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Abstract—Image acquisition systems integrated with laboratory automation produce multi-dimensional
datasets. An effective computational approach for automatic analysis of image datasets is given by pattern rec-
ognition methods; in some cases, it can be advantageous to accomplish pattern recognition with image super-
resolution procedures. In this paper, we define a method derived from pattern recognition techniques for the
recognition of artefacts and noise on set of images combined with super resolution algorithms. The advantage
of our approach is automatic artefacts recognition, opening the possibility to build a general framework for
artefact recognition independently by the specific application where it is used.
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1. INTRODUCTION

Image understanding tasks relies particularly on
the recognition of the semantics of an image, thus in
order to perform it in an automatic fashion, it is
important to have high-resolution images. In our
work, we study super resolution (SR) algorithms
enabling to have a higher density of information in our
data so to be able to apply pattern recognition (PR)
algorithms on these resulting images, with the final
goal of recognizing features of the analysed images [1,
11, 13].

Applying image analysis to screening devices, this
paper will focus on the direct correlation between SR
and PR methods. In particular, PR algorithms will be
used to recognize patterns on images recorded from
devices and to provide an accurate feedback using
machine learning algorithms (e.g., for checking real
time device operability).

SR algorithms generate a denoised-hyperesoluted
image (or a set of images) from low resolution ones.
The knowledge of the class of images to analyse helps
during the computation of the high-resolution image.
The higher information contained in the generated
image provides a better sample that can be profitably
used by PR algorithms. The results provided from the
PR algorithm supply an input for the machine learning
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algorithms that gives the possibility to change the
device regulation in order to obtain better images.

This operative procedure can be applied to a big set
of devices used for automated data acquisition. In fact,
in environments with a high grade of automation there
is usually a huge production of image datasets, which
can be hardly hand checked so it is necessary provide
an automated control system producing an intelligent
feedback to the devices in order to improve the effi-
ciency. With the purpose to demonstrate the generality
of our approach, we will apply our algorithms to
images obtained using Scanning Probe Microscopy
(SPM) technique. Such technique, commonly oper-
ating at molecular scale, records data and represents
them in an image, i.e., a matrix (x; y; z(x, )). In addi-
tion, the advent of SPM family devices since the
1980’s opened the possibility to observe and manipu-
late matter at atomic scale making possible to improve
the knowledge and technology on nanoscale (com-
monly claimed Nanotechnology). Nevertheless, today
the application of SPM techniques is limited by the
fact that the experimental scanning best conditions
can be found only manually.

After a theoretical analysis of the pipeline process-
ing composed by SR and PR algorithms, and device
control by means of artificial intelligence algorithms,
we will focus our efforts in a possible application on a
SPM device.

2. AN OVERVIEW ON SUPER-RESOLUTION
METHODS

The introduction of digital images, for example by
the means of surveillance camera, led to the analysis of



single-frame or multi-frame images. These two kinds
of image collections involve different methodologies
of analysis, e.g., even if in a video each frame repre-
sents different images, sequential frames are quite
close one each other, so that it is possible to use them
in order to process the whole sequence.

SR algorithms transform low-resolution images
into higher resolution images. In order to produce the
high-resolution image it is necessary to remove the
effects of possible blurring and noise from low resolu-
tion images. The focus of SR algorithms is on the iden-
tification and reduction of blurring, noise and aliasing
from low resolution images [1-3, 6, 7].

SR algorithms are applied to a large number of
problems such as satellite imaging, astronomical
imaging, video enhancement [8, 9] and restoration,
microscopy [10] and other.

During the process of resolution enhancement, SR
algorithms create an empty grid and fill it with pixels
belonging to the high-resolution image. The filling
process determines the SR method used.

The resolution of an image is determined by many
factors depending on the acquisition system, Eq. (1)
describes the imaging model used (based on [28]):

L(x,y) = S(x',y") * Hx'=x,y' =y) + N(x,y), (1)
where S(x', y') is the point spread function (PSF),
H(x' —x,y' — y) is the ideal image, L(x, y) is the origi-
nal image and N(x, y) is the noise. This brief introduc-
tion explains the main super-resolution methods
working both on single-frame and multi-frame
datasets. Another important aspect regards the analy-
sis domain of the SR methods: it can be performed
either in space domain or in frequency domain.

Using the single-frame SR methods the algorithm
get a single image as input and all the low-resolution
image pixels are placed in the high-resolution image
grid. The algorithm leaves some unfilled pixels in the
high-resolution image grid during the filling process.
Those pixels are filled according to a function that
defines the filling method.

The single-frame (or single image) SR methods
can super-resolve an image by:

—performing a pixel interpolation;

—performing inference, e.g., using a neural net-
work.

