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An explicit Wigner formulation of Minkowski particle states for noninertial observers is unknown. Here,
we derive a general prescription to compute the characteristic function for Minkowski-Fock states in
accelerated frames. For the special case of single-particle and two-particle states, this method enables one to
derive mean values of particle numbers and correlation function in the momentum space, and the way they
are affected by the acceleration of the observer. We show an indistinguishability between Minkowski
single-particle and two-particle states in terms of Rindler particle distribution that can be regarded as a way
for the observer to detect any acceleration of the frame. We find that for two-particle states the observer is
also able to detect acceleration by measuring the correlation between Rindler particles with different

momenta.
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I. INTRODUCTION

We investigate the general expression of the characteristic
function [1,2] for particle states emitted in a Minkowski
space-time and registered by an accelerated observer.
The aim is to provide a comprehensive description for
Minkowski-Fock states in noninertial frames [3].

In a recent paper [4], Ben-Benjamin, Scully, and Unruh
reported the Wigner distribution for Minkowski-Fock states
in the right and left Rindler wedges. However, to the best of
our knowledge, the case of the right Rindler wedge—i.e., as
the result of the partial trace over the left wedge—is still
missing.

The characteristic function of any state can be used to
obtain expectation values through simple derivatives.
However, computing the characteristic function in the
Rindler space-time requires a series of nontrivial theoretical
properties arising from the transformation of the state from
the inertial to the accelerated frame. Here we show that
these rules can be formulated in a way such that one can
build algorithmically a general expression of states with
arbitrary number of particles. We also give a diagrammatic
representation of the characteristic function resulting from
our combinatorial method.
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As an application of the general methodology, we
consider single-particle and two-particle states and extract
the probability distribution to find a Rindler particle with a
specific momentum and the correlation between Rindler
particles with different momenta. We also provide some
examples with Gaussian-like wave functions.

The probability distribution and the correlation function
changes from an inertial to an accelerated frame. For
specific choices of wave functions, the single-particle
probability distribution becomes indistinguishable from
the two-particle case, at variance with what happens in
the Minkowski space-time. While in the case of single-
particle states the correlation between different momenta
has the same form in both the Minkowski and the
Rindler space-time—with the exception of the vacuum
correlations—in the case of two-particle states they differ.
This suggests a way to distinguish between single-particle
and two-particle states for noninertial observers. This also
implies that one can exploit Minkowski two-particle states
to measure the acceleration of the observer.

The paper is organized as follows. In Sec. II we show the
general expression of the characteristic function for general
Minkowski-Fock states. In Sec. III we briefly describe the
method to obtain the characteristic function. Both the
solutions and the method are provided in the 1 + 1 dimen-
sional case, while arguments for the possibility to extend
the same results in 3 + 1 dimensions are given in Sec. IV.
Sections V—VII report the application to the case of single-
and two-particle states, including the explicit characteristic
function, the observable quantities, and the example of
Gaussian wave functions. Conclusions are drawn in
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Sec. VIII. Full details for the analytical results are given in
Appendixes A and B.

II. GENERAL EXPRESSION OF THE
CHARACTERISTIC FUNCTION

By following Fulling, Davis, and Unruh [5-7], we consider
a (1 4 1)-dimensional flat space-time (¢, x) and a massless
free scalar field ¢(z, x). The accelerated frame with accel-
eration ac? > O—where ¢ is the speed of light—can be
described by a coordinate patch (T'g, X) with the following
coordinate transformation: act = exp(aXg) sinh(acTy) and
ax = exp(aXpg) cosh(acTy). Such transformation covers the
right Rindler wedge, defined by x > c|#|. The left Rindler
wedge (defined by x < —c|#[) can be covered by the
transformation act=exp(—aX,)sinh(acT;) and ax=
—exp(—aX; )cosh(acT ). We define a(k) as the annihilation
operator for the Minkowski mode with momentum k, and
by (K) (bg(K)) as the annihilation operators for the left (right)
Rindler mode with momentum K.

