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Abstract

Recently, permutation based indexes have attracted interest in the area of
similarity search. The basic idea of permutation based indexes is that data
objects are represented as appropriately generated permutations of a set of
pivots (or reference objects). Similarity queries are executed by searching
for data objects whose permutation representation is similar to that of the
query, following the assumption that similar objects are represented by sim-
ilar permutations of the pivots.

In the context of permutation-based indexing, most authors propose to
select pivots randomly from the data set, given that traditional pivot selection
techniques do not reveal better performance. However, to the best of our
knowledge, no rigorous comparison has been performed yet. In this paper we
compare five pivot selection techniques on three permutation-based similarity
access methods. Among those, we propose a novel technique specifically
designed for permutations. Two significant observations emerge from our
tests. First, random selection is always outperformed by at least one of the
tested techniques. Second, there is not a technique that is universally the
best for all permutation-based access methods; rather different techniques
are optimal for different methods. This indicates that the pivot selection
technique should be considered as an integrating and relevant part of any
permutation-based access method.
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1. Introduction

Given a set of objects C from a domainD, a distance function d : D×D →
R, and a query object q ∈ D, a similarity search problem can be generally
defined as the problem of finding a subset S ⊂ C of the objects that are closer
to q with respect to d. Specific formulations of the problem can, for example,
require to find the k closest objects (k-nearest neighbors search, k-NN), i.e.,
|S| = k and ∀x ∈ S, y ∈ (C \S) (d(x, q) ≤ d(y, q)), or all the objects that are
closer than a given threshold distance t. i.e., S = {x|x ∈ C ∧ d(x, q) ≤ t}.
The k-NN formulation is the most common one.

Similarity search is a difficult problem and various indexing schema have
been defined to process similarity queries efficiently. Good surveys of the
various approaches proposed in literature can be found in [39, 34]. However,
in most applications, as for instance multimedia retrieval, an exact solution
to the similarity search problem is not strictly required. In these cases,
performing an approximate similarity search [40, 30] is sufficient. Accepting
even a small degree of approximation in results allows to obtain them much
more efficiently.

Permutation-based indexes have been proposed as a new approach to effi-
cient and effective approximate similarity search [2, 12, 16, 28]. In permutation-
based indexes, data objects and queries are represented as appropriate per-
mutations of a set of n pivots P = {p1 . . . pn} ⊂ D. Formally, every object o ∈
D is associated with a permutation Πo that lists the identifiers of the pivots
by their closeness to o, i.e., ∀j ∈ {1, 2, . . . , n−1}, d(o, pΠo(j)) ≤ d(o, pΠo(j+1)),
where pΠo(j) indicates the pivot at position j in the permutation associated
with object o. For convenience, we denote the position of a pivot pi, in the
permutation of an object o ∈ D, as Π−1

o (i) so that Πo(Π
−1
o (i)) = i.

The similarity between objects is approximated by comparing their rep-
resentation in terms of permutations. The basic intuition is that if the per-
mutations relative to two objects are similar, i.e. the two objects see the
pivots in a similar order of distance, then the two objects are likely to be
similar also with respect to the original distance function d.

Once the set of pivots P is defined it must be kept fixed for all the indexed
objects and queries, because the permutations deriving from different sets of
pivots are not comparable. A selection of a “good” set of pivots is thus an
important step in the indexing process, where the “goodness” of the set is
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measured by the effectiveness and efficacy of the resulting index structure at
search time.

Permutation based methods share some ideas with the Shared Nearest
Neighbors methods (SNN) [22, 32, 14]. These methods introduce the con-
cept of secondary similarity measures, which evaluates the similarity among
two objects by considering the amount of overlap of their neighborhoods.
The neighborhood of an object is determined using the original distance and
all objects of the dataset. Secondary similarity measures have been shown
to be able to reduce the impact of the curse of dimensionality in cases in
which the discriminative power of the primary similarity measure is reduced
by the high dimensionality of the similarity space. The difference between
the permutation-based methods and the SNN methods is that permutation-
based methods encode original objects with neighbor objects taken from a
very small subset of the entire dataset, rather than the entire dataset. More-
over, the primary purpose of this encoding is to build efficient and scalable
approximate similarity search index structures, rather than computing a bet-
ter distance than the original distance, as SNN method do. In addition, no
pivot selection technique is needed by SNN methods, given that they use the
entire dataset to determine the neighborhood of objects.

In the field of permutation-based access methods the most commonly
adopted technique for the definition of P is to randomly select the n objects
from C [2, 12, 16]. Even though there is a relatively rich literature on pivot
selection techniques for the general class of pivot-based access methods [39]
(see Sections 2 and 3), to the best of our knowledge, no rigorous comparison
of the effectiveness of the various selection techniques, when used in com-
bination with permutation-based access methods, has been performed yet.
In this paper we compare five techniques for the definition of sets of pivots
to be used by permutation-based access methods. One of the techniques
that we compare is a novel proposal that we have designed to be used with
permutation based index.

In summary, the contribution of this paper is twofold.

1. We test various pivot selection techniques, including random selection,
on a number of permutation based indexes. An interesting result is that
different selection methods were optimal for different index schema. In
fact, the way in which permutations are used, by different indexing
schema, is basically different, and this is reflected in the pivot selection
techniques.
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2. We propose and compare a new pivot selection criterium, expressly
designed to be used with permutation-based indexes. This method is
clearly superior when used with the MI-File index [2].

The paper is structured as follows. In Section 2 we discuss related work.
Section 3 presents the techniques being compared. The tested similarity
search access methods are presented in Section 4. Section 5 describes the
experiments and comments their results. Conclusion and future work are
given in Section 6.