The main SR single-frame interpolation methods
are bilinear interpolation, nearest neighbour interpo-
lation and bicubic interpolation.

Bilinear interpolation is an efficient and simply way
to enlarge images. During the bilinear interpolation,
the image is analysed to find a bilinear surface that fits
across the existing pixels. The result is a high-resolu-
tion image with smoothed borders. This method fills
any empty pixel with a value affected by the nearest
four existing pixels depending on the reciprocal dis-
tance.

In Fig. 1 top is shown a basic result using bilinear
interpolation.

An advanced version of the bilinear interpolation is
the Bicubic interpolation [15]. Bicubic interpolation
uses a 4 x 4 neighbourhood to find the missing pixels
in the high-resolution grid. The value of the calculated
pixel is based on the computation of a polynomial that
uses as coefficient the value of the neighbouring pixels
in the low-resolution image. This method uses a con-
volution-based interpolation that works on uniformly
sampled data. The use of this method requires the
solution of a linear system [15].

Figure 1 (bottom) shows an example of application
of bicubic interpolation.

A common feature inherent the described super-
resolution algorithms is that they can be characterized
as nearest neighbour (NN)-based estimations. This
characteristic gives several advantages in terms of
computational time and a simplification on concep-
tual assumptions on Eq. (1). For example, another
approach to single-frame super-resolution has been
introduced recently in [16, 17]. Figure 2 shows a
super-resolved image using the algorithm described in
[16].

Their algorithm evaluates the high-frequency of
the desired high-resolution image. The estimation of
high-frequency components is performed using the
Laplacian of the bicubic interpolation of the image.
The high-frequency components are then added to the
bicubic to produce the super-resolved image. Let us
define Y the high-frequency components and X the
bicubic interpolation (H the super-resolved image). H
is calculated adding X and Y. To retain the complexity
of the resulting regression problem at a moderate level,
a patch-based approach is taken where the estimation
of the values located in a patchNp(Y(x, y)) is per-
formed based only on the values of X at the same cor-
responding patch N,(X(x, y)), where N (S(x, y)) rep-
resents a G-sized square window (patch) centered at
the location (x, y) of the image S.

During the super-resolution computation, X is
scanned with a small window (of size M) to produce a
patch-valued regression result (of size N) for each
pixel. This, results in a set of candidate pixels for each
location of H (as the patches are overlapping with their
neighbours), which are then combined to make the
final estimation.

For each point (x, y) a set of N estimator is calcu-
lated so that for each point it is produced an estimation
set of differences ({d,(x, »), ..., dy(x, ¥)}) between the
unknown desired output and each candidate. The final
estimation of the value of the pixel in an image loca-
tion (x, y) is obtained as the convex combination of
candidates given in the following form:

H(x)y) = z O‘)i(x9y)L(xay)a (2)

i=1,..,N
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Fig. 1. An example of bilinear interpolation (top: on the left the source image, on the right the 400% zoomed image using bilinear
interpolation) and bicubic interpolation (bottom: on the left the source image, on the right the 400% zoomed image using bilinear

interpolation).

where

di(x,y) di(x,y)

o,(x,y) = {ec—c}/{ z ec—c}.

In particular, each d,(x, y) is the estimation of dis-
tances between the unknown desired output and each
candidate. This estimate is calculated using a set of
linear regressors,

d(x,y) = |PH(x, y)"W, L..N, @

where PH(x, y) is a vector constructed using the con-
catenation of all columns of a spatial patch of H cen-
tred at (x, y) and the parameters W, are optimized
based on the patch-based regression results H for a
subset of training images. G, is a constant (typically
0.006 for a magnitude factor 4).

Zou et al. [14] have described a recent approach to
the SR, dedicated to face recognition. To overcome
the very low-resolution problem (using faces with 16 x
16 pixels) they perform SR as a regression problem

(3)

i =

with two new constraints on the given training data.
The method firstly determines the mapping pattern
(relationship R) between very low-resolution and
high-resolution face image spaces, in order to do this
they use the information from the training data, and
then recover the high-resolution images by applying
the relationship operator R on low-resolution images.
Figure 3 shows an application of the Zou’s algorithm
[14] used during the algorithm test.

Through a regression model, minimizing the pro-
posed constraints, the relationship R is learnt. The
meaning of these constraints is to minimize the error
between the high-resolution image and the calculated
high-resolution image.

3. PATTERN-RECOGNITION METHODS
AND FEATURES EXTRACTION

Observing an image a human can notice some par-
ticular patterns or characteristics that are unique for a
certain type of material. This inference process is use-
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Fig. 2. An application of the single frame super-resolution algorithm described in [16].
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Fig. 3. A face is used during the algorithm test. (a) It shows the source image, (b) is the output of Zou algorithm that we can com-
pare with (c) that is obtained with a bi-cubic interpolation, finally, (d) is the original high-resolution images.

ful in order to observe various types of phenomena, The data extraction performed by a computer and
for example, in computer vision a computer can its interpretation is a task that permits to a machine
analyse a set of matrices for each image in which the to recognize patterns and regularity and to provide
colours are coded using a particular colour code. an interpretation.