Minkowski-Fock pure states |w) are elements of the
a(k)-algebra representation space and they can also be
represented as elements of the b r(K)-algebra representa-
tion space through mixed states p of the right-Rindler-Fock
space by using the following procedure. We write any |y)
as a combination of chains of creator operators &' (k) acting
on the Minkowski vacuum state |0,;):

lw) = wlnln), (1)

where w|[n] is the probability amplitude to find |y) in the
following non-normalized Minkowski-Fock state

in) = [T1a" (01" ®loy) @)
k
and the sumin Eq. (1) can be identified with a generalized sum
—i.e., both discrete sums and integrals—over all Minkowski-
Fock states. a'(k) operators can be converted in Rindler
creation 52, #(K) and annihilation b; (K) operators thanks
to the following Bogolyubov transformation [8]:

ak) = / " dK[ak, Kb, (K) - B (k. K)B} (K)

+a* (k, K)bg(K) = p(k, K)bj(K)], (3)

with
a(k,K) = 6(kK) \/§F(k K), (4a)
p(k,K) = 0(kK) \/§F(—k, K), (4b)

Flc) = 5 ()

2rwa a

k|

a

K : p
X exp (zgln + sign(k) ZK> (4c)

and # = 2x/a. Moreover, |0,,) can be written as an element

of the Rindler-Fock space—i.e., b, p(K)-algebra represen-
tation space—thanks to the following identity:

|0y) x exp (/_+°o dK exp <—§|K|)

« z;zuqz;;(m) 0., 08), (5)

which in turn is the result of the definition a(k)|0,,) = 0 and
the Bogolyubov transformation of Eq. (3). Equations (1), (3),
and (5) allow us to represent |y) as an element of the Rindler-
Fock space. Finally the partial trace over the left wedge can be
performed in order to obtain p:

p = Trolw)wl. (6)

In the specific case of Minkowski vacuum state
lw) = 10,), the statistical operator p is identified by the
following thermal state [7]:

o X[ [ ke[ @)
where, in this case,
n) = T J1BR(K)"™ |0, Og). (8)

An equivalent representation for Minkowski-Fock states
in the accelerated frame can be made through the following
definition of characteristic function in the right-Rindler
space-time [3]:

yPEE]=Tr(pD,[£. &), 9)

where £ = £(K) is a complex function, p can take values
—1, 0, and +1 and

D,£.&] = exp < /_ :° dK {5(1()13,?(1()

- (b0 + S1e(P) ). (10

Specifically for p = —1
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D_[£.&] = exp (— / :" dKf*(K)%(K))

X exp (/_:" ng(K)B};(K)). (11)

In the present paper we show how to obtain an explicit
expression for y(? [5 &*]. The result is the following:

Zw

7RO U)E e = 1P

Pige] = (K(n), K(n))[¢, &), (12a)

£, c(U\S, U\S))

x [[{i-Lmle e [ L)ie &,

s'cu’
kesS K'eS'

(12b)

where K(n) is the space of momenta k repeated n(k) times
and the sum of Eq. (12b) runs over all the possible subsets
SCU and §' CU'. The coefficients c(U\S,U'\S') of
Eq. (12) have the following combinatoric expression:

c({k; }z 1 {k; j‘v=1) = 5MNZH5(ki - k;D(i))’ (13)
P

where {k;}}1, and {k}}}_, are any arbitrarily ordered
sequence of elements in U\S and U'\S' and the sum runs

2018w &l = xS E)> wlnly (0] Y

nn' SCK(

where )(é’j}[fM,fj‘u] is the characteristic function of
|047) (04| in the Minkowski space-time

A i = Tr(|oM><oM| exp ( [ [rsM(k)a*(k)

&,y +§|5M<f;;2])), (18)

with the following explicit form:

e =ew ([ kP TR ). (9

By comparing Eq. (17) with Eq. (12) it is possible
to see that the transformation of the characteristic func-
tion from the Minkowski to the right-Rindler space-

time ;(M [fM,fM] > y\P)[£,£"] can be easily computed

c(K(n\S. K(n\S" ] ]-¢

over all the possible permutations P for the index i. Finally,
L(k)[&, &) of Eq. (12b) is a linear functional of & and &*
defined as

L(k)[cf,cf*]=/_+de[0*(/<»1<)5(1<)—ﬁ(k,K)é*(K)}- (14)

It can be noticed that L(k)[&, £&*] appears also in Eq. (3) as a
Bogolyubov transformation between b, x(K) and a(k)
operators:

The explicit form of y(P)[£, £&] given by Eq. (12) can be
compared with the explicit form of the characteristic
function of |w)(y| in the Minkowski space-time, which,
in turn, is defined in the following way:

2D 8] = Tr(lw) wlew( [ ax [@(k)&*(k)

- &ka) + Slen e ) ).

An explicit form for x\?'[£,. &,] of Eq. (16) has been
computed in Appendix B and reads

(16)

()] T ] &m(®).

keS kK'eS’

(17)

by performing the following substitutions in Eq. (17):

2olEn- &l = 26 €7 and &y (k) = L(K)[E. €],
Finally we want to show that Eq. (12b) can be put in a
diagrammatic form by defining a single diagram through
the following procedure. Write all the elements of U and U’
in two distinct columns and create some pair connections
between elements of the left and the right column k; — k;.

