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Abstract
We propose CurveML, a benchmark for evaluating and comparing methods for the classification and identification of plane
curves represented as point sets. The dataset is composed of 520k curves, of which 280k are generated from specific families
characterised by distinctive shapes, and 240k are obtained from Bézier or composite Bézier curves. The dataset was generated
starting from the parametric equations of the selected curves making it easily extensible. It is split into training, validation,
and test sets to make it usable by learning-based methods, and it contains curves perturbed with different kinds of point
set artefacts. To evaluate the detection of curves in point sets, our benchmark includes various metrics with particular care
on what concerns the classification and approximation accuracy. Finally, we provide a comprehensive set of accompanying
demonstrations, showcasing curve classification, and parameter regression tasks using both ResNet-based and PointNet-based
networks. These demonstrations encompass 14 experiments, with each network type comprising 7 runs: 1 for classification and
6 for regression of the 6 defining parameters of plane curves. The corresponding Jupyter notebooks with training procedures,
evaluations, and pre-trained models are also included for a thorough understanding of the methodologies employed.

Keywords Curves · Bézier · Dataset · Machine learning · Classification · Regression · Fitting

1 Introduction

Advances in the development of text and image recognition
methods have been aided by the availability of high-quality
training datasets and not just algorithmic advances. Today,
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it is widely recognised that the most important component
for building good machine learning models is training data.
This practice of systematically building datasets to achieve
better model performance is often called data-centric AI.
Because of this, various scientific groups have begun priori-
tising the creation of new datasets and benchmarks to achieve
significant results even in problems other than image or text
recognition, such as reverse engineering for computer-aided
design [12, 24, 25], road safety [11, 17], pose estimation [29],
hand gestures recognition [5], partial shape retrieval [27], and
the analysis of macromolecules [8, 20, 21], to name a few.
Additionally, calls are also periodically launched to encour-
age the development of new datasets and benchmarks within
specialised conferences or workshops, such as TRECVID
[1] for videos, MIREX [2] for music, and SHREC [3] for 3D
shapes.

In this panorama, there is a lack of adequate datasets and
benchmarks of plane curves. Having a benchmark to per-
form machine learning tasks on plane curves represented as
sets of points is essential for ensuring objective evaluation,
consistency, fair comparison, and advancement of the com-
puter graphics and numerical analysis fields. This work fills
the gap in the literature by introducing CurveML, a large
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Fig. 1 Logo of the CurveML benchmark, available at https://gitlab.
com/4ndr3aR/CurveML

benchmark to evaluate methods for classifying and identify-
ing plane curves on point sets. Figure 1 shows the CurveML
logo and its GitHub repository.

CurveML aims at providing the ground to assess if a
method outperforms another one in tasks related to curve
classification, (parameter) regression and fitting. Here, we
adopt the following terminology: classification is the process
of assigning labels (i.e. the types of curves) to input point
sets; parameter regression, in this paper sometimes called
just recognition, deals with the identification and estimation
of the parameters that uniquely generated a given point set in
terms of some parametric representations; fitting is the task
of finding the best approximation of the input point set for
some criteria. In this respect, it is clear that a good approx-
imation does not always correspond to parameters that are
close to ground truth values, as it could happen, for example,
if the considered model is overfitting the data.

Additionally, our benchmark guarantees consistency in
the evaluation process by providing a standard set of crite-
ria for measuring the performance of different methods. This
helps eliminate bias and ensures that the results are reliable
and reproducible. The aim is also to yield a fair comparison
of different methods by ensuring they are evaluated using
the same dataset and evaluation metrics, thus avoiding situ-
ations where one method appears to perform better simply
because it was tested on a simpler dataset or with different
evaluation metrics. Finally, but certainly not least, we intend
to provide researchers with tools with which they can evalu-
ate their approaches and identify areas for improvement, thus
supporting progress in the fields of computational geometry
and machine learning by promoting the development of new
and better curve classification and identification methods.

1.1 Related datasets

There are very few datasets of plane curves targeted to sup-
port learning-based tasks. We can cite LengthNet [18], a

dataset of 500k point sets created for learning the length of
planar sampled curves. These curves were created by consid-
ering four standard geometric shapes, such as circles, straight
lines, triangles, and rectangles, which are scaled, rotated,
translated, and randomly segmented. In some datasets, the
curve is interpreted as the boundary of basic geometric
shapes like FlatShapeNet [22], which includes eight data
classes, each representing a type of shape (circle, kite, par-
allelogram, rectangle, rhombus, square, trapezoid, triangle).
FlatShapeNet is a dataset composed of 20k images gener-
ated for an educational game. Comparable to FlatShapeNet
is the 2D geometric shape dataset [13], which consists of nine
data classes (triangle, square, pentagon, hexagon, heptagon,
octagon, nonagon, circle, and star). Each class is composed of
10k images and it is generated to trainmachine learningmod-
els to perform geometric shape recognition tasks. Instead, no
dataset complete with parametric equations and ground truth
has been proposed for plane curves. This motivation led us
to develop our CurveML dataset, which, in terms of breadth,
diversity, and richness of ground truth, takes inspiration from
theABCdataset [12], a big CADmodel dataset for geometric
deep learning.

1.2 Contribution

In CurveML, we have selected some families of curves char-
acterised by a representative shape in an atlas of plane curves,
see [26], and we enriched this dictionary including Bézier
curve and compositeBézier curves,madeof 2 or 3pieces.The
dataset contains 520k point sets, generated from the paramet-
ric representations of curves and then perturbed, considering
different types of artefacts. The way these objects were cre-
ated makes the benchmark easily expandable since we can
select any other curve of interest from the atlas [26] and insert
it into our dataset.

CurveML is designed to be also used by machine learning
methods: in fact, the dataset comes in the form of a training,
a validation, and a test set. A ground truth file is associated
with each point set in the training set. It contains information
depending on the curve type: geometric parameters for plane
curves and control points for Bézier curves.

