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ABSTRACT
We present a data analysis pipeline for CMB polarization experiments, running from
multi-frequency maps to the power spectra. We focus mainly on component separation
and, for the first time, we work out the covariance matrix accounting for errors associ-
ated to the separation itself. This allows us to propagate such errors and evaluate their
contributions to the uncertainties on the final products.The pipeline is optimized for
intermediate and small scales, but could be easily extended to lower multipoles. We
exploit realistic simulations of the sky, tailored for the Planck mission. The compo-
nent separation is achieved by exploiting the Correlated Component Analysis in the
harmonic domain, that we demonstrate to be superior to the real-space application
(Bonaldi et al. 2006). We present two techniques to estimate the uncertainties on the
spectral parameters of the separated components. The component separation errors
are then propagated by means of Monte Carlo simulations to obtain the corresponding
contributions to uncertainties on the component maps and on the CMB power spec-
tra. For the Planck polarization case they are found to be subdominant compared
to noise.

1 INTRODUCTION

The Cosmic Microwave Background (CMB) radiation is a
gold-mine of cosmological information. While cosmology is
entering its precision era, the target of CMB experiments is
shifting towards weak signals. The tiny amount of polariza-
tion associated with the CMB anisotropy is undoubtedly one
of the most intriguing - and challenging - measurements of
this kind. Several experimental efforts are already pursuing
the polarization of the CMB; many others will follow soon,
as the field is literally blossoming. The potential reward from
this activity is immense, since the CMB is thought to encode
the solution to several long standing puzzles in Cosmology
and Fundamental Physics. While the largest contribution to
CMB polarization (so called E mode) arises due to the ef-
fect of the scalar perturbations that also seed the large scale
structure of the Universe, theory predicts that a tiny part
of the polarized signal is in the form of (yet to be detected)
B modes. On large angular scales, these modes bear the im-
print of the stochastic background of gravitational waves
generated during the inflationary phase of the Universe. At

the same time, the amount of power in B modes can be
used to measure the energy scale of inflation, thus probing
particle physics. Furthermore, the different parity behavior
of E and B modes opens up the possibility to test for the
breakdown of fundamental symmetries.

CMB anisotropies were first discovered by the COBE
satellite (Smoot et al. 1992), and higher resolution experi-
ments detected the first acoustic peaks (de Bernardis et al.
1999; Hanany et al. 2000) in temperature. The E modes
were first detected from the ground by DASI (Kovac et al.
2002). Soon after, the WMAP satellite produced all sky
data with a resolution down to about 15 arcminutes
(Bennett et al. 2003), impacting in particular on the large
scale E polarization of the CMB, and on the polarized fore-
ground properties (Page et al. 2007). The Planck satellite1

1 Planck (http://www.esa.int/Planck) is a project of the Euro-
pean Space Agency - ESA - with instruments provided by two
scientific Consortia funded by ESA member states (in particu-
lar the lead countries: France and Italy) with contributions from
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(Tauber et al. 2009) is now measuring the CMB anisotropy
with an unprecedented accuracy. Lately, experiments are
focussing on the mapping of small scales total intensity
anisotropies (Reichardt et al. 2009), and of polarization
(de Bernardis et al. 2009) with the ambitious goal of de-
tecting the B modes for an interesting multipole range.
The latter projects represent an extraordinary technological
and scientific challenge, requiring a post-Planck, polariza-
tion dedicated satellite.

It must be clearly set forth that building high quality ex-
periments is not the only necessary condition for the CMB to
disclose its secrets. It is also of utmost importance to analyze
the CMB data optimally in order to maximize the informa-
tion drawn from the data. First, one is looking for a tiny sig-
nal buried under overwhelming instrumental noise, of both
statistical and systematic origin. Furthermore, the CMB is
not the only signal on the sky: other astrophysical sources
exist, both compact and diffuse, that are powerful emitters
in the microwave band. Their emission can easily jeopardize
measurements of the CMB unless a very accurate separa-
tion of the astrophysical components is achieved. Despite the
large number of papers on the subject - from Brandt et al.
(1994) to Stompor et al. (2009) and references therein, see
Delabrouille & Cardoso (2009) for a recent review - the han-
dles used to achieve component separation are a few. On
one side, one can linearly combine the multifrequency maps
in order to extract from the data the most likely compo-
nent scaling as a blackbody (Internal Linear Combination:
Bennett et al. 2003, and references therein), or can exploit
the statistical independence between components (Indepen-
dent Component Analysis: Stivoli 2006; Betoule et al. 2009,
and references therein), or adopt internal template fitting
procedures (Mart́ınez-González et al. 2003). On the other
side, one can exploit a partial knowledge of foregrounds,
and in particular of their frequency scalings, in order to pa-
rameterize them and measure their parameters from multi-
frequency maps, in the pixel domain (Stompor et al. 2009;
Eriksen et al. 2006; Bedini et al. 2005) or in the harmonic
one (Stolyarov et al. 2005). A crucially important still open
issue is the estimation of errors on separated maps and their
propagation through all the steps of the analysis, from the
determination of spectral properties of the Galactic emis-
sions to the component maps and CMB power spectra. A
correct characterization of errors is clearly essential for anal-
yses of separated maps and for cosmological parameter es-
timation. In this paper we present a pipeline for component
separation in polarization based on the Correlated Com-
ponent Analysis (CCA, Bedini et al. 2005; Bonaldi et al.
2006), including error estimates. Two methods for the esti-
mation of errors on separated maps are presented and tested
on realistic simulations of Planck polarization data.

The outline of the paper is the following. In § 2 we for-
malize the component separation problem. In § 3 we describe
our approach: the CCA technique both in the pixel and in
the harmonic domain, the associated error estimation and
the reconstruction of the individual components. In § 4 we
describe the simulations used to test our pipeline. In § 5

NASA (USA), and the telescope reflectors provided in a collabo-
ration between ESA and scientific Consortium led and funded by
Denmark.

we assess the goodness of the Galactic spectral indices esti-
mated on sky patches, used in § 6 to build spatially varying
spectral index maps. In § 7 we present the component maps
and the associated error maps. Finally, in § 8 we present and
discuss the estimated CMB polarization power spectra.

2 STATEMENT OF THE PROBLEM

The sky radiation, x̃, from the direction r̂ at the frequency
ν results from the superposition of signals coming from Nc
different physical processes s̃j :

x̃(r̂, ν) =

Nc∑

j=1

s̃j(r̂, ν). (1)

The signal x̃ is observed through a telescope, whose beam
pattern can be modeled, at each frequency, as a shift-
invariant point spread function B(r̂, ν). For each value of
ν, the telescope defocuses the physical radiation map by
convolving it with the kernel B. The frequency-dependent
convolved signal is input to an Nd-channel measuring instru-
ment, which integrates the signal over frequency on each of
its channels and adds noise to its outputs. The output of the
measurement channel at a generic frequency ν is

xν(r̂) =

∫
B(r̂− r̂′, ν′)

Nc∑

j=1

tν(ν
′)s̃j(r̂

′, ν′)dr̂′dν′+nν(r̂), (2)

where tν(ν
′) is the frequency response of the channel and

nν(r̂) is the noise map. The data model in eq. (2) can be
simplified by virtue of the following assumptions:

(i) Each source signal is a separable function of direction
and frequency:

s̃j(r̂, ν) = s̄j(r̂)fj(ν) (3)

(ii) B(r̂, ν) is constant within the passband of the mea-
surement channel containing ν.