The numerical value associated to this diagram is the

product of ;(ép ) [£,&*] and the following contributions
coming from the elements of the diagram. Each pair
connection k; —k} contributes with a delta function
between the two momenta §(k; — k}). Each left-column
element k; left without pair connection contributes
with {—L(k;)[£,£*]}*. On the other hand, a “free” right-
column element k; contributes with L(k})[£,&*]. In this
way, a diagrammatic expression of Eq. (12b) is the
following:
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@ ({ki Ly R0 €] =

III. METHOD

In this section we show how to obtain Egs. (12), given
some properties of the Minkowski vacuum state |0,,) and
its representation in the right-Rindler wedge p,, which has
the explicit form given by Eqgs. (7) and (8). The properties
of |0y) and pg that we exploit are the following:

(@)

(i)

(iif)

the creation of a Rindler particle in the left (right)
wedge over the Minkowski vacuum background is
equivalent to the destruction of a Rindler particle in
the right (left) wedge, up to an exp(f}|K|/2) factor:

~

bLal60100) = exp (31K s (K010) 1)

(see Appendix A for the proof);

it is possible to move creation b} (K) and annihila-
tion b (K) operators acting from the left of p to its
right and the other way round by using the following
identity and its adjoint:

bi(K)po = ePKlpobi(K) (22)
(see Appendix A for the proof);
the functional derivatives of

e.&] = Te(poD, €. £7) (23)

for p = —1 with respect to different £(K) and £*(K)
give the following mean values:

1|5t El
= Tr (pOH

}M(m e ]

LI L

{ WJ

Ales T )
(24)

for any M(K) and N(K'), as it can be noticed
from Eq. (11);

ko ki
kK :
. . kl — k;/
+ Zii/ k’L — k;/ + Z”/]]/ . : + . (20)
kv Ky
LIV
I
@iv) )(0 [5 &*] is already known in literature [3], since 9

has the form of a thermal state

APE ] = exp ( [ axieor

). e

X [—nO(K) +

with ng(K) = (Kl — 1)1,

Given such information, it is possible to provide a

generic procedure in order to put y(”

)&, & in the form

of Egs. (12). Such procedure follows the following steps:

ey

2

(©))

“

&)

(6)
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express the a(k) operators of Eq. (2) in terms of
b, r(K) operators using the transformation (3), so
that |y)(w| is put in the form of a combination of
chains of b 1.&r(K) operators acting from the left and
right of |04,)(0y];

convert all b, (K) operators acting on |0,,)(0,,| into
br(K) operators using Eq. (21), so that ) (y] is put
in the form of a combination of chains of bg(K)
operators acting from the left and right of |0,,) (0y[;
perform the partial trace over the left wedge, so that
p is put in the form of a combination of chains of
br(K) operators acting from the left and right of py;
reorder the bg(K) operators using Eq. (22) and the
canonical commutating rules by choosing the rear-
rangement such that p is put in the form of a
combination of chains of creation operators bj(K)
acting from the left of py and annihilation operators
bg(K) from the right of py;

multiply such linear combination with D_,[£, &,
use the trace over the right wedge and the cyclic
property of the trace in order to see y(~V[£, &*] as a
combination of terms that have the same form as the
right side of Eq. (24);
by using Eq. (24), read (=" [&, & in terms of linear
combinations of multiple £ derivatives of )(0 [f &,
which are explicitly obtainable from Eq. (25);
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(7) extract the final expression of y(P)[& & from
~D[&, &] through the following multiplication:

1
Plesi=en( [Tk wOR ) e,

(26)

which can be easily performed by replacing

[5 & of step 6 with ;(0 [Zj &
In Appendlx A we give the full details for the proof which

leads to Egs. (12).

IV. 3+1 DIMENSIONS

Only in the case of 1 4+ 1 dimensions, the scalar field is
free in the Rindler frames. Indeed, the massless Klein-
Gordon equation in a conformally flat metric is equivalent
to the flat space-time case only for 14 1 space-time
dimensions. For such reason, in the previous sections,
we have considered Rindler particles with energy |K]|
having a defined momentum K. This does not happen
in 3 + 1 dimensions, where Rindler particles with energy
Q >0 can only have defined momentum components
along the direction orthogonal to the acceleration. In the
(3 4+ 1)-dimensional case we are, therefore, forced to
identify Rindler particles with the energy Q and the
transverse momentum K, along the y and z axes.