The benchmark is equipped with some performance mea-
sures able to evaluate the quality of algorithms or machine
learning models in performing the classification, regression,
and fitting of the different types of curves in the dataset.

CurveML has been tested on classification and regres-
sion tasks. Indeed, we offer a collection of corresponding
examples that illustrate curve classification and parameter
regression problems with two popular deep learning models,
namely ResNet [9] and PointNet [19]. In addition, we release
a set of Jupyter notebooks and baseline pre-trained models
to provide a starting point for researchers interested in using
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the dataset and to show the quality of the ML/DL methods
obtainable from training on it.

1.3 Outline

The rest of the paper is organised as follows. In Section 2,
we introduce the pipeline necessary to generate point sets
in our dataset, describing the type of curves selected to cre-
ate the data, and we illustrate the information contained in
the ground truth files. Section 3 introduces the performance
measures chosen to evaluate the quality of the classification,
recognition, and approximationof plane curves. Finally, Sect.
4 focuses on a test of the proposedbenchmarkwith a learning-
based approach. Closing remarks end the paper.

2 The dataset

The dataset comprises a total of 520k point sets: 280k are
generated from eight families of curves found in [26], each
of which was chosen because of the distinctive shapes it con-
tains; 240k originate fromBézier or compositeBézier curves.

2.1 Type of curves

In this section, we describe the curves in our dataset in terms
of their parametric equations and properties.

Families of curves

We have here selected families of curves that admit paramet-
ric representations depending on at most three parameters
when given in some canonical forms. The generic paramet-
ric equation of any of these families of curves is

P(t) :=
{
x(t) = f (t, a)

y(t) = g(t, a)
(1)

where f and g are continuous functions of a commonvariable
t ∈ I ⊆ R, and a is a vector containing scalar values that
will be hereafter called geometric parameters. The families
of curves we consider are the egg of Keplero, mouth curve,
cissoid of Diocle, hypocycloid, citrus curve, Cassinian oval,
Archimedean spiral and geometric petal, see Table 1. In the
following, we detail their main characteristics:

– The Egg of Keplero, mouth curve, and cissoid of Diocle
depend on a single parameter a, with a > 0. The egg
of Keplero is symmetric with respect to the x−axis and
bounded; in particular, it is contained in the rectangle

[0, a]×[− 3
√
3

16 a, 3
√
3

16 a]. Themouth curve is a symmetric
and bounded curve contained in the square [−a, a] ×

[−a, a]. The cissoid of Diocle is an unbounded curve
symmetric with respect to the y−axis.

– The hypocycloid is written in terms of the parameters
a and n, the latter being the number of cusps. It is a
bounded and central-symmetric curve with n axes of
symmetry. This family contains two sub-families of well-
known curves: the deltoid when n = 3, and the astroid
if n = 4.

– The Citrus curve, Cassinian oval and Archimedean spiral
depend on two parameters a and b. The citrus curve is a
symmetric and bounded curve, contained in the rectangle
[− a

2 , a
2 ] × [− a

8b , a
8b ]. The Cassinian oval is a bounded

curve symmetric with respect to the Cartesian axes. We
only consider the case where a ≥ b and then the curve is
connected. It is a rather large family and includes several
types of shapes. Specifically, in case a = b the curve
coincides with the well-known lemniscate of Bernoulli,
while in case a ≥ √

2b it is convex. It has a shape similar
to an oval until it reaches a shape similar to that of an
ellipse or a circle as the value of a increases. Finally, the
Archimedean spiral is connected and not limited, origi-
nating from the point (a, 0).

– Geometric petal depends on the parameters a, b and
n, where the latter indicates the number of petals. It is
a central-symmetric curve contained in a circle with a
radius a + b, and it has n axes of symmetry. We only
consider the case where a > b, since there are no self-
intersection points.

The parametric equations of these families are given in
Table 1, together with an illustrative example per family.

While restricting our attention to a limited number of fam-
ilies, it is worth noting that the dataset is easily extendable
by selecting additional families of plane curves, of which the
literature is pretty rich: see, for example, [15, 16, 26].

Bézier curves

In applications like computer-aided design and computer
graphics, a popular way of modelling a shape is to repre-
sent its outer curve as a patchwork of parametric polynomial
pieces. One of the first and most popular examples is that of
Bézier curves.

To construct a Bézier curve of degree d ∈ N/{0}, we
start with an interval I = [0, 1] and d + 1 control points
C0, . . . ,Cd in R2. The curve has the equation

P(t) :=
d∑

k=0

Ck Bk(t) (2)

where Bk(t) := (d
k

)
tk(1 − t)d−k are the Bernstein polyno-

mials and where t ∈ I .

123



9020 A. Raffo et al.

Table 1 Families of curves considered in this benchmark, together with their parametric representations

citrus curve hypocycloid geometric petal Archimedean spiral

P(t) :=
⎧⎨
⎩
x = t − a

2

y = ±
√

(a−t)3t3

a4b2

P(t) :=
{
x = (a − a

n ) cos t + a
n cos(n − 1)t

y = (a − a
n ) sin t + a

n sin(n − 1)t
P(t) :=

{
x = (a + b cos nt) cos t

y=(a + b cos nt) sin t
P(t) :=

{
x=(a+b) cos t+ a

n cos t

y=(a+b) cos t+ a
n sin t

egg of Keplero Cassinian oval mouth curve cissoid of Diocle

P(t) :=

⎧⎪⎨
⎪⎩
x = a

(1+t2)
2 − a

2

y = at

(1+t2)
2

P(t) :=
{
x = t

y = ±
√√

4b2t2 + a4 − t2 − b2
P(t) :

{
x = a cos t

y = a sin3 t
P(t) :

{
x = 2a(tan t − 1

2 sin 2t)

y = 2a sin2 t

Table 2 Examples of Bézier and
composite Bézier curves (2 or 3
pieces) of degree 3 considered
in this benchmark. Control
points are shown in green

Bézier – 1 piece Bézier – 2 pieces Bézier – 3 pieces

Multiple pieces (i.e. Bézier curves) have to be glued
together with at least C0 continuity to represent complex
shapes. Composite Bézier curves have equations

P(μ)(t) =
d∑

k=0

C(μ)
k Bk(t), (3)

forμ = 1, . . . , N , being N the number of pieces. We remind
the reader that, to ensure that the Bézier curves P(μ) and
P(μ+1) join continuously at one end, the last control point
of one curve must coincide with the first control point of the
other one, i.e. C(μ)

d = C(μ+1)
0 . To have G1 continuity, it is

further required that

C(μ)
d−1,C

(μ)
d = C(μ+1)

0 ,C(μ+1)
1

are collinear.
We consider Bézier curves and composite Bézier curves

made of 2 or 3 pieces while leaving the user the possibility of
increasing their number. Examples of curves and their control
points are shown in Table 2.