These two assumptions lead us to a new data model:

xν(r̂) = Bν(r̂) ∗

Nc∑

j=1

hνj s̄j(r̂) + nν(r̂), (4)

where Bν(r̂) is the telescope beam pattern at the effective
frequency ν, ∗ denotes convolution, and

hνj =

∫
tν(ν

′)fj(ν
′)dν′. (5)

In vector form, we have

x(r̂) = [B ∗Hs̄](r̂) + n(r̂) (6)

where B is a diagonal Nd-matrix whose elements are Bν(r̂),
H is a constant Nd ×Nc matrix whose elements are hνj , s̄
is an Nc-vector whose elements are s̄j(r̂), and n is an Nd-
vector whose elements are nν(r̂). The data model has thus
become linear and convolutional, with known point spread
functions.

Equation (6) can be translated to the harmonic domain
where, for each transformed mode, the linear convolutional
model becomes linear and instantaneous:

X = HB̃S+N, (7)
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where X, S, and N are the transforms of x, s̄, and n, re-
spectively, and B̃ is the transform of the matrix B.

Let us now assume that the beam patterns of the tele-
scope are the same for all the measurement channels, that
is,

Bν(r̂) = B(r̂). (8)

By virtue of this position, eq. (4) becomes

xν(r̂) =

Nc∑

j=1

hνjsj(r̂) + nν(r̂), (9)

with sj(r̂) = [B ∗ s̄](r̂), or, in vector form,

x = Hs+ n. (10)

Hereafter we drop the overbar from the symbol of the source
vector.

It is worthwhile to note that eq. (3) comes from an
important assumption: the spectral properties of the astro-
physical sources are spatially uniform on the np pixels con-
sidered. This assumption must be dealt with carefully be-
cause the Galactic components are spatially varying, as we
discuss better in § 4. Our strategy to overcome this difficulty
is to apply our method separately to sky patches, where the
foreground properties can be safely assumed to be uniform.
Generally, the assumption leading to eq. (8), needed to build
an instantaneous data model, is also not realistic.A simple
way to apply the model [eq. (10)] to a general case is to
equalize the resolution of the instrumental channels to the
worse one. For the harmonic domain this is not needed, so
that the full instrumental resolution of each channel can be
exploited.

2.1 Strategy for component separation

Equations (10) and (7) clearly show that the key ingredi-
ent to estimate the source vector is the mixing matrix H.
The Correlated Component Analysis (CCA), described in
the next section, gives an estimate of the mixing matrix.
This estimation could be performed in the pixel domain (§
3.1) and in the harmonic domain (§ 3.2). Both methods ex-
ploit a tessellation of the data set and an estimation of the
mixing matrix patch by patch. Once we have an estimate of
H, we can compute a suitable matrix W, sometimes called
reconstruction matrix, allowing us to obtain an estimate ŝ
of the components from the noisy data x:

ŝ = Wx. (11)

with a reconstruction matrix W = W(H).
The reconstruction as in eq. (11) could be done in prin-

ciple both in pixel and in harmonic domain. As we will dis-
cuss in § 3.4 we choose to perform the reconstruction in pixel
domain as this technique allows us to account for spatially-
varying mixing matrix in a more direct way.

3 CORRELATED COMPONENT ANALYSIS
(CCA)

The CCA exploits a second-order statistics to estimate the
mixing matrix from the statistics of data and noise. To re-
duce the number of unknowns, the mixing matrix is parame-

terized through a parameter vector p, such that H = H(p).
To choose a suitable parameterization for H we use the fact
that its elements are proportional to the spectra of astro-
physical sources. As discussed in § 4, this allows us to re-
duce substantially the number of unknowns in the mixing
matrix with respect to the original Nd ×Nc elements to be
estimated.

3.1 Pixel domain CCA

From the pixel-space data model in eq. (10), we easily derive
the following second-order statistics (Bedini et al. 2005):

Cx(τ, ψ) = HCs(τ, ψ)H
T +Cn(τ, ψ). (12)

The quantities Cx(τ, ψ), Cs(τ, ψ) and Cn(τ, ψ) are the co-
variance matrices of data, components and noise, respec-
tively, computed for a generic two-dimensional shift (τ, ψ).
For example, for the data covariance matrix we have:

Cx(τ, ψ) = 〈[x(ξ, η)− µ][x(ξ + τ, η + ψ)− µ]T 〉, (13)

where ξ and η are the coordinates of the two dimensional
space, τ and ψ are increments in ξ and η, 〈...〉 denotes expec-
tation under the appropriate joint probability distribution,
µ is the mean vector and the superscript T means transpo-
sition. The application to sky patches is straightforward, as
we simply need to compute the covariances on a suitable list
of pixels.

In eq. (12), Cx(τ, ψ) and Cn(τ, ψ) can be computed
from the data and the known statistics of noise, while H
and Cs(τ, ψ) are unknown.

Once we consider eq. (12) for a sufficient number of
shift pairs(τ, ψ), both p (and hence H) and Cs(τ, ψ) can be
estimated by minimizing the functional:

Φ[Cs,H]=
∑

τ,ψ

‖HCs(τ, ψ)H
T−Ĉx(τ, ψ)+Cn(τ, ψ)‖

2 .(14)

3.2 Harmonic-domain CCA

By dropping the equal beam assumption [eq (8)] and relying
on the data model of eq. (7) in the harmonic domain, we
easily derive an equivalent of eq. (12) in terms of power
cross-spectra (Bedini & Salerno 2007):

C̃x = B̃HC̃sH
T B̃† + C̃n (15)

where B̃ is the transform of the matrix B introduced in
the previous section, and the dagger superscript denotes the
adjoint matrix. The matrices C̃x(ℓ), C̃s(ℓ) and C̃n(ℓ), all de-
pending on the multipole ℓ, are the cross-spectra of the data,
sources and noise, respectively. Formally, they are obtained
by applying the spherical harmonic transform to the covari-
ance matrices in eq. (12). When working in small patches,
the cross-spectra are calculated by averaging circularly the
2-dimensional discrete Fourier transform on the rectangular
grid.

