ∼ N (0, σ2
μ), ηδ,t ∼ N (0, σ2

δ); a seasonality component,

γt+1 = −

S−2∑

s=0
γt−s + ηγ,t

with S the number of seasons and ηγ,t again an independent error; and  
(static) covariates, which are predictive of the time series in question  
before the intervention,

Zt = β
Txt.

For the local linear trend and seasonality components, we use the default priors 
of the CausalImpact library:

1
σ

∼ G(10−2, 10−2s2y) s2y =
∑

t

(yt − y)2

n − 1

where G(−,−) denotes a gamma distribution. For the covariates (the weekend data), 
in general a spike-and-slab prior is used with the spike defined by

p(ξ) =

J∏

i=1
π

ξj
j (1 − πj)

1−ξj)

with πj initialized to MJ  where M is the expected model size. The slab part of the 
spike-and-slab prior is

βξ|σ
2
ϵ ∼ N (0, σ2

ϵ(Σξ)
−1)

−1

1
σ2

ϵ

∼ G
(

νϵ

2 ,
sϵ

2
)

Σ−1 = 1
n
{ 1

2X
TX + 1

2 diag(X
TX)

}

where X is the covariate data. Because we include only one covariate (the weekly 
minimum) the spike-and-slab prior collapses to just a normal-inverse Gamma 
distribution. We use 1,000 iterations of Markov chain Monte Carlo to compute 
posterior predictive distributions.

Consider the binary variable X(r, d) defined by

X(r, d) =

{ 1 researcher r is in their office on day d

0 otherwise.

For us, ‘treatment’ consists of setting X(r, d) to zero for d after 23 March 2020 by 
not permitting researchers to enter their campus offices. The time series whose 
counterfactual we want to estimate is the weekday maximum of the network 
measure while the covariate is the weekend minimum. As most employees are 
not physically present in their office on weekends, X(r, d) = 0 for most r when d 
is a weekend so that the treatment has little effect. We verify this assumption by 
looking at the number of distinct MAC (media access control) addresses connected 
to routers in on-campus research laboratories on the weekday and weekend 
(Supplementary Information).

When studying the effect of hybrid work, we construct a counterfactual using 
weekday email data spanning 22 July 2020 through 14 October 2020 as a covariate 
for email data spanning 28 July 2021 through 20 October 2021, aligning so that the 
starts of the fall 2020 and fall 2021 semesters coincide. We also remove Memorial 
Day (a university holiday) from both the 2020 and 2021 data.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
A subset of the data containing 1,000 (anonymized) users is available on Zenodo36. 
Because of privacy concerns for MIT employees, the entire dataset of emails and 
pairwise distances cannot be publicly released. Source data for Figures 1,2,3,4,6 is 
available with this manuscript.

Code availability
The code used to analyze the data can be obtained from Code Ocean37.
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