2. Related Work

The study of pivot selection techniques for access methods usually clas-
sified as pivot-based [39] has been an active research topic, in the field of
similarity search in metric spaces, since the nineties. Most access methods
make use of pivots to reduce the number of data objects accessed during
similarity query execution. The choice of the pivots plays a relevant role in
allowing the access methods to achieve their best performance. In an early
work by Shapiro [37], it was noticed that good performance were obtained by
locating pivots far away from data clusters. In [8, 26, 38], following this in-
tuition, several heuristics were proposed to select pivots between the outliers
and far away from each other.

In [18] it is shown that it is possible to find an optimal set of pivots
selecting them as the vertices of a large regular simplex containing all the
objects of the database but this result does not apply to general metric spaces.

Pivot selection techniques that maximize a lower bound estimate of the
original distance d by means of a pivoted distance were exploited in [11] (see
Section 3.3). For these techniques is was also observed that while good pivots
are usually outliers, not all outliers can be good pivots [9]. In [10, 31], the
problem of dynamic pivot selection as the database grows is faced. In [25]
Principal Component Analysis (PCA) has been proposed for pivot selection.
Principal components (PC) of the dataset are identified by applying PCA on
it (actually a subset to make the method computationally feasible) and the
objects in the dataset that are best aligned with PC vectors are selected as
pivots. In [38] it was proposed to select the corners of the data set as pivots
for Vantage Point Tree (VPT). Multi-Vantage Point Tree (MVPT) [7] selects
multiple corners.

Works that use permutation-based indexing techniques have mostly per-
formed a random selection of pivots [2, 16, 12] following the observation that
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the role of pivots in permutation-based indexes appears to be substantially
different from the one they have in traditional pivot-based access methods.
In fact, the use of previous selection techniques, with permutation based
indexes, did not reveal significant advantages. At the best of our knowl-
edge, the only report on the definition of a specific selection techniques for
permutation-based indexing is in [12], where it was mentioned that no sig-
nificant improvement, with respect to random selection, was obtained by
maximizing or minimizing the Spearman Rho distance through a greedy al-
gorithm.

3. Pivot Selection Techniques

Permutation-based access methods use pivots to build permutations that
represent data objects. However, different permutation-based indexes make
different use of the permutations. We can broadly identify two different roles
played by the permutations in these indexes schema:

1. Rank data objects according to the distance (or dissimilarity) between
permutations, rather than the original distance.

2. Provide focused access in the database to identify and retrieve candi-
date objects, which the similarity search result is obtained from.

Accordingly, choosing a good set of pivots to build permutations, may
have two different objectives:

1. Produce a distance between permutations that ranks objects with a
good approximation, (w.r.t. ranks obtained with the original distance).

2. Help to identify good set of candidate objects to speed-up search pro-
cess and obtain good precision, at the same time.

This paper compares four promising selection techniques used in combi-
nation with different permutation-based indexes, in order to make a com-
prehensive evaluation and also to identify the specific features that can be
exploited in the various cases.

Both indexes and selections techniques are discussed in the following.
However, we anticipate here their classification following this scheme. Re-
garding the tested access methods, in Permutations Spearman Rho (Section
4.1) pivots are used only to approximate the original distance, instead PP-
Index (Section 4.3) only uses pivots for focused accessing the database while
MI-File (Section 4.2) employs both approaches.
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The objective of the tested pivots selections techniques are more diffi-
cult to understand. However, we expect clustering approaches (k-medoids,
Section 3.2) to be useful for identifying good set of candidates, while min-
imizing the largest distance of an object in the dataset from the closest
pivot (Farthest-First Traversal, Section 3.1) should be more appropriate
for approximating the original distance. When both objectives have to be
taken into account, we believe that our proposed approach (Balancing Pivot-
Position, Section 3.4) should be appropriate because it has the goal of balanc-
ing the distribution of the pivots in the various positions of the permutations.
Finally, the well known Pivoted Space Incremental Selection (PSIS) (Section
3.3) have been proven to be effective for lower bounding the original distance
by using the pivoted distance that relies on the triangle inequality of the
metric space. This is not the case of permutation-based methods. Thus, we
expect PSIS to be not an appropriate technique for any permutation-based
method. As the baseline we tested the random technique, which samples
pivots from the dataset following a uniform probability distribution.

The results reported in this paper are consistent with the theoretical
considerations made in this section.

3.1. Farthest-First Traversal (FFT)
A very well known topic in metric spaces is the k-center NP-hard problem

that asks: given a set of objects C and an integer k, find a subset P of k
objects in C that minimizes the largest distance of any object in C from
its closest object in P . FFT (so called by Dasgupta in [13]) finds a solution
close to optimal by selecting an arbitrary object p1 ∈ C and choosing, at each
subsequent iteration, the object pi ∈ C for which min

1≤j<i
d(pi, pj) is maximum.

FFT, in each iteration picks the farthest object from the current set of pivots.
In [21], it has been proven that FFT achieves an approximation, with

respect to the optimal solution, of at most a factor of 2. Note that FFT
actually tries to maximize the minimum distance between the pivots, which
intuitively could be a desirable property of the resulting pivot set. In fact, in
this way, selected pivots somehow represent different areas of the data space.
This might help in obtaining a distance between permutations that exhibit
a behavior similar to that of the original distance.

The computational cost of this algorithm is O(n|C|) [21], where n is the
number of requested pivots.

We expect this approach to result in good approximation of the original
distance by using the similarity permutations methods such as Spearman
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Rho. In fact, maximizing the minimum distance between the pivots should
result in less noisy changes in the positions of each pivot in the permutations.