If we reorder the matrices C̃x(ℓ)−C̃n(ℓ) and C̃s(ℓ) into
vectors d(ℓ) and c(ℓ), respectively, we can rewrite eq. (15)
as

d(ℓ) = Hk(ℓ)c(ℓ), (16)
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where Hk(ℓ) = [B̃(ℓ)H] ⊗ [B̃(ℓ)H] and the symbol ⊗ de-
notes the Kronecker product. Hk(ℓ) and c(ℓ) contain the
unknowns of our problem (namely, the vector p and all the
components of the source cross-spectra), and d(ℓ) would be
known if the data cross-spectra were known. In our case, we
use binned cross-spectra, C̃x(ℓ̂), C̃s(ℓ̂) and C̃n(ℓ̂), obtained
by averaging the transforms onto suitable spectral bins Dℓ̂.
Thus, the cross-spectra of data can be estimated from the
available data samples:

C̃x(ℓ̂) =
1

Mℓ̂

∑

i,j∈D
ℓ̂

X(i, j)X†(i, j) (17)

where the pairs (i, j) are the modes contained in the spectral
bin denoted by Dℓ̂ in the transformed domain and Mℓ̂ is the

number of Fourier modes contained in the ℓ̂-th spectral bin
Dℓ̂, ℓ̂ = 1, . . . , ℓ̂max. The set Dℓ̂ can be any subset of the
Fourier plane, such as an annular bin defined by its mean
radius and its thickness, which can easily be related to a
specific ℓ-interval in the spherical harmonic domain. Since
the left-hand side of eq. (16) can only be evaluated through
the empirical data cross-spectra of eq. (17), the data model is
affected by an estimation error ǫ(ℓ̂), with covariance matrix
Nǫ(ℓ̂):

d(ℓ̂) = Hk(ℓ̂)c(ℓ̂) + ǫ(ℓ̂), (18)

where d(ℓ̂) is now computed using the observed data cross-

spectrum matrix. Vectors ǫ(ℓ̂) represent the differences be-
tween the components of the actual data cross-spectrum ma-
trix and those evaluated from the data through eq. (17),
and, of course, are ordered as vectors in the same way as
C̃x(ℓ̂). This ordering induces the structure of their covari-
ance matrices, Nǫ(ℓ̂). Let us express the mapping between

the indices j and k in matrix [C̃x(ℓ̂) − C̃n(ℓ̂)] and the cor-
responding index i in vector d(ℓ̂) as follows

di(ℓ̂) = [C̃x(ℓ̂)− C̃n(ℓ̂)]j(i),k(i). (19)

With this position, if the estimation errors in d(ℓ̂) are un-
correlated to each other, the matrix Nǫ(ℓ̂) is diagonal, and
its entries are given by

Nǫ,ii(ℓ̂) = 2σ4
j(i)/Mℓ̂, if j(i) = k(i)

Nǫ,ii(ℓ̂) = σ2
j(i)σ

2
k(i)/Mℓ̂, if j(i) 6= k(i) (20)

where σ2
j is the known variance of the j-th element in the

noise vector. Details on this derivation can be found in
Bedini & Salerno (2008).

Let us now exploit all the significant spectral bins, that
is, let us assume a suitable set [1, ℓ̂max] for ℓ̂, and rewrite eq.
(18) by stacking all the quantities for the available values of
ℓ̂:

dV = [d(1),d(2), ...d(ℓ̂max)]
T , (21)

cV = [c(1), c(2), ...c(ℓ̂max)]
T , (22)

ǫV = [ǫ(1), ǫ(2), ...ǫ(ℓ̂max)]
T , (23)

HkB =




Hk(1) 0 . . . 0
0 Hk(2) . . . 0
0 . . . . . . 0

0 . . . . . . Hk(ℓ̂max)


 . (24)

By these positions, and bearing in mind that matrix HkB

is completely specified by the parameter vector p, eq. (18)
becomes

dV = HkB(p) · cV + ǫV , (25)

which allows us to estimate the parameter vector and the
source cross-spectra by minimizing the functional:

Φ[p, cV ] = (26)

= [dV −HkB(p) · cV ]
TNǫB

−1[dV −HkB(p) · cV ]

+ λcTVCcV

with

NǫB =




Nǫ(1) 0 . . . 0
0 Nǫ(2) . . . 0
0 . . . . . . 0

0 . . . . . . Nǫ(ℓ̂max)


 (27)

The term λcTVCcV is a quadratic stabilizer for the source
power cross-spectra whose estimation is an ill-posed prob-
lem. The matrix C must be suitably chosen and the pa-
rameter λ must be tuned to balance the effects of data fit
and regularization in the final solution. The functional in
eq. (26) can be considered as a negative joint log-posterior
for p and cV , where the first quadratic form represents the
log-likelihood, and the regularization term can be viewed as
a log-prior density for the source power cross-spectra.

3.3 Foregrounds spectral parameters error
estimation

A standard, theoretically-based, method to estimate the er-
rors in the recovery of the spectral parameters, ∆p, leading
to an error in the mixing matrix ∆H, relies on the anal-
ysis of the marginal probability for the parameters p. In
the next section we describe the formalization of this tech-
nique for harmonic domain CCA. As an alternative to this
method, we also implemented a simpler technique, exploit-
ing the redundancy of solutions obtained for different sky
patches. This allows us to provide an error estimation also
for pixel domain CCA, for which the formalization of the
marginal probability method is still under development, and
to cross-check the results obtained for the harmonic domain
CCA.

3.3.1 Marginal probability method for harmonic domain

CCA

To evaluate the estimation errors on p, we can first derive,
from eq. (26), the joint distribution of p and cV and then
marginalize it by integrating out cV .

By developing the functional in eq. (26) and taking its
exponential, it is easy to see that the marginal density of p
conditioned to dV is given by

p(p|dV ) ∝

∫
e−

1

2
[cT

V
(HkB

T NǫB
−1HkB+λC)cV ] × (28)

ed
T

V
NǫB

−1HkBcV × e−
1

2
dT

V
NǫB

−1dV dcV ,

which, by dropping unessential constants, becomes
(Bedini & Salerno 2008):

p(p|dV ) ∝
√

det(HkB
TNǫB

−1HkB + λC)−1 × (29)
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e
1

2
(NǫB

−1HkB)(HkB
T NǫB

−1HkB+λC)−1(HkB
T NǫB

−1dV).

Studying the behavior of this marginal distribution is not
difficult, since p is a low-dimension vector (typically, it has
two or three components). From eq. (29), all the quantities
related to the parameter distributions can be evaluated and,
possibly, exploited to estimate all the relevant reconstruction
errors. As a quantitative index of the estimation errors ∆p
we simply assume the standard deviations evaluated from
the normalized-exponent marginal posterior.

3.3.2 Spatial redundancy method

On a certain patch of the sky, we call p the true spectral
parameters and p̂ the estimated ones; the quantity we want
to estimate is ∆p = p − p̂. Let us suppose to have a set
of parameters estimated on a sample of sky patches, widely
overlapping to the considered one. For this sample we call
the true and the estimated spectral indices {pj} and {p̂j}
respectively.

For the moment we make a simplifying assumption,
which we will relax later: the spectral behavior of the com-
ponents is uniform over the area covered by the sample of
patches we are considering. In this case we have:

{pj} = p, (30)

and the estimated parameters {p̂j} are different measure-
ments of p. Thus, we can estimate ∆p by comparing the
actual estimation in the considered patch p̂ with the expec-
tation value of p computed on the sample of patches:

∆̂p = 〈{p̂j}〉 − p̂. (31)

In a realistic situation, however, the spectral indices are
spatially-varying on scales smaller than that of the patches.
Thus, for each patch the true spectral indices have a certain
distribution. Our assumption is that in this case eq. (30),
though not strictly true, still approximately holds. In fact,
due to the autocovariance of the foreground signal, we do not
expect discontinuities in the spectral index distribution in
nearby regions. Moreover, as the patches are partially over-
lapping, their mean spectral indices are highly correlated.
Thus, we assume that eq. (31) can still be used for an ap-
proximate error estimation, provided that the patches are
small and overlapped enough. A test of this method using
simulations is described in § 5.