2.2 Data generation process—curve sampling

The point sets are obtained from the parametric represen-
tations considered in this benchmark using the following
standard procedures.

Families of curves

For a given family of curves, point sets are sampled by
using its parametric representation. As mentioned in Sec-
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tion 2.1, parametric representations are in their canonical
form, i.e. centred at the origin of the coordinate axes or/and
with axes of symmetry coinciding with the x- and y-axes,
depending on the geometric characteristics of curves. The
geometric parameters that define each equation are assigned
by randomly sampling uniform distributions. Subsequently,
we randomly apply translations and/or rotations to put the
sampled curve in a general position.

Bézier curves

We sample Bézier curves and composite Bézier curves via
the well-known De Casteljau algorithm (see, for example,
[7]).

Control points are here obtained by randomly sampling a
bidimensional uniform distribution over the region [−1, 1]×
[−1, 1]. Points over a Bézier curve are initially computed
by evaluating it at evenly spaced parameter values between
0 and 1. C0 continuity between a pair of pieces P(μ) and
P(μ+1) is imposed by setting C(μ)

d = C(μ+1)
0 . To ensure G1

continuity between the end point of P(μ) and the starting
point of P(μ+1), we project C(μ+1)

1 orthogonally to the line

defined by the control points C(μ)
d−1 and C(μ)

d .

2.3 Data generation process—point set artefacts

Finally, some data perturbations can be applied to each point
set. Specifically, the following cases are considered:

– A0—Clean. No perturbation is applied.
– A1—Uniform or non-uniform downsampling. In the case
of uniform downsampling, we keep one point every m
of the initial sampling of the curve, where m is ran-
domly chosen among the values 2, 4, and 10. In the case
of non-uniform downsampling, each point of the curve
is associated with a uniformly sampled random number
pi ∈ [0, 1]; point P(ti ) is discarded if

pi > 1 − 0.8

Npoints
i,

being Npoints the number of points in the point sets and
ti ≤ ti+1 for all i .

– A2—Global or local uniform noise.The noise is obtained
by samplinguniformdistributions of the formU(− 1

20 ,
1
20 ).

It is applied to a fixed percentage of the points, chosen
within the entire point set or only in a selected portion of
it.

– A3—Global or local Gaussian noise. The noise is
obtained by sampling a normal distribution with mean
0 and standard deviation 0.02, and applying such val-
ues to a fixed percentage of the points—chosen w.r.t. the
entire point set or to a selected portion only.

– A4—Global or local uniform outliers. Outliers are intro-
ducedbymoving15%of thepoints—locally or globally—
by a uniformly-sampled contribution between 0.09 and
0.12 in each coordinate direction. These values were
chosen considering the used bounding box, as they cor-
respond to 4.5 − 6% of its size.

– A5—Combination of artefacts. The perturbations pro-
vided above are randomly combined to obtain more
complex scenarios.

Figure 2 shows examples of data perturbations applied to
the point sets for each curve type and provides an overall
view of the dataset’s content.

Each point set is provided in a CSV file named
point_set_perturbed.csv, listing the triplets of
coordinates, one point per line. A set of additional infor-
mation is associated with each point set. Specifically,
we provide the original clean point set in a CSV file
point_set_clean.csv; the images 500 × 500 pixels
generated from the two point sets as a pair of PNG files; and
a CSV file details_reproducibility.csv, where
we report the information about the type of artefact applied.

2.4 Ground truth

A ground truth file is associated with each point set, with
information that depends on the curve type.

Families of curves

In the case of a family of curves, the information neces-
sary to correctly recognise a point set is the rotation angle
α and the translations Tr X and TrY along the x− and
y−axis with respect to the canonical form of the selected
family, the values of the geometrical parameters ā and
b̄, and the numbers n̄ of petals or cups. For this rea-
son, the GT file parameters.csv contains a 2 × 6
cells structure. The first row lists the parameter labels
[angle, trans_x, trans_y, a, b, n], while the second row
contains the corresponding values [α, Tr X , TrY , ā, b̄, n̄].

Bézier curves

In the case of Bézier curves, the GT file CPs.csv contains
the control points, one per row.

2.5 Dataset representativeness

For the first version of CurveML, we focused on curves
that are non-trivial and not readily available in other pop-
ular datasets such as [4], [13], [22]. Hence, we omitted
simpler shapes such as circles, stars, squares, triangles, and
pentagons, and instead we selected families of curves that
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Fig. 2 Random point sets from
the data set under each category.
Columns identify the artefacts
types: none (A0), uniform or
non-uniform downsampling
(A1), global or local uniform
noise (A2), global or local
Gaussian noise (A3), global or
local uniform outliers (A4), a
combination of different
artefacts (A5). Rows correspond
to the types of curves listed in
Section 2.1
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Table 3 Overview of the properties for the families of curves

Curve type Open Closed Bounded Unbounded Piecewise

citrus − � � − −
hypocycloid − � � − −
geom. petal − � � − −
Arch. spiral � − − � −
egg − � � − −
oval − � � − −
mouth − � � − −
cissoid � − − � −
Bézier � − � − �

mathematically encode a wide range of variability in terms
of unique patterns and distinctive geometric characteristics.
Our goal was to ensure that the dataset is representative of
various desirable features, including closed, open, bounded,
and unbounded shapes—see Table 3. Additionally, we also
accounted for data perturbation by including point sets that
exhibit different types of downsampling (uniform or non-
uniform), noise (local or global, Gaussian or uniform), and
outliers (local or global), possibly combined into more com-
plex artefacts. By including these artefacts, we aimed to
provide a more realistic and challenging scenario.