3.2. k-medoids (kMED)

Originally proposed in [23], k-medoids is a partitional clustering algorithm
that tries to minimize the average distance between objects and selected
cluster medoids. k-medoids is very similar to k-means. The difference is
that it uses objects from the dataset as representatives of the centers of the
clusters rather than computing centroids, which could be not possible in
general metric spaces. Moreover, k-medoids is also more robust to noise and
outliers because it minimizes the distances instead of their square. While
FFT minimizes the largest distance of an object from its closest pivot, k-
medoids minimizes the average distance of the objects from their closest
pivot.

With this technique, the role of the selected pivots is that of representing
dense area of the portion of the space where they are located. Intuitively,
indexes that use permutations to identify promising sets of candidate objects
might benefit from this method.

3.3. Pivoted Space Incremental Selection (PSIS)

In [11], a technique to select a set of pivots P , such that the pivoted
distance, defined as DP (x, y) = max

p∈P
|d(x, p)− d(y, p)|, is as close as possible

to the original distance d, was proposed proposed. Given that DP is a lower
bound of the original distance d, the objective here is to select the pivots P
so that the pivoted distance is, on average, maximized.

The author observed that the chosen pivots are outliers. However they
also noticed that not all outliers are good pivots for maximizing the average
DP . The overall best between the methods they proposed is the incremental
selection technique. This technique greedily selects the first and subsequent
pivots maximizing DP on a set of pairs of objects in C.

3.4. Balancing Pivot-Position occurrences (BPP)

While the other pivot selection techniques mainly originate from the lit-
erature on similarity search in metric spaces and clustering, in this section we
propose a new algorithm specifically intended for permutation-based access
methods.

This algorithm originates from the intuition that every pivot should have
a relevant role in determining the positional properties of the indexed objects.
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To clarify this idea, suppose that a pivots always appears in the same posi-
tion in all the permutations associated with objects in the database. Such
pivot is indeed useless, as it does not bring any information into the permu-
tation. A similar case is when a pivot never appears in some positions of the
permutations, as the information the pivot can bring into the permutation
is less than the maximum possible.

The benefit of this balancing should be noted in both the quality of the
approximation of the original distance (when permutations similarity mea-
sures are used such as the Spearman Rho) and the effective and efficiency in
selecting a small portion of the dataset relying on the permutations.

The above intuition suggests that the distribution of the various pivots, in
the various positions of the permutations, should be made uniform as much
as possible. Let c(pi, j) = |{Πo : Π−1

o (i) = j}| be the number of permutations
where pi appears in position j. BPP tries to minimize the standard deviation
of c(pi, j), 1 ≤ j ≤ n, 1 ≤ i ≤ |C| from the mean. Note that the mean value
of c(pi, j), 1 ≤ j ≤ n is independent of the specific set of pivots and is always
equal to |C|/n.

The algorithm starts by randomly selecting a set P ∈ C of n̂ > n can-
didate pivots and evaluating the permutations for all the objects o ∈ C (or
a subset S ⊂ C). At each iteration, the algorithm evaluates the effect of
removing each pi ∈ P (or a fixed number t of candidate pivots) on the dis-
tribution of c(pi, j) and removes the pivot for which the minimum average
standard deviation is obtained. The algorithm ends when the number of
candidate pivots satisfies the request, i.e. |P | = n.

In [2] it was observed that the pivots that appear at the beginning of
the permutations, i.e. the nearest pivots to the object, are the more rele-
vant. Thus, in our experiments, we applied this general algorithm considering
c(pi, j) for 1 ≤ j ≤ l where l is the actual length of the permutation we are
considering. In this way, the pivots never or rarely appearing in the first l
positions are discarded.

The complexity of the algorithm is thus O(n̂|S|) for initialization using
the distance d, and O(tn̂2|S|) for the iterative selection where the cost is the
evaluation of each candidate pivot occurrence in the permutations.

The BPP algorithm tries to overcome a phenomenon similar to the hub-
ness already studied other contexts [33, 35, 19, 36]. Hubness is perfectly
defined by Schnitzer et al. in [36] as ”a recently discovered general problem
of machine learning in high dimensional data spaces. Hub objects have a
small distance to an exceptionally large number of data points, and anti-hubs
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are far from all other data points”. Hub objects tend to appear in the re-
sult set of several queries; anti-hubs almost never appear as result of any
query. Following the consideration made while formulating BPP, it is evi-
dent that hubs and anti-hubs are not good candidates as pivots. Moreover,
BPP has even stricter requirements, as it searches for a set of pivots equally
distributed across the various positions of the permutations. In fact, in order
to obtain this, it is not sufficient to avoid/selecting hub/anti-hub objects.
For instance, it might happen that an object that is not an hub, considering
the entire dataset, might appear always in the first positions of the permu-
tations, if the pivots are not chosen carefully. This might happen when all
other chosen pivots are all slightly farther than the hub pivot from most of
the objects of the dataset. The quality of a set of pivots, with respect to
a dataset, have to be judged considering the entire set of pivots together,
rather than evaluating each pivot against the dataset independently of the
other pivots.

4. Permutation-Based Similarity Access Methods

We have compared the pivot selection techniques on three permutation
based index structures that reasonably cover the various approaches adopted
in literature by access methods based on permutations.

4.1. Permutations Spearman Rho (PSR)

The idea of predicting the closeness between elements comparing the way
they “see” a set of pivots was originally proposed in [12]. As distance between
permutations, Spearman Rho, Kendall Tau and Spearman Footrule [17] were
tested. Spearman Rho revealed better performance. Given two permutations
Πo1 and Πo2 , Spearman Rho is defined as:

Sρ(Πo1 ,Πo2) =

√ ∑
1≤i≤n

(Π−1
o1

(i)− Π−1
o2

(i))2

When a k-NN search is performed, a candidate set of results of size k′ >
k is retrieved considering the similarity of the permutations based on the
distance Sρ (in our experiments we fixed k′ = 10k). This set is then reordered
considering the original distance d. In [12] an optimal incremental sorting
[29] was used to improve efficiency, when the candidate set of results to be
retrieved using the Spearman Rho is not known in advance. In this work
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we just perform a linear scan of the permutations defining the size of the
candidate set in advance.