3.4 Reconstruction of the components

Adopting the linear mixture model in eq. (10), we can find
a solution of the component separation problem of the form
of eq. (11). By exploiting the CCA results on sky patches
we are able to synthesize spatially varying spectral index
maps (see § 6 for details). Once we have an estimation of
the mixing matrix H, a suitable choice for the reconstruction
matrix W is the Generalized Least Square solution (GLS):

W = [HTC−1
n H]−1HTC−1

n , (32)

which only depends on the mixing matrix and on the noise
covariance Cn. By applying eq. (32) in pixel space we are
able to preserve the spatial variability of the estimated mix-
ing matrix. This local information is very valuable, as the
spectral properties of the foregrounds depend on the line

of sight. One disadvantage of using the pixel domain is that
the noise covariance Cn among different pixels does not van-
ish, so that the full calculation of eqs. (32) and (11) is very
computationally demanding. For full resolution maps, hav-
ing ∼ 107 pixels, computing the full Cn is infeasible in prac-
tice, and we are forced to take into account only the diagonal
noise covariance, i.e. to neglect any correlation between noise
in different pixels. The full calculation can be performed on
low resolution maps having ∼ 103 pixels. Such code, un-
der development, will provide a full noise covariance for the
reconstructed low resolution CMB map and will naturally
couple CCA with low resolution power spectrum estimators
such as Bol-Pol (Gruppuso et al. 2009). Another disadvan-
tage of the pixel domain is that to apply the simple relation,
eq. (32), we need to equalize the beams, thus losing part of
the instrumental resolution. This can be avoided again at
the cost of an increased computational complexity. An it-
erative multi-resolution solver is under development, which
will play perfectly with the harmonic CCA fully exploiting
the native channel resolution.

3.5 Errors on component maps

In general, each component map estimated through eq. (11)
is affected by both the instrumental noise and the residual
contamination from the other components. The former has
covariance matrix

cov(ŝ) = WCnW
† (33)

The latter will be estimated propagating the errors on spec-
tral parameters to the actual maps of individual compo-
nents. This is done by performing separation using different
realizations of the spectral parameters from their associated
distribution characterized by the uncertainties described in
this Section. Following this idea, in § 7 we present an ap-
proximated analysis and we demonstrate that, in our sim-
ulations, the error propagation from foregrounds spectral
parameters to component maps is satisfying. Notice that a
straightforward, although computationally expensive, exten-
sion of the present treatment could be exploited to propagate
covariances of the recovered errors on spectral parameters,
by simply computing them while conducting spectral indices
estimation in parallel for all patches. This step might be cru-
cial especially at large scales, where foregrounds do have cor-
relations which could impact significantly on the separation
errors in the form covariances between the distribution of
spectral parameters associated to nearby patches. This im-
plementation is on the other hand beyond the scope of the
present paper that regards small and intermediate scales but
we plan to implement it for the pipeline of real data analy-
sis.

4 SIMULATED SKY

The main diffuse components present in the Planck chan-
nels are the CMB and the emissions due to our own Galaxy,
namely thermal and anomalous dust, synchrotron, and free-
free. Free-free and anomalous dust emission are expected to
be essentially unpolarized. Since we deal here with polariza-
tion data, we are left with CMB, synchrotron and thermal
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Figure 1. Spectral index maps of synchrotron (top) and dust
(bottom) components, used in the simulated sky

dust emissions only. We note, however, that the method de-
scribed in this paper can be straightforwardly applied also
to total intensity data.

Our simulation of the diffuse emission exploits all the
available information from existing public pre-Planck sur-
veys. The simulated CMB map is based on a standard
ΛCDM model consistent with WMAP 5-years cosmological
parameters, with a tensor to scalar ratio r = 0.1. The rms
fluctuations of the CMB are expressed in antenna tempera-
ture, TA,CMB(ν), whose frequency dependence writes:

TA,CMB(ν) ∝
(hν/kTCMB)

2 exp(hν/kTCMB)

(exp(hν/kTCMB)− 1)2
, (34)

where h is the Planck constant, k the Boltzmann constant,
TCMB = 2.726K.

The simulation of the diffuse Galactic emissions is based
on Miville-Deschênes & Boulanger (2007) and implemented
by the Planck working group on Component Separation.
The starting point towards building the synchrotron emis-
sion template is an extrapolation of the 408 MHz map of
Haslam et al. (1982) from which an estimate of the free-
free emission has been removed. Due to the poor resolution
of the Haslam map (52 nominal arcmin) small structures
have been artificially added using the procedure presented in
Miville-Deschênes & Boulanger (2007). The fraction of po-
larization is derived from a model of the magnetic field in-
cluding spiral and turbulent components based on WMAP
5yr results. On large scales (> 5 deg) the polarisation an-
gle is WMAP constrained; on smaller scales it relies on the
Galactic magnetic field model. The spectrum, in antenna
temperature, is assumed to follow a power law:

Table 1. Central frequencies, ν, and angular resolutions for the
Planck channels considered in the present study

ν (GHz) 30 44 70 100 143 217 353

FWHM (arcmin) 33 24 14 9.5 7.1 5.0 5.0

TA,synch(ν) ∝ ν−βs , (35)

where the synchrotron spectral index βs varies with the po-
sition on the sky. To this aim, we use the map of spectral in-
dices given by Giardino et al. (2002). This map shows struc-
tures on scales of up to 10 degrees, with βs varying from 2.5
to 3.2 (see the top panel of Fig. 1).

The simulation of the polarized thermal dust emission is
based on model 3 of Finkbeiner et al. (1999). This model ex-
trapolates the 100µm brightness map (Schlegel et al. 1998)
assuming grey body spectra:

TA,dust(ν) ∝
νβd+1

exp(hν/kTdust)− 1
, (36)

with Tdust = 18K and spatially varying emissivity index βd,
obtained from the map of 100/240 µm flux density ratios
published by Schlegel et al. (1998). The map of βd shows
structure down to arcminute scales (see the bottom panel of
Fig. 1) with βd varying from 1.44 to 1.6. The polarized inten-
sity is obtained multiplying the brightness map by a polar-
ization fraction map extracted from WMAP 5yr data with
the help of the model of the previously mentioned Galac-
tic magnetic field model. In this simulation the polarization
fraction is not frequency dependent.

Component maps have been produced at central fre-
quencies of all Planck channels. They are then co-added
and smoothed with nominal Gaussian beams (see Table
1). A white inhomogeneous noise is synthesized using the
block diagonal part of the predicted noise covariance matrix
given the Planck nominal integration time (14 months)
and scanning strategy. The correlation between noise in dif-
ferent Stokes parameters for each pixel has also been re-
produced. This dataset has been complemented with the
simulated WMAP 23 GHz map after 5 years of survey. This
map has a resolution of 58 arcmin and the noise is simulated
starting from the diagonal noise covariance provided by the
WMAP team (http://lambda.gsfc.nasa.gov). This ancillary
product is used to help tracing the low frequency foreground
component for the CCA run, as described in § 5.