3 Evaluationmeasures

Together with the dataset, we also release various quality
measures from [6, 14] that permit the quantitative evaluation
ofmethods and algorithms for curve classification, parameter
recognition, and the approximation of plane curves.

3.1 Classificationmeasures

To illustrate the classification performance of a method, we
consider the so-called confusion matrix (CM) [14]. It is a
squarematrix that has the same order as the number of classes
present in the dataset. The elements located on the CM diag-
onal represent the number of true positives, i.e. the number
of items that were accurately classified as belonging to their
corresponding ground truth classes. Off-diagonal elements
indicate the count of items incorrectly classifiedby themodel.
Said otherwise, CM(i, i) is the number of elements correctly
identified as members of class i , while CM(i, j), with j �= i ,
is the count of elements wrongly labelled as belonging to
class j rather than to class i . It goes without saying that ideal
classifiers have diagonal classification matrices.

True Positive and Negative Rates.
The true-positive rate (TPR), also known as recall,

assesses the capability of a model to accurately detect pos-

itive instances, such as the percentage of class i elements
correctly identified as class i elements. Similarly, the true-
negative rate (TNR) evaluates themodel’s ability to recognise
negative instances, such as the percentage of class j elements
(with j �= i) correctly classified as such. These metrics are
also referred to as sensitivity and specificity in statistical anal-
ysis.

Positive and negative predictive values.
In addition to TPR and TNR, other metrics can help us

determine the probability that a model will return a correct
prediction. These metrics are the positive predictive value
(PPV) and the negative predictive value (NPV). PPV, also
called precision, is the proportion of true positives to the
total number of items classified as positives by the model;
likewise, NPV represents the ratio of true negatives to the
total number of items classified as negatives by the model.

Accuracy. Accuracy, here denoted by ACC, refers to the
frequency at which a model makes accurate predictions.
Specifically, it is calculated as the ratio of correct predictions
the model makes to the total number of predictions.

F1-Score F1-Score is a metric that combines both preci-
sion (i.e. PPV) and recall (i.e. TPR) into a single value. It
is the harmonic mean of precision and recall, which gives
equal weight to both metrics. The F1-Score ranges from 0 to
1, with higher values indicating better performance.

3.2 Parameter recognitionmeasures

To analyse the estimations made on point sets representing
families of curves and Bézier curves, we exploit the infor-
mation contained in the parameters.csv and CPs.csv
files. We can do two types of analyses: a global one, by
considering all predictions, and a local one, by examining
predictions corresponding to only one type of family at a
time.

Let N be the number of files in the test set. Given a specific
parameter under study (angle, translation along a principal
direction, control point along a principal direction, etc.), we
define the vector γ as the float vector 1 × N that contains
the ground truth values (for files where that parameter is
meaningful) or zero (otherwise).

We denote by γi the exact parameter value for the i-th
curve in the test set; similarly, γ̂i is the parameter estimate
for curve number i . To assess the quality of recognition, we
chose the following measures that apply to all parameters:

– Mean Square Error (MSE)

MSE := 1

N

N∑
i=1

(γi − γ̂i )
2.
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– Mean Absolute Error (MAE)

MAE := 1

N

N∑
i=1

|γi − γ̂i |.

– Pearson’s correlation coefficient ρ

ρ := cov(γ , γ̂ )

σ (γ )σ (γ̂ )
,

i.e. the covariance of the vectors (γ , γ̂ ) of the estimated
and exact parameters divided by the product of their stan-
dard deviations. The result always has a value in [−1, 1].

– Spearman’s rank correlation coefficient is defined as the
Pearson’s correlation coefficient between the rank values
of γ and γ̂ .

– Coefficient of determinationR2 score is the proportion of
the variation in the dependent variable (here the unknown
parameters that we aim at estimating) that is predictable
by the model.

3.3 Approximationmeasures

To quantify the approximation accuracy of a specific curve,
we first generate a dense set of points Cclean that repre-
sents the original curve, exploiting the parameter in the file
parameters.csv or the control points in the fileCP.csv
and the parametric representation of the curve in Eq. 1 or 2-3,
respectively. Then, we consider the parameters or the control
points estimated by an algorithm and, in a similar way, we
canobtain a samplingC of the corresponding curve exploiting
the parametric representations in Eq. 1 or 2-3, respectively.
Basedon thepoint set representationof the ground truth curve
and the inferred one, we propose the following twomeasures
to evaluate the approximation accuracy of the curve C:

– Mean Fitting Error (MFE), defined as

MFE(C, Cclean) := 1

|C|
∑
x∈C

d2(x, Cclean)/l,

where d2 is the Euclidean distance, and l is the diagonal
of the axis-aligned minimum bounding box containing
C, which makes the measure independent from the curve
size;

– Directed Hausdorff distance, defined as

ddHaus(C, Cclean) := max
x∈C

min
y∈Cclean

‖x − y‖2.

Tomake themeasure independent from the curve size, we
normalise it with respect to the diagonal l of theminimum
bounding box containing C.

4 A practical use case: applying neural
networks to curve classification and
regression problems

As a driving example of how the dataset can be used in
machine learning tasks we train and evaluate a set of deep
learning models, see Section 4.1. Models are used to classify
the families of curves and to perform simple single-value
regression tasks on their parameters, see Section 4.2.

We chose the univariate regression approach because our
main interest is to provide robust baselines onwhich anybody
could then further work and improve, and to demonstrate
that the dataset is learnable “as-is” by deep learning models
without any special cleaning techniques of the input or output
data.