As already mentioned and stated in other works [2, 16], the most relevant
information of the permutation Πo lies in the pivots at the beginning of the
permutation. Accordingly, in addition to the full permutations, tests were
also executed considering permutation prefixes of length l. To compare these
truncated permutations, we used the Spearman Rho distance with location
parameter Sρ,l defined in [17], which is intended for the comparison of top-l
lists. The definition of Sρ,l is very similar to the definition of Sρ given above.
The difference is that the position of the pivots occurring out of the truncated
permutation is considered to be l + 1. More formally, in place of Π−1

o (i) we
use Π̃−1

o (i) defined as Π̃−1
o (i) = Π−1

o (i) if Π−1
o (i) ≤ l and Π̃−1

o (i) = l + 1
otherwise.

The PSR method basically uses permutations to rank objects accordingly
with the distance between permutations, rather than the original distance
between objects. Therefore, in this case, pivot selection techniques should
mainly aim at having the rank obtained with the permutation distance as
close as possible to the rank obtained with the original distance.

4.2. MI-File

The Metric Inverted File approach (MI-File) [3, 2] uses an inverted file to
store relationships between permutations. It also uses some approximations
and optimizations to improve both efficiency and effectiveness.

The basic idea is that entries (the lexicon) of the inverted file are the pivots
P . The posting list associated with a pivot is a list of pairs, each containing
an object of the dataset and the position of the pivot in the permutation
representing the object. More formally, the posting list associated with pi ∈
P is a list of pairs (o,Π−1

o (i)), o ∈ C, i.e. a list where each object o of the
dataset C is associated with the position of the pivot pi in Πo. For instance,
an entry (o, 7) in the posting list associated with the pivot pi, indicates that
pi is the 7th closest pivot to o among those in P .

As already mentioned, in [2] it was observed that truncated permutations
can be used without huge lost of effectiveness. MI-File allows truncating
the permutation of both data and query objects independently. We denote
with lx the length of the permutation used for indexing and with ls the
length used for searching (i.e. the length of the query permutation). This,
at the same time, offers better effectiveness, since the closest pivots are the
most representative, and highest efficiency, since data object representation is
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smaller and consequently objects are contained in a few posting lists making
the inverted file more sparse. Using truncated permutations in the query
further improving performance since just lx posting lists are accessed rather
than all posting lists.

The MI-File also uses a technique to read just a small portion of the ac-
cessed posting lists, containing the most promising objects, further reducing
the search cost. The most promising data objects in a posting list, associated
with a pivot pi for a query q, are those whose position of the pivot pi, in their
associated permutation, is closer to the position of pi in the permutation
associated with q. That is, the promising objects are the objects o, in the
posting list, having a small |Π−1

o (i) − Π−1
q (i)|. To control this, a parameter

is used to specify a threshold on the maximum allowed position difference
(mpd) among pivots in data and query objects. Provided that entries in
posting lists are maintained sorted according to the position of the associ-
ated pivot, small values of mpd imply accessing just a small portion of the
posting lists.

Finally, in order to improve effectiveness of the approximate search, when
the MI-File execute a k-NN query, it first retrieves k · amp objects using the
inverted file, then selects, from these, the best k objects according to the
original distance. The factor amp ≥ 1, is used to specify the size of the set
of candidate objects to be retrieved using the permutation based technique,
which will be reordered according to the original distance, to retrieve the
best k objects.

The MI-File search algorithm computes incrementally a relaxed version of
the Spearman Footrule Distance with location parameter l between the query
and data objects retrieved from the read portions of the accessed posting lists.

In MI-File pivots are primarily used to identify the portions of the post-
ing lists to access. Distances between permutations are also used to rank
retrieved objects and to identify the candidate set of objects, for produc-
ing the query result. With MI-File a good selection technique should be
able, at the same time, to provide a permutation distance that rank objects
consistently with the original distance, and to discard pivots behaving as
hot spots or pivots rarely occurring. Note that pivots behaving as hot spots,
that is pivots occurring in several truncated permutations, produce very long
posting lists. On the other hand, rarely occurring pivots produce very short
posting lists. Posting should be balanced as much as possible.
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4.3. PP-Index

The Permutation Prefix Index (PP-Index) [15, 16] associates each indexed
object o with the short prefix Πl

o, of length l, of the permutation Πo, i.e., the
ordered sequence of the l closest pivots.

The PP-Index belongs to the category of data structures that uses the
permutations as a device to efficiently identify small sets of candidates on
which to compute the distance function d. The PP-Index data structures are
never used to directly approximate the distance function d, such as in the
other methods presented in this section.

The permutation prefixes of the indexed objects are indexed by a pre-
fix tree kept in main memory. All the relevant information relative to the
indexed objects are serialized sequentially in a data storage, kept on disk,
following the lexicographic order defined by the identifiers of the pivots in
the permutation prefixes.

At search time the permutation prefix Πl
q of the query q is used to find, in

the prefix tree, the smallest subtree which includes at least z ≥ k candidates
(z is a parameter of the search function). All the z′ ≥ z candidates that
are included in that subtree, i.e., o1 . . . oz′ , are then retrieved from the data
storage and sorted, using a max-heap of k elements, by their distance d(q, oi),
thus determining the approximated k-NN result.