5 ESTIMATING THE MIXING MATRIX
PARAMETERS AND ERRORS WITH CCA

We applied both pixel and harmonic domain CCA to the
polarized Planck simulations described in the previous sec-
tion (7 frequencies from 30 GHz to 353 GHz), with and with-
out the ancillary 23 GHz WMAP channel. For the harmonic
domain version we use the channel maps at their native reso-
lution. In the application to polarized data we perform sep-
arated runs of the Q and U maps so the c(ℓ̂) in eq. (18)
simply represent cross-power spectra. We can evaluate the
local mixing matrix using both information from Q and U
maps. In practice, due to the lower foregrounds signal in
the U maps,the mixing matrix is basically defined by the Q
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maps analysis only. The application of pixel-domain CCA
requires that all the channel maps have the same resolution.
Thus we preliminarily degraded the maps to the resolution
of the lowest frequency channel (33 arcmin to work with
Planck data only, 58 arcmin to include WMAP 23 GHz
channel) convolving the maps with a Gaussian beam. The
data model includes three diffuse components: CMB, syn-
chrotron and thermal dust, parameterized as in eqs. (34),
(35) and (36) respectively. We estimated two free parame-
ters, the synchrotron and the dust indices, which were al-
lowed to vary in the ranges 2.3 6 βs 6 3.5 and 1. 6 βd 6 2.5,
while we kept Tdust = 18K. We note that we do not explic-
itly account for any modeling error in our analysis, as the
mixing matrix parametrization assumed by CCA exactly re-
flects the one exploited for the data generation. Thus, the
only systematic error is given by the assumption that the
spectral properties are constant within sky patches. Includ-
ing the effect of an imperfect modeling is beyond the scope
of this paper, whose goal is to evaluate CCA performances
per se. The problem was addressed in Bonaldi et al. (2007)
where several models for the anomalous emission were tested
for the analysis of WMAP temperature data with CCA. In
any case, we believe that such model uncertainties should
be less severe in polarization.

The choice of the patch size for the CCA run is a trade-
off between the need to have uniform foreground properties,
which calls for small patches, and the need to have enough
statistics, which calls for bigger ones. The latter is obvi-
ously related to the instrumental resolution of the data, as
the statistics is ultimately determined by the number of res-
olution elements in the considered region of the sky. In the
case of harmonic-domain CCA we have the additional con-
straint of the maximum patch size allowed by the planar
approximation. However, the possibility of this version of
CCA to handle frequency-dependent instrumental beams,
and thus to exploit the full resolution, generally allows the
use of smaller patches compared to pixel domain CCA. In
this work we divide the sky in square patches for both pixel
domain and harmonic domain CCA. The pixel based version
does not suffer of any constraint regarding the shape of the
patch. The current harmonic version instead can work only
on square regions. We adopt a patch size of 40◦ × 40◦ for
pixel-domain CCA, of 30◦ ×30◦ for harmonic-domain CCA.
The centers of the patches are equally spaced in latitude and
longitude with shifts of 3◦, up to a maximum central lati-
tude of ±30◦ so that we have 2520 patches in the sky. This
helps us to build a smooth spectral index map and allows
a more localized spectral index estimation, as described in
§ 6. Moreover this provides the redundancy needed for error
estimation as described in § 3.3.2, for which we considered
samples of patches overlapping by more than 60%. We note
however that this purely geometrical partition of the sky is
not driven by any astrophysical reason. If we could achieve
a partition that maximizes the uniformity of the spectral
properties within each patch, the CCA estimation would be
more accurate. The full run took ∼ 10 hours on a parallel
machine at NERSC using 120 processors. Convergence has
been reached in ∼ 80% of the patches for pixel domain CCA
and ∼ 90% of the patches for harmonic domain CCA.

5.1 Evaluation of the results

5.1.1 Actual errors on parameter estimation

Ideally, to evaluate the quality of CCA results we should
compare the true synchrotron and dust spectral indices with
the estimated ones for each position in the sky. However,
CCA only provides spectral indices per patch, and the true
spectral indices in general vary within the patch. Thus we
computed:

∆p = p̄− p̂, (37)

where p̄ = [β̄s, β̄d] are the flux weighted averages of the true
parameters over the patch and p̂ = [β̂s, β̂d] are the esti-
mates provided by CCA. This choice for the “true” spectral
indices per patch seems to be the most appropriate because
the CCA results mostly reflect the spectral properties of
the brightest foreground structures in the considered patch.
Such bright structures are obviously those that need to be
more accurately removed to produce a clean CMB map. In
any case, a systematic difference is expected because the
“true” mean spectral indices and the ones recovered by CCA
have somewhat different meanings.

In Fig. 2 we show for each parameter and for both
pixel domain and harmonic domain CCA the distribution
of “true” errors for the full sample of patches obtained from
simulated Planck Q maps with and without the simulated
WMAP 23 GHz channel. Table 2 reports the offset (from
zero) of the mean and the standard deviation of a gaussian
fit computed for each histogram. We note that the offset is
in some cases comparable with the rms; this systematic error
is induced by the spatial variability of the true indices, as
mentioned above. We verified that, once we adopt spatially-
uniform spectral indices for the data generation (βs = 2.9
and βd = 1.7), the offset disappears while the width of the
distributions is almost unchanged. Errors in the recovery of
the synchrotron spectral index are bigger than those for the
dust. This is due to the fact that the dust component is
much better traced by the frequency coverage of Planck.
The inclusion of the WMAP 23 GHz channel almost cancels
the offset from zero of the mean error on the synchrotron
spectral index for harmonic domain CCA, while slightly in-
creasing the rms value (see Table 2). For pixel domain CCA
the advantage of a broader frequency range yielded by the
inclusion of the 23 GHz map is more than compensated by
the degradation of the resolution of the whole data set; as a
result, both the mean offset and the rms value of errors some-
what increase. In the following we only consider the results
obtained with Planck maps alone for pixel domain CCA,
and with Planck+23GHz data for harmonic domain CCA.
The rms errors in the synchrotron and dust spectral indices
are 0.08 and 0.019 respectively for pixel domain CCA, 0.045
and 0.009 respectively for harmonic domain CCA. Thus the
harmonic domain CCA performs better than the pixel do-
main version.

5.1.2 Actual versus estimated errors

As illustrated by Fig. 3 the errors estimated via the marginal
distribution method (§ 3.3.1.) are well correlated to the
“true” errors above ∆βs ≃ 0.05 or ∆βd ≃ 0.01. When the es-
timated errors are small, the “true” errors are small as well,
although the two quantities are not correlated. This is due
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Figure 2. Distribution of errors in the recovery of synchrotron (left) and dust (right) spectral indices for the full sample of sky patches
using only the simulated Planck maps (grey) and adding the simulated WMAP 23 GHz map (black). Top: pixel domain CCA; bottom:
harmonic domain CCA

Figure 3. Absolute values of estimated vs actual error on synchrotron (left) and dust spectral index (right) for the harmonic domain
CCA; error estimation through the marginal distribution method. Dots are the values for individual patches, squares and error bars are
the median values and quartiles computed for groups of 100 points, respectively

.