Moreover, had we chosen the multivariate regression
approach, the neural network architecture should have had
multiple regression heads in output to the encoder, and this
would have significantly increased the amount of VRAM
needed and the computation budget (already sufficiently high
given the number of images).

4.1 Description of the learning-basedmethods

To evaluate the dataset’s quality, we employed CurveML to
train models belonging to two distinct families of architec-
tures: ResNet [9] and PointNet [19]. We first present a set
of convolutional neural network (CNN) models trained to
perform classification or image regression tasks using the
ResNet architecture.We then demonstrate howCurveMLcan
be effectively learned by a family of PointNet-based models
to accomplish the same tasks.

4.1.1 Training of models based on the ResNet architecture

The first deep learning (DL) method presented in this section
exploits a standard “frozen”ResNet-101 [9] backbone, there-
forewith untrainableweights on the convolutional layers, and
only performs the fine-tuning of a standard classification or
regression head, according to the task involved. By allowing
just over 2 million out of 44 million parameters to be trained,
this transfer-learning approach saves computational power to
train only what is beneficial to the problem.

The training took place solely on the geometric images
(280k samples, in two versions, with and without noise) for
a total of 560k images divided into training/validation/test
sets with a ratio of 0.8/0.1/0.11. Before feeding the neural
network, the images were scaled to 250px . No other type of
data augmentation was used. As a result, it was possible to

1 Although the split was sequential for the number of directories, due
to the random extraction process of the curve parameters, the dataset
has been effectively split randomly over the three sets.
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obtain robust baselines that are highly replicable and more
comparable between the different training runs, also with the
expectation that these baselines can be used in the future for
training or validating more complex models.

The training took place on two machines: the first with
a single Nvidia RTX A5000 GPU with 24 Gb of VRAM,
the second with a single Nvidia RTX 2070 Super GPU
with 8 Gb of VRAM using the popular Fast.ai [10] and
Pytorch libraries. Fast.ai’s convenient APIs allow to
download the pre-trained backbone and weights from the
Torchvision’s model zoo very simply and automati-
cally. Also, the Fast.ai library automatically initialises
the new head with random weights, generating the output
layer of the neural network according to the type of data
passed to its DataLoaders: one single neuron with a
SigmoidRange activation function in the case of a regres-
sion problem, n_classes neurons—with n_classes equal to
the number of classes—with a Softmax activation function
in the case of a classification problem.

To maximise the level of automation during the training
of the network, a set of Fast.ai callbacks was used to per-
form the early stopping of the training (with patience = 5, i.e.
5 epochswithout improving the validation loss of the network
for the regression problems and patience = 2 for the classi-
fication problem) and to save the best model of the training
round and then reload it for validation and testing. We also
used the Weights & Biases (wandb.ai) report callback
to constantly monitor the different training runs remotely via
browser.

The loss function used was MSE (mean square error)
for the regression problems and cross-entropy loss for the
classification problem. We used bs = 32, and the learn-
ing rates were set automatically using Fast.ai’s function
lr_find to slice(5e − 4, 1e − 3).

We used a wide set of metrics described in Section 3.2
to assess the learning progress of the model. All training
code and pre-trainedmodels are available here for download:
https://gitlab.com/4ndr3aR/CurveML.

4.1.2 Training ofmodels based on the PointNet architecture

To train the PointNet models [19], we chose a Pytorch-
based implementation available on GitHub [28]. Just around
3.5 million trainable parameters make up the architecture
implemented in the repository, as described in the original
PointNet paper [19]. To indicate the scale of the difference,
PointNet has an order of magnitude less trainable parameters
and, hence, a lower computational cost for training than the
ResNet-101, which we selected for image-based training and
has slightly under 45 million trainable parameters.

To further speed up the training process, we loaded into a
Pandas DataFrame all the 560.000 point sets (in their
x, y, z form) and all the labels and parameters normally

stored in the dataset as single files. We subsequently saved it
in compressed LZMA2 format (.xz extension). This allows
the entire point-based dataset (without images) to be stored
in less than 2 Gb of space and subsequently loaded entirely
in RAM to maximise training speed.

As for the ResNet-based models, also for PointNet we
execute 7 distinct experiments, one for classification and 6
for the regression of the 6 different parameters of the plane
curves. In all experiments, the network backbone remains
the same, only the output layer and the activation function
change. For classification, 8 neurons are created and instan-
tiated, one for each of the 8 classes of plane curves currently
present in CurveML, followed by a ReLU (Rectified Lin-
ear Unit) type activation function and a log_softmax
operation. For the regression, a single neuron is created, fol-
lowed by a sigmoid_range function (a sigmoid rescaled
between limit_low and limit_high).

As for the loss functions, for classification we left the
original Negative Log Likelihood loss (nll_loss) of the
Pytorch-based PointNet implementation, while for regres-
sion we chose the Mean Squared Error loss (MSELoss)2.

The training of this class of models used the same split
adopted for the training of the ResNet-101 models, choos-
ing Adam as the optimiser, setting the learning rate to 1e-3,
the weight decay to 1e-4, and training for 200 epochs. The
checkpoint with the lowest validation loss (or with the high-
est validation accuracy for the classification problem) was
selected as the best model for evaluation on the test set. All
training runs were performed on a single Nvidia RTX 2070
Super GPU with 8 Gb of VRAM and took approximately 12
hours to complete.

4.2 Performance analysis

The classification models show near-perfect image classifi-
cation performance across families of curves for both the
ResNet-101 classifier and the PointNet classifier.

As visible in Table 4 and 5, both the models are close
to 100% accuracy on both the validation and the test sets.
The confusion matrices in Figs. 3 and 4 show the classifi-
cation capabilities of both models in absolute value: on the
validation set, the ResNet-101 model misclassifies a total of
4 samples out of 56k, while on the test set 6 samples are
misclassified (again out of a total of 56k).