However, in the (3 + 1)-dimensional case, our method
remains the same, with the difference that Eq. (21) is
replaced by [9]
|

_ 1’)<U,U/)[f, 5*] :Z(()p)
ScuU
s'cv

c({R} AR

L) = [Tdo [ PKlaE oK) K)-HEQ K @KL

Ve &) = exp ( A " a0 A K QK )P [—nO(Q) + ’%1} )

V. SINGLE-PARTICLE STATE

In the present section, we focus on single-particle states as
the simplest example of Minkowski-Fock states. For such
states, we derive the characteristic function in the accelerated
frame using Egs. (12). As a practical application of y(?) [£, &],
we derive mean values of p related to the probability
distribution to find a Rindler particle with a specific momentum

(&6 (S, U\ [{-L(B)e. &1}

o B\ .
b0 K )i0w) = exp (52 ) bs@. K0, (27
Eq. (22) by
bR(Q. K )po = Ppobi(Q.K ), (28)

and the new Bogolyubov coefficients a(lz, QK)),
ﬂ(lz Q,K ) are those in [9].

Also we want to point out that the massive 3 + 1 case is
very similar to the massless 3 4 1 case, since both Egs. (27)

and (28) hold and the only difference relies on the
Bogolyubov coefficients, which read [9]

alk Bk —K)exp(B) (w(k)+k,\ 5
(kQK,)= \/4naa)(k)sinh(ﬂ79) <w(k)_ kx> . (29a)
ﬁ(lz’ Q.K,) = exp <’?> a(/?,Q, -K,), (29b)

where k = (ky, k) = (ky, ky, k.), @*(k) = m? + k* and m
is the mass of the field. The massless case can be restored
by simply imposing w(k) = |k| in Egs. (29).

By following again the steps of Sec. III while carefully
keeping track of the change in sign for the transverse
momenta K|, one can prove that the results of Sec. II are
still valid, with the only difference given by the new
Bogolyubov coefficients [Egs. (29)]:

H L(K)[g.&]. (30a)
kes Kes
= 5MNZ H 53(’2’ - ]_é;’(i)) (30b)
P
(30¢)
(30d)

|
and the correlation between Rindler particles with different
momenta. We show how the probability distribution changes
from the inertial to the accelerated frame. Moreover we show
how the correlation between different momenta has the same
expression for both the inertial to the accelerated frame if we
exclude the vacuum background. Finally, we consider
Gaussian wave functions and plot the results in the limit of
well-localized wave packets in the momentum space.
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We start from the definition of Minkowski-Fock single-
particle states

+o0
w) = [ ki @oa wlow) (31)
with (k) as a normalized wave function
+o0
| anintor =1 (32)
For such state, Eq. (12a) reads
Plesl= [ a7 avp )
P({k}, (K& & (33)

Therefore, in this case, it is sufficient to show the explicit

form of 7P ({k}, {K'})[& &, which has the following
diagrammatic expression:
POk ARDIEE =k K+k—K.  (34)
The explicit expression for Eq. (34) is
PPk AR DIE €] = 2 E €160k = K) = 2. &)
X AL(K)[E, &y L(K)[E €] (35)

Equations (32), (33), and (35) lead to

()[g, &) = 2 [e,&]
_)(0 [5 f*]

2

/_ T apRALEEETY| - (36)

Equation (36) can be used in order to extract the
probability density

(fir(K))y = Te(pbj(K)br(K)). (37)

From (ig(K)), and (fig(K)ig(K’)), it is possible to
derive a quantity that can measure correlations between
particles with momentum K and K’ over the vacuum
background:

= 5(K — K') (n(K)); +

Indeed, the left side of Eq. (37) can be obtained through the
following derivatives:

0 0

Ap(K)), = ——2 Wig e
0wk = ~szrse €€ 09

The result is
(ir(K)), = (g(K))s, + nr(K) (39)

where
‘ / kg (Ratk. K)|
+oo 2

‘/ k)p*(k, K) (40)

represents the probability distribution to find a particle with
momentum K over the vacuum background.