Table 2. Offsets of the mean and rms values for the error distri-
butions in Fig. 2 (Planck dataset/Planck + 23 GHz data set)

offset rms

Synchr. Pixel CCA -0.009/0.016 0.080/0.107
Harmonic CCA -0.027/0.002 0.036/0.045

Dust Pixel CCA -0.005/-0.004 0.019/0.022
Harmonic CCA 0.005/0.003 0.010/0.009

to the effect of noise which hampers the calculation of the
marginal probability distribution with sufficient accuracy.
The largest errors are moderately underestimated; this is
not particularly worrisome however, since large errors corre-
spond to regions where the foreground signals are very weak
and can be removed with sufficient accuracy adopting the
mean parameter values determined in the rest of the sky.
The spatial redundancy error estimation method (§ 3.3.2)
applied to both pixel and harmonic CCA yields estimated
errors systematically lower than the “true” ones. However,
the latter are well matched by the third quartiles of the
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Figure 4. Rms errors in the estimation of spectral indices as
a function of Galactic latitude. Solid lines: full sample; dashed
lines: final sample obtained with spatial redundancy error esti-
mation method; dotted lines: final sample obtained with marginal
distribution error estimation method. The errors increase at high
Galactic latitudes, where the foreground signal are weak and there
removal is therefore not a critical issue.

distribution of estimated errors. As expected, the spatial re-
dundancy method performs better for the harmonic than for
the pixel domain CCA, thanks to the higher spatial resolu-
tion (30◦ × 30◦ versus 40◦ × 40◦ patches).

Despite the non-idealities mentioned above, errors es-
timates produced by both methods are good enough to be
exploited in the next step of our pipeline. In the following
analysis we will restrict ourselves to values of each spectral
index β within the range |∆̂β| < µ∆̂β + σ∆̂β , where ∆̂β is
the estimated error on β and µ∆̂β and σ∆̂β are the mean
and the standard deviation of the estimated errors over all
the patches. This set of values constitutes the final sample.
Figure 4 compares the rms values of the actual estimation
errors as a function of Galactic latitude for both the full
and the final sample, showing that indeed this procedure
removes the most discrepant values. As already pointed out
by Bonaldi et al. (2007), the performance of CCA is highly
dependent on the intensity of the foreground signal in the
considered patch. Estimations of the spectral parameters are
better close to the Galactic plane and worsen with increas-
ing Galactic latitude where, however, the foreground signals
are anyway very weak and their removal is therefore not a
critical issue. Our method allows us to flag the worse esti-
mates and to replace them with average values determined
in the rest of the sky.

6 BUILDING FULL-SKY MAPS OF
SPATIALLY-VARYING SPECTRAL INDICES

The information on spectral parameters provided by CCA
for sky patches can be combined to build full-sky maps
of the estimated, spatially-varying spectral indices, and
the associated estimation error maps. We use the Healpix
(Górski et al. 2005) pixelization, with resolution parame-
ter NSIDE=64, corresponding to pixel areas of about 1

Figure 5. Dependence of the weight w1 on the distance from the
patch center normalized to half of the patch size ∆

square degree. Let us consider the component p (e.g. the
synchrotron spectral index) of the parameter vector p. Due
to the partial overlap of sky patches, the j-th pixel of the
Healpix map, whose position on the sky is centered at rj,
belongs to several different patches for each of which we
have obtained an estimate of p. We can therefore compute a
weighted mean of the values of the parameter pj and of the
error ∆pj as follows:

pj =

∑N

i=1
p(ri) · w1(ri, rj) · w2(ri)∑N

i=1
w1(ri, rj) · w2(ri)

, (38)

∆pj =

∑N

i=1
∆p(ri) · w1(ri, rj)∑N

i=1
w1(ri, rj)

, (39)

where the sum is over all patches in the final sample, defined
in § 5.1.2, and w1 and w2 are weight functions. The former,
w1(ri, rj), depends on the distance between the j-th pixel
and the center of the i-th patch, ||ri − rj ||, normalized to
the half size of the patch, ∆/2. We used the function shown
in Fig. 5, equal to 1 for ||ri− rj || ≪ ∆/2, and equal to 0 for
||ri − rj || >∼ ∆/2. The weight w2(ri) = w2(∆p(ri)) depends

on the estimated error for the i-th patch trough the relation:

w2(ri) = 1−
∆p(ri)

max(∆p(ri))
, (40)

approaching 1 as ∆p(ri) → 0 and approaching 0 when
∆p(ri) → max(∆p(ri)), max(∆p(ri)) being the maximum
error estimated for the final sample.

We can associate to the j-th pixel of the Healpix map,
whose position on the sky is rj, the parameter pj and the
error ∆pj as follows:

Our spectral index and error maps are undefined in re-
gions, mostly at high Galactic latitudes (|b| > 30◦), where
the Galactic emissions are too low and the CCA cannot
produce reliable estimates of their spectral parameters. For
these regions we have adopted the mean values of the pa-
rameters found for the rest of the sky, using a smoothing
function to soften edge effects.
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Figure 6. Distribution of residual (true-estimated) synchrotron (left) and dust (right) spectral index maps in the latitude range −30◦ <

b < 30◦. The pixel size used is ∼ 0.84 square degree (nside 64). Top: pixel domain CCA; bottom: harmonic domain CCA.

6.1 Evaluation of the quality of the results

To evaluate the quality of the maps of estimated spectral pa-
rameters, we looked at the residual spectral index maps. To
compute those maps, we regridded the true input spectral
index maps to NSIDE=64, the resolution of the estimated
maps. In Fig. 6 we show the distributions of residuals (true
minus estimated spectral indices) with a Gaussian fit su-
perimposed. The histograms only contain the pixels in the
latitude range −30◦ < b < 30◦ where the spectral indices
have been estimated. Overall, the results are encouraging.
Again the harmonic domain CCA works better than the
pixel domain version for both dust and synchrotron spectral
parameters. Both approaches give negligibly small mean off-
sets from the true values, but the harmonic CCA has smaller
dispersions of the residuals (σs ≃ 0.08, σd ≃ 0.01) than the
pixel domain CCA (σs ≃ 0.11, σd ≃ 0.02).

7 RECONSTRUCTION OF THE
COMPONENTS WITH GLS

Having shown that the harmonic domain CCA is superior
to the pixel domain version, we have used its estimates of
synchrotron and dust spectral indices to build the spatially-
varying mixing matrix H and the reconstruction matrix W
given by eq. (32). To recover each emission component we
have applied the reconstruction matrix [see eq. (11)] to the
simulated data for Planck channels in the frequency range
from 70 to 217 GHz, where the CMB is the least contam-
inated by foreground emissions. On the other hand, just
for the same reason, this frequency range is not optimal

for the recovery of foreground emissions. All the maps were
smoothed to the resolution of the 70 GHz channel (14 ar-
cmin FWHM). We also performed a run at a 60 arcmin res-
olution to reduce the contribution of instrumental noise, so
that we can better appreciate the effect of component sep-
aration errors on the reconstructed maps. Besides the com-
ponent maps [eq. (11)], we also computed the variance due
to instrumental noise [eq. (33)] and to residual foreground
contamination. The latter is estimated by propagating the
errors on the mixing matrix parameters to the separated
components as descibed in § 3.5. In particular we assume
that the spatial correlation of separation errors in the spec-
tral index in each pixel are the same as those in the spectral
index map itself. Thus, in order to evaluate and propagate
the error in the outputs, we construct Monte Carlo varia-
tions of the estimated spectral index maps. In doing this,
we further simplify our treatment by only taking into ac-
count the two-point correlation function of the map.

Therefore, if βs and βd are the maps of the esti-
mated synchrotron and dust spectral indices respectively,
and errβs, errβd the corresponding estimated error maps,
for the i-th run we obtain the perturbed spectral index maps
βis and βid as follows:

βi
s = βs +∆s · errβs (41)

βi
d = βd +∆d · errβd,

where ∆s and ∆d are two maps with zero mean and unit rms
synthesized from the 2-point correlation function extracted
from the corresponding estimated spectral index map.