The PointNet-based classifier performs verywell but com-
paratively slightly worse than the ResNet-based classifier. As
shown in Fig. 4, the model fails to classify 17 samples out
of 56k both on the validation and test set. Figure 5 shows
the top losses for the ResNet-based classifier, i.e. the “most

2 It has to be noted that the regression implementation was not origi-
nally present in the PointNet/PointNet++ Pytorch repository, so we just
replaced the classification head with a single-neuron regression head.
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Table 4 Performance of the ResNet classification model on the valida-
tion and test sets

Data set Loss TPR TNR PPV NPV ACC F1

validation 2e-4 0.999 0.999 0.999 0.999 0.999 0.999

test 3e-4 0.999 0.999 0.999 0.999 0.999 0.999

misclassified” samples, for validation and test sets, respec-
tively.As canbe seen, the fewmisclassified curves are heavily
undersampled and with a low signal-to-noise ratio, probably
even for a trained human eye. Practically the same goes for

Table 5 Performance of the PointNet classification model on the vali-
dation and test sets

Data set Loss TPR TNR PPV NPV ACC F1

validation 1e-3 0.999 0.999 0.999 0.999 0.999 0.999

test 1e-3 0.999 0.999 0.999 0.999 0.999 0.999

the PointNet-based classifier: the worst classified curves are
almost all barely distinguishable (Fig. 6).

For what concerns the ResNet-based model, the loss
curves for training and validation (Fig. 7) on the classifi-

Fig. 3 Confusion matrices for the ResNet classifier on the validation set (left) and the test set (right)

Fig. 4 Confusion matrices for the PointNet classifier on the validation set (left) and the test set (right)
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Fig. 5 Top losses (i.e. worst classified samples) for the ResNet-101 classification model, including loss values for each sample. The upper row
shows the top losses in the validation set, and the bottom row shows the top losses in the test set

Fig. 6 Top losses (i.e. worst classified samples) for the PointNet classification model, including loss values for each sample. The upper row shows
the top losses in the validation set, and the bottom row shows the top losses in the test set

cation problem (label: Classification Training/Validation
Loss) show very well the near-zero cumulative loss values
achieved by the model.

As shown in Table 6, in all the regression experiments,
the training converges with a high correlation coefficient
between predictions and ground truth (r > 0.9). However,
convergence times vary significantly from experiment to
experiment, ranging from only 8 epochs for the a param-
eter (label: “a” Training/Validation Loss in Fig. 7) up
to 23 epochs for the α parameter (label: “angle” Train-
ing/Validation Loss in Fig. 7).

Regarding the PointNet training runs, Fig. 8 shows the
accuracy of the classification model as the number of train-
ing epochs increases. In this case, it can be seen that around
50 epochs, the accuracy3 is already very close to 100%
(label:Training/Validation Acc.).

Figure 9 instead shows the variation of training and vali-
dation losses for the different PointNet regression models as
the number of epochs increases. Also in this case it can be

3 The training script of PointNet’s Pytorch implementation that was
used to train the classification model only provided accuracy but not
cumulative loss.
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Table 6 Performance of the ResNet regression models on the validation and test sets. The loss represents the MSE (Mean Square Error) between
ground truth and predictions

Data set Problem Validation Loss MAE RMSE R2 Score Pearson Corr. Coeff. Spearman Coeff.

Validation Tr X 0.000 0.010 0.013 0.994 0.998 0.998

TrY 0.000 0.010 0.013 0.994 0.997 0.996

a 0.002 0.030 0.042 0.994 0.997 0.996

b 0.001 0.029 0.033 0.980 0.997 0.935

n 0.022 0.079 0.149 0.997 0.999 0.856

α 127.965 3.865 11.312 0.984 0.992 0.986

Test Tr X 0.000 0.010 0.013 0.994 0.998 0.998

TrY 0.000 0.010 0.013 0.994 0.997 0.996

a 0.002 0.030 0.042 0.994 0.997 0.996

b 0.001 0.029 0.033 0.980 0.997 0.935

n 0.025 0.079 0.157 0.997 0.999 0.856

α 144.798 3.921 12.033 0.982 0.991 0.986

seen how the loss on the α parameter (label: “angle” Train-
ing/Validation Loss) is orders of magnitude higher than that
of the other parameters. On the contrary, the loss concern-
ing the parameter “n” (label: “n”Training/Validation Loss)
converges very quickly to zero, since “n” is a discrete param-
eter and therefore carries very little information4.

Again in Fig. 9, in the last two graphs, it can be seen that
themodels of the parameters “a” and “b” show a convergence
that can be defined as “normal”, while the models relating to
the parameters “x” and “y” are very interesting, since their
validation loss is consistently lower than their training loss
and around the 75th epoch it even becomes significantly
lower. It is noteworthy that the loss—in both training and
validation—is considerably higher for these two parameters
compared to the others.

Also for the case of PointNet, Table 7 shows the complete
set of metrics obtained on validation and test sets. The only
parameter to visibly suffer from the use of PointNet seems
to be α. Not only are there no other glaring differences to
be noted, but rather the similarity of the statistics that two
radically different approaches—which employ two neural
networks with a radically different “model capacity”—have
on the same dataset, is striking.

Finally, it is useful to keep in mind that the current version
of the training scripts does not exploit symmetries, and the
angle is severely penalised by this lack of information. In
fact, small variations in prediction vs. ground truth around
the symmetry angle correspond to high losses which hurt the
training to some extent. Unfortunately, this limitation is not
solvable without also using the information about the class

4 We could easily have replaced the regression task for the parameter
“n” into a classification task, but it was also useful as a canary test
to estimate the convergence of the network on CurveML after a few
epochs.

of the figure during training, given that each class of figure
has its symmetry which can be different from the others.