The main approaches to pattern recognition can be
classified among either statistical learning or classifi-
cation.

Statistical learning is extremely important as
shown in numerous examples, such as for the predic-
tion of the price of a stock in advance [11], estimation
regarding e-mails categorization (e.g., whether it is or
not spam), recognition of handwritten characters and
digits, and understanding of whether an image con-
tains or not archaeological handmade objects [12].
Learning problems can be divided into two sets: super-
vised and unsupervised learning. In supervised learn-
ing an algorithm provides a predictable output based
on a set of input measures and a feedback from a
supervisor (i.e., a user or an expert), in unsupervised
learning the algorithm objective is to autonomously
“understand” the relation between a set of input (i.e.,
analysing and identifying recurrent patterns).

On the other hand classification based approaches
are based on predictors P(x) which takes values in a
discrete set S. Usually the outcome of the classifica-
tion is a division of the input space into labelled
regions. The boundaries between the regions can be
rough or smooth. For each input data x;, the classifier
provides a g; as output, where g; € S. Various methods
exist to determine g;: prototype, K-means clustering,
learning vector quantization, K-nearest neighbours,
neural networks, kernel methods and support vector
machines [13].

When the acquired data has large dimension, it
needs to be computed using either automatic or unsu-
pervised methods. This task can be performed using
methods of PR. In particular, PR resolves the problem
of feature extraction so that we can create a relation-
ship between significant features as shown in [18].

We can formalize the meaning of feature extraction
as a function Y = f(X), where X = [x,, ..., x,]7 is the
vector that characterizes the studied phenomenon and
Y=y, ..., »,IT is the vector of the mapped features
[19, 20].

The function f characterizes the algorithm of fea-
ture extraction and selection. It can be selected
according to the task to resolve. It can be either linear
or non-linear function, but usually real problems
require the use of a non-linear function.

The use of statistical analysis theory is a classical
approach to the problem of feature extraction and
selection. Main methods are: Principal Component
Analysis (PCA) [29], Linear Discriminant Analysis
(LDA) [22], Factor Analysis (FA) [22], and Ordinary
Least Square (OLS) [23]. Other relevant methods for
features extraction are: entropy pattern recognition
methods, based on Shannon work [4], and methods
based on Artificial Neural Networks (ANN) [5, 21].
Usually an ANN is a mathematical model defining a
function f: X — Y or a distribution over X or both X
and Y, but sometimes the model is also closely associ-

ated with a particular learning algorithm or learning
rule.

4. A COMPUTATIONAL APPROACH
FOR COMBINING SUPER-RESOLUTION
WITH PATTERN-RECOGNITION

In this section the implemented algorithm, com-
bining SR and PR methods is described. It runs on sin-
gle frame basis method, the steps are as follows: 1—it
takes an input image, 2—it firstly super-resolves the
image with an interpolating algorithm, then 3—
extracts some features in order to apply PR methods,
and 4—generates a super-resolved image guided by
the discovered model. Figure 4 shows the main steps of
our algorithm.

While, at the end of this section, we report a Aigh-
level pseudo-code, following the steps of the algo-
rithm. The first step consists of reading an image and
generating a super-resolved one. In particular, among
all the methods previously mentioned, the ones tested
have been: bilinear interpolation, bicubic interpola-
tion, Kim-Kwon algorithm [16] and Zou algorithm
[14]. The best results were obtained using Kim-Kwon
algorithm (line of pseudo-code 02 in the pseudo-code
at the end of this section).

In order of apply a PR method, it is necessary to
extract some features and recognize the kind of image
under investigation. The feature extraction process
involves the lines of pseudo-code 03-07. On line 03 the
image is segmented using Otsu’s method [24, 25].

Using a PR technique in accordance with [11], the
algorithm extracts 8-connected components from the
SR segmented image using Matlab function
bwconncomp (line of pseudo-code 05) [26]. Consider-
ing that the image we want to recognize in our case
study is a grating fully composed of parallel structures,
the algorithm extracts the orientation property from
the 8—connected components. This was done using
the regionprops Matlab function (line 06) [27].

The orientation is a scalar value representing the
angle (in degrees ranging from —90° to 90°) between
the x-axis and the major axis of the ellipse that has the
same second-momentum as the region. Figure 5 dis-
plays the axes and the orientation of the ellipse. The
left side of the figure shows an image region and its
corresponding ellipse. The right side shown the same
ellipse, with features indicated graphically: the solid
cross represents the axes, the two dots are the foci, and
the orientation is the angle between the horizontal
dotted line and the major axis.