A key property of PP-Index is that any subtree of the prefix tree maps
directly into a single sequence of contiguous objects in the data storage. The
sequential access to secondary memory is crucial for the search efficiency.
For example, in our experimental setup, a random access read from disk
of the data representing 10,000 objects from the test dataset (described in
Section 5.1) takes 87.4 seconds, while a sequential read of the same number
of objects takes 0.14 seconds. Even using solid storage drives (SSD) the
sequential read speed is roughly five time faster than the random access
read, which takes 0.72 seconds to read 10,000 objects, due to the overhead
of issuing distinct read calls. Computing 10,000 distances between objects in
the test dataset takes only 0.0046 seconds, which indicates how having good
secondary memory access patterns is the key aspect for efficiency.

PP-Index shares many intuitions with the Locality-Sensitive Hashing
(LSH) model [20, 28]. For example, the above formulation of the search func-

An open source implementation of PP-Index is available at http://www.esuli.it/

fossil/repo/mipai
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tion that search a single subtree from the permutation prefix of the query is
very fast but has a poor recall. Following the same principle of Multi-Probe
LSH [24], the PP-Index adopts a multiple-query strategy that generates addi-
tional queries by performing local permutations on the original permutation
prefix of the query object. The intuition is that the additional retrieved can-
didates are still close to the query because their permutation prefix differ only
for a swap in a pair of adjacent pivots. Practically, the first pair of pivot iden-
tifiers that is swapped in the prefix is the one that has the minimum difference
of distances with respect to the query, i.e. min

j
(d(q, pΠq(j+1)) − d(q, pΠq(j)),

and so on.
In the case of the PP-Index, a pivot selection technique should intuitively

select a set of pivots in such a way that the size of each set of objects having
the same permutation prefix has a low variance, in order to avoid cases in
which the set of selected candidates is very large due to a high concentration
of objects sharing the same prefix. This intuitive property is desirable to
be valid not only for the full prefix length l, but also for shorter prefixes, in
order to avoid issue related to a high concentration of objects for any height
of the subtrees that could be selected by the search function.

4.3.1. PP-Index and M-Index

The M-Index [27] is a permutation-based similarity access method that
adopts an approach of similar to the one of PP-Index. M-Index uses the
permutation prefixes to compute a mapping of any object to a real number
that is then used as the key to sequentially sort the indexed objects in a
secondary memory data structure such as a sequential file of a B+-tree. As for
the PP-Index, the M-Index relies on the locality properties of the permutation
prefixes to map similar objects to similar keys, thus enabling the efficient
retrieval of candidate objects just by accessing the data structure with the
key relative to the query.

5. Experiments

5.1. Datasets and Groundtruth

Experiments were conducted using the CoPhIR dataset [6], which is cur-
rently the largest multimedia metadata collection available for research pur-
poses. It consists of a crawl of 106 millions images from the Flickr photo
sharing website. We have run experiments by using as the distance function
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d a linear combination of the five distance functions for the five MPEG-7
descriptors that have been extracted from each image. As weights for the
linear combination we have adopted those proposed in [5] and [4]. As the
ground truth, we have randomly selected 1,000 objects from the dataset as
test queries and we have sequentially scanned the entire CoPhIR to compute
the exact results.

5.2. Evaluation Measures

All the tested similarity search techniques re-rank a set of approximate
result using the original distance. Thus, if the k-NN results list R̃k returned
by a search technique has an intersection with the ground truth Rk, the
objects in the intersection are ranked consistently in both lists. The most
appropriate measure to use is then the recall : |R̃k∩Rk|/k. In the experiments
we fixed the number of results k requested to each similarity search techniques
to 100 and evaluated the recall@r defined as |R̃r ∩Rr|/r where R̃r indicates
the sub-list of the first r results in R̃k (1 ≤ r ≤ k). Note that, being
the two lists consistently ordered, R̃k ∩ Rr ⊂ R̃r always holds and thus
R̃r ∩ Rr = R̃k ∩ Rr, i.e. none of the results in R̃k after the r-th position
can give a contribute to recall@r. Given that the queries were selected from
the dataset and that all the tested access methods always found them, we
decided to remove each query from the relative approximate result list. In
fact, not removing them would result in artificially raising the recall@r for
small values of r.

The average query cost of each tested technique was measured adopting
a specific cost model that will be specified in Section 5.4.

5.3. Selection Techniques Parameters

Given previous results reported in [3, 2, 15, 16] we decided to use 1,000
pivots. The parameters used for each selection technique were selected so
that they required almost the same time to be computed (about 10 hours):

• FFT: We selected the pivots among a subset of 1 million randomly
selected objects performing at each iteration 100,000 tries for selecting
the added pivot.

• kMED: We performed the clustering algorithm on a subset of 1 million
randomly selected objects.
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• PSIS: We randomly selected 10,000 pairs of objects from the dataset
and performed 10 trials at each iteration.

• BPP: We randomly selected a set of 10,000 candidate pivots and tested
them on 100,000 randomly selected objects performing at each iteration
no more than 100 trials for selecting the pivot to be removed.