Further evaluation is needed to understand how to exploit
these symmetries best. Without further experimentation, it is
not possible to establish a prioriwhether it is sufficient to train
a “global model” capable of estimating class and all param-
eters simultaneously, or whether it is necessary (and more
convenient) to have a small classification model upstream
of the pipeline that passes its classification output as input to
parameter estimation models. Indeed, the more than satisfac-
tory results obtainedwith PointNet and its low computational
cost make us lean towards this latter solution, but further tests
are needed.

Figures 10, 11, 12, 13, 14, 15 and 16 show several
examples of classification and single-parameter regression
performed by the different ResNet and PointNet models.

Figure 10 showcases the classification capabilities of
ResNet and PointNet models on CurveML, with both mod-
els achieving nearly perfect performance. This high accuracy
suggests that the visual cues necessary for classification are
well-captured by both architectures, indicating their effec-
tiveness for this type of task.

Figure 11 focuses on the regression of the α parame-
ter, revealing a notable distinction between the two models.
ResNet’s mean squared error (MSE) is significantly lower
than that of PointNet, showing ResNet’s superior ability
to capture rotational variations within the plane curves.
This could be attributed to ResNet’s convolutional struc-
ture, which is inherently more sensitive to rotational changes
in image data. Figure 12 examines the n parameter regres-
sion, which, as previously said in a note, could potentially
be treated as a classification problem. Again, the models per-
form similarly, with ResNet exhibiting a slightly lower error
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Fig. 7 Training and validation loss curves of the different ResNet mod-
els: (a, b) classification problem, (c, d); regression of the parameter n;
(e, f) regression of the parameter α ; (g, h) regression of the parameters

Tr X , TrY , a, b. In the legend, x and y refer to Tr X , TrY , respectively.
The x-axis represents the number of epochs, while the y-axis is the loss
value (scalar)
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Fig. 8 Training and validation accuracies for the PointNet classification
model. The x-axis represents the number of epochs, while the y-axis is
the accuracy value (scalar)

rate which in any case is not perceptible simply by examining
some randomly chosen samples.

Figures 13 and 14 explore the regression of the TrX and
TrY parameters, respectively.Bothmodels yield close results,
with ResNet having a marginally lower regression error. The
models’ comparable performanceon these translationparam-
eters suggests that both networks are adequately learning to
identify spatial displacements.

Finally, Figs. 15 and 16 delve into the regression of param-
eters a and b whose primary visual effect is to alter the size

of the plane curves. ResNet’s performance is marginally bet-
ter for both parameters. Also in this case, this could be due
to the larger number of ResNet parameters and the greater
pretraining to which it was subjected.

In conclusion, ResNet generally performs somewhat bet-
ter than PointNet for all parameters, except for the α

parameter, where itsMSE is noticeably lower. A not insignif-
icant aspect that emerges from these experiments is that the
training, validation, and test set are overall homogeneous in
terms of the information contained and its variability. This is
confirmed by the comparable performance obtained on the
validation and test set.

Table 8 provides various statistics of the measures intro-
duced in Section 3.3 to quantify the fitting quality of the
ResNet regression model, considering the whole test set.
The approximation measures are computed by exploiting the
parameters predicted by the regression model since they can
be inserted into the parametric representation of Eq. 1 to
obtain a dense sample of the predicted curve. The statis-
tics considered in this analysis are the first, second, and
third quartiles, the mean value, and the standard deviation
for each type of family in our dataset. More specifically,
these quartiles split a set of sorted real numbers into four
parts of approximately equal cardinality: the first (Q1) and
the third (Q3) quartiles are defined as the values such that,

Fig. 9 Training and validation losses (MSE) of the different PointNet models. In the legend, x and y refer to Tr X , TrY respectively. The x-axis
represents the number of epochs, while the y-axis is the loss value (scalar)
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Table 7 Performance of the PointNet regression models on the validation and test sets. The loss represents the MSE (mean square error) between
ground truth and predictions

Data set Problem Validation Loss MAE RMSE R2 Score Pearson Corr. Coeff. Spearman Coeff.

Validation Tr X 0.000 0.016 0.021 0.985 0.992 0.991

TrY 0.000 0.015 0.021 0.985 0.992 0.990

a 0.008 0.056 0.089 0.971 0.987 0.975

b 0.001 0.014 0.023 0.990 0.995 0.933

n 0.017 0.063 0.132 0.998 0.999 0.856

α 247.200 7.505 15.723 0.970 0.989 0.987

Test Tr X 0.000 0.016 0.021 0.985 0.992 0.991

TrY 0.000 0.015 0.021 0.985 0.993 0.991

a 0.008 0.057 0.089 0.971 0.987 0.975

b 0.001 0.014 0.023 0.990 0.995 0.933

n 0.022 0.064 0.147 0.997 0.999 0.856

α 262.875 7.624 16.213 0.968 0.987 0.986

Fig. 10 Inference results for the ResNet (left) and PointNet (right) classification models. The top labels represent the ground truth (GT), while the
bottom ones represent the model prediction (Pred)

Fig. 11 Inference results for the ResNet (left) and PointNet (right) regression models for the parameter α. The top labels represent the ground truth
(GT), while the bottom ones represent the model prediction (Pred)
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Fig. 12 Inference results for the ResNet (left) and PointNet (right) regression models for the parameter n. The top labels represent the ground truth
(GT), while the bottom ones represent the model prediction (Pred)

Fig. 13 Inference results for the ResNet (left) and PointNet (right) regression models for the parameter Tr X . The top labels represent the ground
truth (GT), while the bottom ones represent the model prediction (Pred)

respectively, 25% and 75% of the numbers lie below them;
the second quartile (Q2) is the median of the set. Quartiles’
significance is due to their ability to identify possible out-
liers. Based on these statistics, we can conclude that the best
results in terms of fitting error are achieved in the case of
mouth curves, while the worst values are obtained in the
case of Archimedean spirals. With the only exception of the
latter family, the quartiles of the MFEs lie under the order
of magnitude of 10−2, while the quartiles of the Hausdorff
distances lie under the order of magnitude of 10−1. Figure
17 shows some examples of fitting results. Specifically, fol-
lowing the notation introduced in Section 3.3, it displays in
black a dense point set Cclean of the original curve, gener-
ated starting from the ground truth parameters, and in red the
point set C generated starting from the parameter obtained

in the regression step. The values of the MFE and ddHaus

for these examples are, respectively, 0.0085 and 0.0185 for
the hypocycloid, 0.0054 and 0.0105 for the cissoid, 0.0062
and 0.0120 for the mouth curve, 0.0075 and 0.0310 for the
geometric petal.