For each set of fake spectral index maps obtained
through eqs. (41) we performed the source reconstruction
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Figure 7. Correlations between the true and the reconstructed Q and U maps of Galactic components for ≃ 1◦ pixels. Upper left
panel: dust Q (correlation coefficient ≃ 0.99); upper right panel: synchrotron Q (correlation coefficient ≃ 0.85); lower left panel: dust U

(correlation coefficient ≃ 0.98 ). The synchrotron U (lower right panel) was not detectable.

Figure 8. True rms fluctuations of input polarized components
at the reference frequency of 70 GHz as a function of Galactic
latitude for a 60′ resolution (solid line) compared with estimated
error due to instrumental noise (dashed line) and estimated er-
ror due to residual contamination for the marginal distribution
(dotted line) and spatial redundancy (dashed-dotted line) error
estimation methods. Upper panels: Q Stokes parameter; lower
panels: U Stokes parameter.

by GLS, thus obtaining as many sets of output components.
We computed the variance due to separation for a certain
component as the variance of all the results for that compo-
nent.

In Fig. 8 we show for all the components reconstructed
with 60′ resolution the rms of the true input component
as a function of Galactic latitude, compared to the σ due to
noise and imperfect separation, computed from the variances
output by our method. Even at this low resolution instru-
mental noise dominates except close to the Galactic plane
where the S/N ratio is ∼ 10. The error estimation yielded
by the marginal distribution method is more conservative
than the one obtained with spatial redundancy method; the
two estimates typically differ by 30%.

7.1 Quality of the reconstructed component maps

In Fig. 7 we compare the recovered Q and U maps of
synchrotron and dust emission with NSIDE=64 (resolution
≃ 1◦). The agreement is almost perfect for dust (correlation
coefficient of 0.98–0.99), and very good for the synchrotron
Q (correlation coefficient of 0.85). The synchrotron U map
could not be reconstructed because of the very low S/N ratio
(see Fig. 8) due to the choice of frequency channels, that left
out the low frequency ones (30 and 44 GHz, and WMAP 23
GHz) where the synchrotron is much stronger.

As another figure of merit, we computed the normalized
correlation multipole by multipole between the true and re-
constructed map:

〈Ccross
ℓ 〉2

〈Ctrue
ℓ

〉〈Cstim
ℓ

〉
, (42)

where Ctrue
ℓ and Cstim

ℓ are the auto-spectra of the true and
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Figure 9. Cross spectra [eq. (42)] between the true and the reconstructed component for dust (left) and synchrotron emission (right).

Figure 10. True and reconstructed maps for dust (top) and synchrotron emission (bottom).

the reconstructed component, and Ccross
ℓ the cross-spectrum

between the two. Figure 9 shows that, for dust, the cross-
correlation is close to unity on all the relevant scales. The
same is true for synchrotron, on scales larger than a few de-
grees; on smaller scales the correlation drops because the in-
strumental noise dominates. In Fig. 10 we show the compar-
ison between the true and the reconstructed Q synchrotron
and dust emission maps.

7.2 Assessment of the component separation
error estimations

As outlined above, our method outputs two rms error maps,
one for instrumental noise and the other for component sep-
aration errors. The actual error map for each component is
simply computed as the residual map, i.e. the difference be-
tween the reconstructed map of a component and the true
one at the same resolution. This residual map contains both

noise and component separation errors, and thus has to be
compared to the global estimated error map, obtained sum-
ming the variances of the two estimated contributions.

In Fig. 11 we show the standard deviations of the resid-
uals as function of Galactic latitude (diamonds) compared to
the total error yielded by both our error estimation methods
for the 60 arcmin resolution (lines). The results are gener-
ally very good, as the total error is correctly predicted. On
the other hand, since we are generally noise dominated, this
figure cannot tell much about the goodness of our compo-
nent separation error estimates, except for dust close to the
Galactic plane, where the error estimate turns out to be very
successful. We note however that, as we are using a linear
estimator [eq. (11)] to reconstruct the components, our fi-
nal results can be decomposed into a noiseless term, only
affected by component separation errors, plus a noise term:

ŝ = Wy = W[Hs] +Wn. (43)
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Figure 11. Comparison of true (diamonds) and estimated rms errors as a function of Galactic latitude at 70 GHz for Q (upper panels)
and U (lower panels) maps. Dotted lines: marginal distribution method (§ 3.3.1); dot-dashed lines: spatial redundancy method (§ 3.3.2).

Figure 12. Noiseless case: comparison of true (diamonds) and estimated rms errors as a function of Galactic latitude at 70 GHz for
Q (upper panels) and U (lower panels) maps. Dotted lines: marginal distribution method (§ 3.3.1); three dots-dashed lines: spatial
redundancy method (§ 3.3.2). At high Galactic latitudes, where both our methods overestimate the component separation errors, such
errors are irrelevant compared to uncertainties due to instrumental noise.
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Figure 13. Full-sky Q (left) and U (right) CMB maps obtained by CCA for the noiseless case.

Here Hs is a noiseless dataset, obtained exactly as described
in § 4 but without adding noise. By combining the noise-
less dataset with the same reconstruction matrix estimated

in the noisy case, we obtain a set of reconstructed compo-
nents having the same component separation errors as be-
fore, but without noise. This allows us to test the quality of
component separation error estimates. The results, shown
in Fig. 12, are very encouraging. Even if component separa-
tion errors are in general highly subdominant, the marginal
distribution error estimation method is able to correctly es-
timate them at low and intermediate Galactic latitudes (at
high Galactic latitudes the component separation errors are
overestimated but are anyway irrelevant compared to errors
due to noise). On the other hand the spatial redundancy er-
ror estimation method is occasionally underestimating the
true errors at low latitude. In Fig. 13 we show, as an exam-
ple, the CMB Q and U reconstructed maps in the noiseless
case. A visual inspection does not reveal the presence of
residual Galactic contamination except for a tiny strip on
the Galactic plane.

8 CMB POWER SPECTRUM ESTIMATION

To assess the quality of the Stokes Q and U CMB maps
obtained with the CCA component separation we compare
their estimated angular power spectra (APS) to the input
model used to generate the simulation. In doing so we prop-
agate to the power spectra the component separation errors
described above. We employ the ROMAster code, a pseudo-
Cℓ estimator based on MASTER approach (Hivon et al.
2002) and extended to cross-power spectra (Polenta et al.
2005) and polarization (see e.g. Kogut et al. 2003, for a
similar formalism). It is well known that the pseudo Cℓ
approach to the CMB power spectrum estimation is sub-
optimal for the lowest multipoles where other techniques are
more appropriate (see, e.g., Gruppuso et al. 2009). However,
a pseudo-Cℓ estimator is enough for our purpose of assessing
the quality of the reconstructed CMB polarization maps in
the presence of noise and component separation errors.

We exclude from the analysis the regions that are most
contaminated by residual foreground contributions as esti-
mated in the previous section. For this purpose we build a
mask based on our reconstruction errors, flagging all pixels
where the sum of the variance errors on the CMB Q and

U maps is greater than the mean value of the same quan-
tity across the whole map. The resulting mask is shown in
Fig. 14 and excludes less than 10% of the sky.