After this calculus, we consider the connected
components that are parallel (after the elimination of
the outliers, line 07); we use the grating model in order
to super-resolve the recognized input image (line 08).
At this stage, if the pattern cannot be identified as a
grating, then, the algorithm returns the HR calculated
with the Kim-Kwon’s algorithm [14] (in line 02).
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Fig. 4. The implemented algorithm data-flow.

The pseudo-code of the algorithm is the following:
01 VHR-IMAGE SR(L) {
02 HR=KK HR(image) ;
03 Threshold=otsu (HR)
HR segmented=

04
segment (HR, thereshold) ;
connected components=
05
8 connection (HR segmented)
orientatation=
06

comp_orient (connected components)

07 if

(outliers<standard deviation)

08 VHR=super resolute grating (HR);
09 Else

10 VHR=HR;

11 Endif )}

5. A CASE STUDY: AFM IMAGING IMPROVED
BY PR METHODS COMBINED WITH SR

Among the SPM family, Atomic Force Microscopy
(AFM) mechanism is based on the sensing of the force
between a surface of a specimen and a sharp probe. A
cantilever oscillates and touches the sample, continu-

Fig. 5. An example of oriented region.

ously, or only intermittently, scanning the object and
reconstructing the sample morphology line-by-line.
In this way, AFM produces high-resolution topo-
graphic and force measurements in aqueous and phys-
iologically relevant environments without the need to
stain or pre-treat the specimens.

The most important advantage of applying AFM in
biological research relates to the fact that AFM is
essentially a single-molecular technique, providing
insight into the geometry, elasticity, and dynamic
behaviour at the level of single molecule or single cell.
As many biological processes, such as protein amyloid
self-assembly, involve multiple pathways and are char-
acterized by inherent heterogeneity of species, the
application of single molecule studies is of critical sig-
nificance. Preliminary results applying the algorithm
described in the preview section follows and are shown
in Fig. 6. During our first experiments, the input of the
algorithm was the acquired image reported in Fig. 6
(image B shows the 3D aspect of the surface). As a
result, we have a well-characterized profile of the sur-
face as showed in image C (picture D shows the 3D
aspect of the surface).

The great advantage of AFM is that the screening
procedure over large number of potential patterns can
be carried out in their natural environments without
their pre-treatment or fixation. This non-invasive pro-
cedure can be applied for the identification of the
promising lead compounds among the large library of
biological active species, which would display the larg-
est attractive forces towards their target molecules.

Our approach for improving single image PR on
biological samples is based on the following steps; first
a standard PR method is applied to an image in order
to define its features. The second step regards the
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Fig. 6. From A to B: the input image and its 3D rendering.
From C to D: the output after our data processing and its
3D rendering.

increase in pixel density of the image using SR
approach and finally, the third step is devoted to pat-
tern matching between the first image and the
enhanced image.

An example of the application of our approach to
biological sample is shown in Fig. 7. The image of a
fibroblast cell is processed following the previously
described algorithm. The pattern to be recognized are
inherent the specific intra-cell organs, including sub-
surface actins and filaments.

Figure 7 summarizes the effective advantage of
using our algorithms. From the initial image, it is pos-

(a) m
a 2p

0

il

sible to have an idea of the various cytoskeleton cell
organs, but the low quality makes difficult to estimate
the plot of such organs and their real dimensions. On
the contrary, improving the pixel density in a reason-
able way using SR methods makes it possible to esti-
mate the cytoskeleton plot and to identify the compo-
nents as actins and filaments with their real dimen-
sion, approximately 100 nm.

6. CONCLUSIVE REMARKS
AND FUTURE PERSPECTIVES

In this paper, we focused the attention on an effec-
tive computational approach to increase the image
resolution for improving pattern recognition. The
results obtained are intended to be a first step of a more
general framework for applying machine learning and
artificial intelligence to various applicative fields, in a
special way to nano-scale imaging, where an intelli-
gent process finds relevant patterns without relying on
prior training examples, usually by using a set of pre-
defined rules. In details, we applied a method derived
by usual pattern recognition techniques for supporting
the identification of artefacts and noise on images
recorded with an Atomic Force Microscopy. An
immediate advantage of such automatic artefacts rec-
ognition could be the implementation of machine
learning languages for AFM investigations.
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Fig. 7. On (a) we have a low-resolution image 5 x 5 um of a fibroblast cell as recorder by an AFM and processed with commercial
software (Park Scientific Instruments) and free available software (Gwyddion). (b) The correspondent SR image obtained using

the proposed algorithm.
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