5.4. Results

For all the tested similarity access methods we show a pair of figures. On
the first one we report recall@r obtained by the various selection techniques
keeping fixed the parameters of the access method settings. Even if the
parameters are fixed, the use of different sets of pivots results in different
average query cost which can not be inferred from this figure. For this reason,
in the second figure we report an orthogonal evaluation that compares the
recall@10 versus the query cost while varying some parameters of the access
methods.
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Figure 1: Recall@r obtained by PSR for
l=100 varying r
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Figure 2: Recall@10 obtained by PSR for
various location parameters

5.4.1. PSR

In Figure 1 we report the recall@r obtained by PSR for location parame-
ter l = 100. The results show that FFT outperforms the other techniques in
terms of effectiveness. PSIS performs significantly worse than all the others
while the rest of the techniques obtained very similar results. In Figure 2 we
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tested various values of location parameter l. The choice of the parameter
l directly impacts the query cost by reducing the index size and the per-
mutation comparison cost. In fact, the PSR method performs a sequential
scan of the entire set of permutations (106 millions, in these experiments),
so smaller l implies less data to be accessed. The results confirm that FFT
significantly outperforms the others but also reveal that the differences are
more relevant when l is closer to n, i.e. when more complete permutations
are used. For values of l greater than 100, none of the techniques reported
significant variations. The values of l used for the results reported in Figure
1 was chosen according to this observation.
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Figure 3: Recall@r varying r obtained by the
PP-Index using the multiple-query search
(eight additional queries).
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of candidates accessed (z′) by the PP-
Index when using the multiple-query search
method with zero (lower left corner) to eight
(upper right) of additional queries.

5.4.2. PP-Index

Following the results of [16], we tested the PP-Index by setting the length
of the prefixes l to 6, and the values of z to 1,000. We tested both single- and
multiple-query search, exploring a range of additional queries from 1 to 8.
As the reference configuration we have chosen the one using a multiple-query
search method with eight additional queries (nine total).

Figure 3 shows that the PP-Index obtains its best results when using the
kMED technique, which is clearly better than the other techniques. FFT
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and PSIS form a group of second best techniques, followed by rnd and BPP,
which are the worst performing ones. With respect to the other tested access
methods, the PP-Index resulted to be more robust (or less sensitive) to the
change of the pivot selection technique. The recall curves for the various
techniques have an almost identical slope and there is only an average differ-
ence of 1.3% between the best and worst techniques, almost constant across
all the recall levels.

For the PP-Index, we have measured the query cost induced by the various
techniques in terms of number of candidate objects selected by the queries
on the prefix tree. Figure 4 shows that the best two techniques with respect
to the recall/cost tradeoff are kMED and FFT, followed by rnd and PSIS,
with BPP being the worst one. On the nine queries setup BPP needs about
20% more candidates to score a slightly worse recall than FFT. Again, the
differences between the various techniques are smaller than those observed
for the other access methods, indicating a good robustness of PP-Index with
respect to the pivot selection technique.

Note that the X axis of Figure 4 has a logarithmic scale. The almost
straight lines indicate that the number of candidates grows with a logarithmic
trend as more queries are used with the multiple-query search strategy, while
the recall grows linearly, indicating that the multiple-query strategy has a
very convenient recall/cost trend.

In summary, the kMED technique resulted to be the best one, resulting
in higher recall at a competitive cost.

It is necessary to observe that the maximum recall obtained by PP-Index
in the experiments here is 0.25, while in [16] PP-Index achieves a recall higher
than 0.9. That results were obtained by using multiple indexes of the same
data set, each one generated using different sets of randomly sampled pivots
(multiple-index search). Results using a single index obtained in this section
are indeed comparable with those obtained in [16] for the same configura-
tion. The multiple index approach is not used here in order to maintain
some uniformity among all tested access methods, and to not introduce an
additional dimension that would have reduced the readability of results. Sec-
tion 5.5.1 reports the results of experiments using the multiple-index search,
which obtain much higher recall and confirm the observations made on the
experiments of this section.
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Figure 6: Recall@10 obtained by MI-File
ranging ls from 1 to 5

5.4.3. MI-File

MI-File was tested indexing data objects using the closest 100 pivots
(lx = 100). Queries were executed ranging the number of closest pivots from
1 to 5, i.e. ls ∈ {1, . . . 5} (see Section 4.2). The maximum allowed position
difference among pivots in data and query objects was 5 (mpd = 5). The size
of the set of candidate objects retrieved was set to be 50 times k, (amp = 50).

Figure 5 shows the results obtained using ls fixed to 5. For r < 10, BPP
and rnd reveal better performance, while for r > 10 all the techniques almost
overlap, except PSIS that is always the worst.

Figure 6 shows the results varying ls from 1 to 5. Larger values of ls imply
larger number of disk blocks reads. It can be seen that once a target recall
value is fixed, the cost needed by the MI-File to achieve such recall, varies
significantly among the techniques. The cost needed to achieve a specific
recall using the BPP method is one order of magnitude smaller than using
the FFT method. For instance, the cost needed to obtain a recall@10 of 0.26
is 3,000 disk block reads using BPP, while the same recall requires 25,000
disk block reads using FFT.

The BPP method is overall the one offering the best performance with
MI-File. The recall value obtained using ls = 5 is mostly at the top. The cost
needed to execute queries is significantly lower than all the other methods.
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This can be explained by the fact that, as discussed in Section 3.4, the BPP
technique has been designed to distribute the positions of the various pivots
uniformly across the various permutations. This means that the posting lists
of the MI-File are well balanced and that they tend to contain blocks of
entries, related to the same pivot position, of equal size. As a consequence,
there are no posting lists that are very long and that are also mostly accessed
for any query, simultaneously improving effectiveness and efficiency.

As mentioned also for the PP-Index the maximum recall obtained in
these experiments is lower than that obtained in the paper where MI-File
was proposed [2]. In fact here we obtain maximum recall 0.36, while in [2]
recall arrives to 0.9. This is due to the fact that the total number of pivots
used in these experiments is 1000. However, according to the guideline given
in [2], the number of pivots should have been 20,000. This choice here was
taken to maintain the same testing environment among the different meth-
ods, given that the focus was not on evaluating the access methods, but on
evaluating the selection techniques. Again, Section 5.5.2 reports the results
of experiments using a high-accuracy setup, which obtains a high recall still
confirming the observations made on the experiments of this section.