Having only one final map per astrophysical compo-
nent, we do not rely here on a cross spectrum analysis but
on an auto-spectrum approach. This is rather general, and
achieves a lower final noise variance than the cross spectrum
approach (see, e.g., Polenta et al. 2005). The drawback is
that we need to model and subtract a noise bias in the data.
To this extent, we computed the noise bias on the CMB EE
power spectrum by means of 1000 simulated noise maps. To
obtain each of them, we simulated one noise map for each
channel included in the reconstruction of the CMB (70, 100,
143 and 217 GHz), equalized the resolution of all channels to
14′, and combined them with the reconstruction matrix W
as described in the previous section. ROMAster uses these
Monte Carlo data to subtract the noise bias, as well as to
estimate errors on the APS due to noise by computing the
empirical variance of the realization.

To compute the error bars due to residual foreground
contamination, we produced a further set of 100 CMB maps
by perturbing the input spectral index maps as described
in the previous section. For each of them we repeated the
computation of the power spectrum and corrected for the
noise bias, relying for the latter purpose on a smaller (∼ 10)
set of noise-only maps. The noise bias has been estimated
each time with the reconstruction matrix used to obtain
the corresponding CMB map. Even if quite computation-
ally demanding, this procedure is needed because we are in
the noise-dominated regime, and a small error in the noise
bias can substantially affect the estimation of the polarized
power spectrum. Once we got our 100 unbiased CMB power
spectra, we finally computed the errors due to component
separation as the standard deviation of the sample for each
considered multipole bin.

In Fig. 15 we show the noise and the component sep-
aration error bars compared to the EE power spectrum of
the fiducial model. As we can see, the noise contribution is
dominating even on the smallest multipoles over the com-
ponent separation error, which is at most a small correction
to the error budget. In Fig. 16 we show the EE power spec-
trum estimated in a realistic Planck case (diamonds); the
1σ errors are shown by the shaded area. The results for the
noiseless case (squares with the component separation error
bars) show that the accuracy of our estimation of the power
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Figure 14. Mask used for the computation of the EE power
spectrum, excluding 9% of the sky on the basis of the estimated
variance due to component separation on the CMB Q and U
maps.

Figure 15. EE power spectrum of the input model (solid) com-
pared to the rms errors due to noise (dot-dashed line), separation

(dashed line) and total (solid line). The dotted line represents the
associated cosmic variance error.

spectrum is not limited by component separation but rather
by the effect of the noise. The overall quality of the recovered
spectrum is impressive, especially when compared to the to-
tal Galactic emission at 70 GHz, shown on top of the plot.
Although a discussion on the detectability of CMB B-modes
is beyond the scope of this paper (see Betoule et al. 2009;
Efstathiou & Gratton 2009, for recent analyses), we briefly
address here the potential of the CCA in this respect. An
interesting point, raised by Efstathiou et al. (2009), is that
some foreground subtraction methods, such as the ILC, are
not well-suited for applications to B-mode detection, as they
introduce an offset caused by the dominant E-mode polar-
ization pattern which prevents estimating B modes even in
absence of noise. To check whether this also applies to our
component separation pipeline, we estimated the CMB B-
mode power spectrum from the CMB maps recovered by
the CCA in the noiseless case. It is important to note, how-
ever, that this cannot be really considered as the application
of our pipeline to an ideal (noiseless) experiment because,
while the component reconstruction has been made by set-
ting to zero the noise term in eq. (43), the spectral param-
eters going into the reconstruction matrix used to perform

Figure 16. Recovered EE power spectrum in the realistic Planck
case (diamond) and 1σ uncertainties (shaded area); recovered EE
power spectrum in the noiseless case (squares) with 1σ compo-

nent separation error bars; EE input CMB map (gray solid line).
On top of the plot we also show, for comparison, the total Galac-
tic emission of our simulation at 70 GHz (solid line); the dashed
line includes the effect of the 70 GHz Planck noise.

component separation are those estimated by assuming the
real pre-flight estimates of Planck noise level for the nomi-
nal mission duration (14 months). The errors on foreground
spectral parameters, and therefore those on the recovered
CMB map, are thus substantially larger than those expected
for an ideal noiseless experiment.

The results are shown in Fig. 17. For the tensor to scalar
ratio adopted in the simulations (r = 0.1), our component
separation method proves to be capable of recovering the
B-mode power spectrum over a quite broad multipole range
without any noticeable spurious feature due to residual fore-
ground contamination or to cross-correlation with the E-
mode. Note that the error bars due to component separation
shown in Fig. 17 are estimated in the presence of noise while
the CMB recovery is made using noiseless maps. Since the
noise dominance will be much stronger for the B-mode than
for the E-mode, the subtraction of the noise bias will be a
very delicate and computationally demanding, but concep-
tually easy, operation.

9 CONCLUSIONS

We presented and tested on realistically simulated Planck

polarization data a pipeline for component separation based
on the CCA method (Bedini et al. 2005; Bonaldi et al. 2006,
2007). This method exploits the data statistics to estimate
the frequency behaviour of the diffuse components superim-
posed to the CMB, described in terms of a limited set of
parameters, which in our case are synchrotron and thermal
dust spectral indices.

The most recent harmonic domain version of CCA
proved to be even superior to the original pixel domain one,
which however gave very good results for simulated Planck

(Bonaldi et al. 2006; Leach et al. 2008) and WMAP data
(Bonaldi et al. 2007) temperature data. As another improve-
ment, we worked out a method to combine the results ob-
tained with CCA on several regions of the sky to provide
spatially-varying maps of spectral indices, with rms errors
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Figure 17. Recovered B-mode power spectrum in the noiseless
case (squares with 1σ component separation error bars) compared
with the input model (solid line).

of only 0.015 for the dust component and of 0.08 for the
synchrotron component, exploiting polarization data only
(Planck plus the WMAP 23 GHz channels).

Perhaps the most important new result of this paper is
the elaboration, for the first time, of successful methods for
estimating component separation errors. We presented two
alternative error estimation methods for the CCA, relying on
completely different assumptions (one is based on studying
the marginal probability for each parameter estimated, the
other on the redundancy of results for different patches of
the sky) so that they can also be used to cross-check the
results. A first application of these methods allowed us to
identify the most uncertain values of the parameters and to
compute the appropriate weights to be used to combine the
estimates in different regions of the sky to build a smooth
map of foreground spectral indices.

The components were reconstructed with a Generalized
Least Square (GLS) solution in pixel space, which allowed us
to fully exploit the spatially-varying information obtained.
Even if the choice of the channels used in the reconstruction
is optimized for the CMB, we were able to reconstruct a
very accurate dust polarization map (correlation coefficient
∼ 1 with the input maps). Errors in the estimation of the
foreground spectral indices were successfully propagated to
the foreground maps. They turned out to be well below those
due to instrumental noise, except for the dust component
close to the Galactic plane.

As for the CMB, we used ROMAster to estimate the
polarization E-mode power spectrum from the reconstructed
CMB map and found negligible effects by the residual fore-
ground contamination even masking only 10% of the sky.
Again the component separation errors, propagated to the
power spectrum, were found to be subdominant with respect
to noise. We also showed that our component separation
method can be useful to tackle B-mode detection, once the
experimental noise level allows it.
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Jonas J. L., Tauber J., 2002, A&A, 387, 82
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