5 Conclusions

In this paper, we propose the CurveML benchmark, a dataset
of 520k curves, and related metrics to develop and compare
methods and models for the classification and identification
of plane curves represented by point sets. CurveML is easily
extendable with new curves; it is open and available at the
following URL: https://gitlab.com/4ndr3aR/CurveML.
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Fig. 14 Inference results for the ResNet (left) and PointNet (right) regression models for the parameter TrY . The top labels represent the ground
truth (GT), while the bottom ones represent the model prediction (Pred)

Fig. 15 Inference results for the ResNet (left) and PointNet (right) regression models for the parameter a. The top labels represent the ground truth
(GT), while the bottom ones represent the model prediction (Pred)

We focused on generating and curating the CurveML
dataset because we believe that, in this time of rapid evolu-
tion of Computer Vision, a new dataset that could fill the gap
in plane curve classification, regression, and fitting is some-
thing the scientific community can use and benefit from it.We
believe that this benchmark will impact every task that ben-
efits from a pre-classification of the type of curve in input.
This would be beneficial, for instance, to feed the Hough
transform with the family of curves and an estimate of the
parameters in which to find a solution [23].

Moreover, the problem of approximation of Bézier curves
with deep learningmethods is still totally open, andCurveML
offers the ground truth and evaluation measures for experi-
mentingwith novel and automatic approximation techniques.

Our benchmark was designed to be representative of sev-
eral curve types. We selected a few families of closed, open,

bounded, and unbounded curves from the atlas (see [26]).
This dictionary has been enriched by adding Bézier curves
and composite Bézier curves of 2 or 3 parts. We also per-
turbed them by introducing some noise or various kinds of
artefacts.

Being CurveML split into training, validation, and test
sets, it is particularly suitable for machine learning tasks.
We train two very different families of deep learning models
to perform simple curve classification and single-parameter
regression tasks.With thesemodels, we show that our dataset
is consistent, and it can be effectively used to train both mod-
els that require images and models that work on point clouds
and establish a baseline for developing future methods.

Moreover, to promote replicability and future research,we
are making all material available: in addition to the dataset,
we provide its generating scripts and both the pre-trained
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Fig. 16 Inference results for the ResNet (left) and PointNet (right) regression models for the parameter b. The top labels represent the ground truth
(GT), while the bottom ones represent the model prediction (Pred)

Table 8 Statistics of the
approximation (aka fitting)
errors for the whole test set

Type of curve Q1 Q2 Q3 mean std

MFE citrus 0.0086 0.0121 0.0169 0.0143 0.0103

hypocycloid 0.0098 0.0142 0.0218 0.0183 0.0160

geometric petal 0.0112 0.0149 0.0211 0.0167 0.0072

Archimedean spiral 0.1115 0.1268 0.1446 0.1283 0.0243

egg of Keplero 0.0107 0.0170 0.0253 0.0193 0.0123

Cassinian oval 0.0083 0.0121 0.0183 0.0148 0.0121

mouth curve 0.0075 0.0103 0.0144 0.0118 0.0066

cissoid of Diocle 0.0095 0.0148 0.0238 0.0181 0.0132

ddHaus citrus 0.0236 0.0334 0.0456 0.0379 0.0253

hypocycloid 0.0239 0.0332 0.0455 0.0387 0.0320

geometric petal 0.0290 0.0353 0.0444 0.0387 0.0145

Archimedean spiral 0.2550 0.2781 0.3024 0.2788 0.0372

egg of Keplero 0.0216 0.0302 0.0408 0.0335 0.0186

Cassinian oval 0.0201 0.0274 0.0389 0.0327 0.0211

mouth curve 0.0170 0.0240 0.0339 0.0274 0.0154

cissoid of Diocle 0.0286 0.0458 0.0706 0.0545 0.0417

models and the Jupyter notebooks needed to replicate our
training process. Finally, we provide a set of performance
metrics able to quantitatively evaluate algorithms and deep
learningmodels for curve classification, parameter inference,
and approximation.

To the best of our knowledge, CurveML is the first dataset
designed for learning tasks that contain families of paramet-
ric curves and even single and composite Bézier curves with
control points.While our drivingmodels reach an impressive
classification rate with very few misclassifications on noisy
data, our experiments show that parameter regression ismore
challenging. In particular, given that in this preliminary work
we have not dealt with the regression of the parameters of
Bézier curves, it would be highly valuable to carry out a study

similar to the one conducted in Section 4 to extend the learn-
ing models trained up to now. Among the key challenges in
implementing a neural network to classify, fit and recognise
Bézier curves, there is a wide variety of curve configurations.
Bézier curves lack a distinctive shape, unlike the other curve
families considered in this paper. They can vary greatly in
complexity, degree, and number of control points, making
it difficult for the neural network to learn a curve represen-
tation. Moreover, the quantity of parameters needed to fit a
(composite) Bézier curve increases quickly with the degree
and number of pieces and can eventually get to the point
where the problem becomes unmanageable.

In the future, it would also be interesting to try to train a
final classifier–regressor capable of providing all the labels
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Fig. 17 Visualisation of some fitting results. Following the notation
introduced in Section 3.3, the red curve represents the point set Cclean ,
while the black curve represents the point set C

and parameters of the whole dataset at once, regardless of the
family type. Indeed, it is extremely challenging to perform
regression on these types of parameters: for this reason, we
believe that the size and complexity of our dataset are ideal
for developing and stress-testing future robust models and
curve processing algorithms.
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