5.4.4. Recall/cost-based evaluation

In Table 1 we report the Recall@r/cost unit ratio obtained by the various
access methods in conjunction with the five pivot selection techniques. The
table basically aggregates and normalizes by the unit costs the results de-
picted in Figures 2, 4 and 6. The evaluation of the Recall@r/cost unit ratio
allows to measure the impact of the pivot selection techniques in terms of
the efficiency they bring into the search process.

For each access methods we reported the results obtained varying a pa-
rameter (specific for each access method ) that allows varying the trade-off
between efficiency and effectiveness . In the table we use the random tech-
nique as the reference baseline. For the other selection techniques we report,
in addition to the Recall@r/cost unit ratio, also the relative percentual in-
crement/decrement with respect to the baseline.

Results reveal that random selection of pivots is never the best choice for
any of the access methods and for any of the parameters. However, there is
no selection techniques that performs best for all the access methods and for
the very same method we have very different results for different parameters.

For MI-File, BPP is always the best choice resulting in performance incre-
ments between 61% and 109% depending on the parameter ls, i.e. the length
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l= 3 .0117 - .0153 +31% .0147 +26% .0157 +34% .0167 +43%

l= 5 .0154 - .0188 +22% .0190 +23% .0168 +9% .0190 +23%

l= 10 .0184 - .0218 +18% .0258 +40% .0183 -1% .0198 +8%

l= 100 .0066 - .0067 +2% .0080 +23% .0052 -20% .0063 -4%

l= 1000 .0007 - .0007 +0% .0008 +18% .0005 -21% .0006 -9%

q'= 1 .0213 - .0244 +14% .0217 +2% .0215 +1% .0195 -8%

q'= 3 .0201 - .0228 +13% .0225 +12% .0197 -2% .0179 -11%

q'= 5 .0196 - .0207 +6% .0213 +9% .0182 -7% .0161 -18%

q'= 8 .0174 - .0180 +3% .0187 +7% .0161 -8% .0140 -19%

l s = 2 .0634 - .0549 -13% .0080 -87% .0395 -38% .1324 +109%

l s = 3 .0581 - .0502 -14% .0111 -81% .0362 -38% .1047 +80%

l s = 4 .0479 - .0394 -18% .0119 -75% .0289 -40% .0803 +68%

l s = 5 .0385 - .0322 -16% .0114 -70% .0239 -38% .0621 +61%

BPPparameter

PP-Index

PSR

MI-File

rnd kMED FFT PSIS

Table 1: Recall@r/cost obtained by the various access methods for different parameters.
Cost is measured in thousands of block reads for both PP-Index and MI-File; we use
permutation length l for PSR.

of the query permutation. Results also show that the longer the query per-
mutation the less the improvement achievable using BPP with respect to
random selection. These considerations are coherent with the results ob-
tained by PSR. In fact, for small values of the permutation length l, PSR
performs better when pivots are selected using BPP. Instead for larger l, FFT
significantly outperforms both BPP and rnd. This confirms that, when long
permutations are used, the most important aspects for PSR is the capability
of the selection method to identify pivots that make the distance between
permutation compatible with the original distance between objects.

PP-Index is the access method less affected by the pivot selection tech-
nique used. For small q′ values (single query, three queries), a performance
increment around 10% can be obtained using kMED, while for larger number
of queries FFT is preferable. This indicates that kMED technique works bet-
ter at assigning to similar objects the same prefix or a very similar prefix (i.e.
a prefix which differ for a few swaps of pivot identifiers), thus not dispersing
similar object among very different prefixes. BPP performs always worst for
PP-Index, indicating that the MI-File and the PP-Index are two inherently
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different data structures, even though they intuitively seem to require simi-
lar properties from the pivot sets, i.e. uniform distribution of object among
posting lists/permutation prefixes.

5.5. High accuracy experiments

The goal of the experiments in previous section is to compare the pivot
selection techniques on each access method. In this scenario achieving top
accuracy is not of key importance (we do not need to compare the access
methods between themselves), as long as the factors that determine the
higher/lower accuracy of an access method are not influenced by the pivot se-
lection technique in use. Our experimental setup for experiments reported in
previous sections has been designed to minimize their dependence of access
method-specific parameters, in order to have a kind of “reference” setup,
which could be eventually extended to additional access-methods. In this
section we present results for high-accuracy configurations for the PP-Index
and the MI-File, with the goal of showing that the differences observed on
the reference setup among the pivot selection techniques are still present in
fine-tuned setups.

5.5.1. PP-Index

For the PP-Index, the high-accuracy configuration uses four indexes and
the multiple-index search strategy. All the techniques presented in this paper
can be easily adapted to support the multiple-index search, i.e., by using dif-
ferent initial random samples of candidate pivots on which to apply the pivot
selection techniques. We compare only rnd and kMED in this high-accuracy
setup, i.e., the most commonly used selection strategy and the one that per-
formed best in the experiments of Section 5.4.2. The results in the high
accuracy configuration (Figure 7) confirm the previous results (Figure 3),
with PP-Index obtaining a significant average Recall improvement of 1.4%,
which is perfectly in line with the 1.3% value measured in experiments of
Section 5.4.2. The difference between kMED and rnd is statistically signifi-
cant (two-tails paired t-test) with p < 0.001. The cost of search plots (Figure
8) follows a similar trend to the one of the previous results (Figure 4), with
the two curves overlapping for the search configurations that use a higher
number of multiple queries, with a slightly smaller cost for rnd with respect
to kMED but also scoring a lower recall.
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Figure 7: Recall@r varying r obtained by
the high-accuracy PP-Index setup using
the multiple-query (eight additional queries)
and the multiple-index (four indexes) search.
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candidates accessed (z′) by the PP-Index
when using the multiple-index (four indexes)
search and varying the multiple-query search
method from zero (lower left corner) to eight
(upper right) additional queries.
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Figure 9: Recall@r obtained by the high-
accuracy MI-File setup (20,000 pivots)
using ls = 5, varying the number of
retrieved objects r from 1 to 100.
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5.5.2. MI-File

In order to setup the MI-File, for high accuracy and high efficiency per-
formance, we followed the guidelines given in [2]. The total number of pivots
was set to 20,000. The dataset was indexed using the closest 100 pivots
(ls = 100). Queries were executed varying the number of closest pivots from
1 to 50 (ls ∈ {1 . . . 50}). Parameters mpd and amp were set respectively as
mpd = ls and amp = 50. We tested the rnd and BPP methods, to have
a comparison between the baseline method and the one offering the best
performance with MI-File in the experiments of Section 5.4.3.

Results are shown in Figures 9 and 10. Figure 9 shows the recall@r
obtained by both rnd and BPP methods using ls set to 50. In both cases
recall is higher than 0.9 for small values of r, and is about 0.75 when r is
100. The curves are almost overlapped, as already seen in tests using only
1,000 pivots, with BPP being a bit higher for small values of r. However,
we need to stress again that this plot just shows the recall obtained without
taking into account the cost required to obtain it. Cost, in terms of number
of disk block reads, is taken into consideration in Figure 10. In that figure
ls ranges from 1 up to 50, showing the different costs with respect to the
relative recalls. From that graph it can be seen that for obtaining a certain
recall the rnd method requires about 20% more disk block reads than the
BPP method. This again confirms observation made in previous experiments
with 1,000 pivots.

5.5.3. Variance of Recall

For the high-accuracy experiments we have also measured the variance
of the Recall values across the 1,000 tested queries. The variance values are
plotted in Figures 11 and 12, and show that rnd produces higher variance
results with respect to kMED for PP-Index and BPP for MI-File. This
supports the intuition that random selection of pivots may not cover the data
in an optimal way, thus resulting in more variability in the accuracy obtained
when executing different queries. The difference in variance is particularly
noticeable for small values of r, while it tends to disappear for large values
of r. The users’ perception of the relevance of errors is typically higher for
the first results of a query, rather than for elements with lower ranks. In
fact, users typically tend to consider negatively the fact that the elements
they are searching for do not appear in the first positions of the result list.
Therefore, having lower variance in accuracy, specially for small values of r
is a nice property, and kMED and BPP are better at this.
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Figure 11: Variance of the Recall@r value
across the tested 1,000 queries, using the
high-accuracy configuration of PP-Index.
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Figure 12: Variance of the Recall@r value
across the tested 1,000 queries, using the
high-accuracy configuration of MI-File.

6. Conclusion

In this paper we compared five pivot selection techniques on three permu-
tation-based access methods. For all the tested access methods we found
at least one technique that significantly outperforms the random selection.
Another interesting point is that there is not a technique that is universally
the best for all the access methods.

In Section 3, we identified two roles that the permutations can play in
the access methods. First, they can be used for approximating the orig-
inal distance between two objects by comparing their permutations (e.g.,
PSR). Second, the can be used to focus accessed access in the database (e.g.,
PP-Index). A combination of the two roles is also possible (e.g., MI-File).
The tested pivots selections strategies may have the objective of obtaining
a good distance approximation (e.g., FTT), helping to identify a good set
of candidate objects (e.g., kMED) or both (e.g., our BPP novel technique).
The results are consistent with this classification, i.e., the selection strategies
that have objectives consistent with a specific access method outperforms the
strategies that have different goals. It also resulted that the random chosen
pivots is never a bad idea even if it is also never the smartest decision.

The PSR method, i.e. the sequential scan of the permutations adopting
the Spearman Rho with location parameter l distance, largely benefited from
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the use of FFT. We believe this is because PSR only rely on permutations
to approximate the original distance.

The BPP technique significantly outperforms the others when used in
combination with the MI-File. The benefit of the balancing is more relevant
when posting lists, created relying on the permutations, are used to select
good candidate sets in conjunction with similarity between permutations is
used to approximate original distance between objects.

For PP-Index the best technique is kMED. We believe that kMED helps
in selecting good pivots in order to find good candidate sets while not relying
on the similarity between permutations. It is worth to note that BPP, the
best technique for MI-File, is always the worst technique for PP-Index.

In conclusion, even if all the tested access methods belong to the class of
the permutation-based methods, each of them has inherent and significantly
different characteristics in the way they exploit the permutation space. Sim-
ilarly, the various pivot selection techniques presented in this paper have
different goals when selecting their pivots. The results of the experiments
indicates that the pivot selection technique should be considered as an inte-
grating and relevant part of an access method.
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Arthur Zimek. Can shared-neighbor distances defeat the curse of di-
mensionality? In Scientific and Statistical Database Management, 22nd
International Conference, SSDBM 2010, Heidelberg, Germany, June 30
- July 2, 2010. Proceedings, pages 482–500, 2010.

[23] L. Kaufman and P. J. Rousseeuw. Finding groups in data: an introduc-
tion to cluster analysis. John Wiley and Sons, New York, 1990.

[24] Qin Lv, William Josephson, Zhe Wang, Moses Charikar, and Kai
Li. Multi-probe lsh: efficient indexing for high-dimensional similarity
search. In Proceedings of the 33rd International Conference Very Large
Data Bases, VLDB ’07, pages 950–961, Vienna, Austria, 2007.

[25] Rui Mao, Willard L. Miranker, and Daniel P. Miranker. Dimension
reduction for distance-based indexing. In Proceedings of the Third In-
ternational Conference on SImilarity Search and APplications, SISAP
’10, pages 25–32, New York, NY, USA, 2010. ACM.
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