(ig(K)), of Eq. (37) can be compared with the
Minkowski probability density

(A (k) ) = Tr(lw) (wla' (Ka(k)). — (41)

In the Minkowski space-time, the probability distribution
to find a particle with momentum k over the vacuum
background ny, (k) is obviously directly identified with
(7 (K)) 1y (- Moreover, for single-particle states, it is well
known that

ny (k) = [ (k). (42)
Differently from (fg(K));, a quantity that can be

obtained through more than two derivatives of the charac-
teristic function is the following:

o o o o
(g, & . 43
E(K) oE(K) o2 (Ko ()7 29|, )
|
In the Minkowski case such quantity reads
C(k, k') = (A (k)i (K')) 1y
= (P (k))y 1 (Pont (KD -+ (45)

In the case of single-particle states Eqs. (44) and (45)
lead to
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(@) nr (k) (b) nr(K)a®/o
9 —k/a=1
—kja=2
1 L— k/a =10
5 10 ka 0.5 1 K/a
FIG. 1. Representation of how the probability density of a

particle with fixed momentum k changes with the acceleration.
(a) Distribution of ny, (k) for different values of k. (b) For the

same values of k, function ngx(K) defined by the right side
of Eq. (48).

Cr(K.K") =0(K - K')ng(K)[1+2n¢(K)] —ng(K)ng(K'),
(46a)

Cu(k.K') = 6(k = K')ny (k) — nyg (k)ny (K'). - (46b)
From Eq. (46) we can conclude that for different momenta
—i.e., K# K’ and k # k'—the form of Cr(K,K’) and
Cy(k, k') are the same. This means that, besides the
vacuum background, no correlation has been introduced
by shifting from the Minkowki to the Rindler frame.

In order to give a practical application, let us consider a
Gaussian wave function (k) = G(k; k, o), with

e (45E)

and let us consider a well-localized wave packet—i.e.,
o/a — O—then the leading term of ng(K) is
N O(kK)

<ot (g |1<|>. (48)

On the other hand the Minkowski probability density has
the usual distributional limit

G(k;k,0) =

ng(K)

ny (k) = 8(k — k). (49)

In Fig. 1, we plot the transformation from n,,(k) to ng(K)
for some single-particle states with different .

VI. SINGLE-PARTICLE STATE IN 3+1
DIMENSIONS

At this point it is worth mentioning the fact that only in
the (1 + 1)-dimensional massless case, a direct comparison
between Cg(K,K') and Cy(k, k') in terms of particle
momenta is possible. Indeed, in the (3 + 1)-dimensional
case, Rindler particles are identified through the energies
Q, Q' and transverse momenta K, K’ , while Minkowksi

particles still with momenta components /2, k. In that case,
a more reasonable comparison must be made between
Cr(, K ,Q K’ ) and Cy, as a function of the energies

w(k) = |/2| w(k') and transverse momenta k,, k'.
However such function is not well defined since the sign
of k, and k. represents a further degeneracy for the energy
states. Let us, therefore, choose k, > 0, k;, > 0 and define
in this way Cy (0, k|, @' K')).

By following the results of Sec. IV, it can be shown
that the form of Eq. (46) remains the same for Cr(Q, K,
Q' K') and Cy(w,k,, @' k'), with the only differ-
ence given by the fact that Q and w are positive and the
explicit value of ngx(Q,K ) changes because of the new
Bogolyubov coefficients:

Cr(Q K Q. K')=6Q-Q)5 (K, -K)
X nR(Q, KL)[I + 2"0(9)]

—np(Q, K )ng(Q, K’ ), (50a)

Cy(w.k 0 K )=6w-ao)6*(k, =K )ny(w.k,)

—ny (o, k )ny (o K)), (50b)
.. 2
@K =| [ erpbat. oK)
.. 2
+’ / SryR)p kLK) . (500)
R3

We can state that even for the (3 + 1)-dimensional case, no
correlation is introduced in the Rindler frame. However,
one must be careful when considering the different spectra
in the two frames, since in the Minkowski case, a two-
degeneracy for states with fixed energy and transverse
momentum exists.

Lastly, we want to mention the (3 + 1)-dimensional
massive case. As shown by Sec. IV, no difference occurs
from the (3 + 1)-dimensional massless case, with the
exception given by the mass-dependent Bogolyubov
coefficients that result in a different explicit value for
ng(Q,K ). However, one has to carefully consider the
different spectra in the two frames. Indeed, while € is still
defined from O to oo, w is defined for @ > m. Therefore,
such difference in the particle spectra must be taken into
account for a real comparison between Cy,(w,k,, @', k')
and Cr(Q, K, Q" K')).

VII. TWO-PARTICLE STATE

In this section we consider two-particle states.
Differently from the one-particle states, we show that
Cr(K,K') and Cy;(k, k') have different forms. Moreover,
we provide the example of Gaussian-like wave functions
and consider again the limit of well-localized wave packets
in the momentum space.
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A Minkowski two-particle state can be defined through a (k, k') =@k, k), (52a)
wave function y (k, k') which is symmetric with respect to a
switch between k and k':
. . /+°° dk/+°° dK i (e, K'Y = & (52b)
- / ””‘/ dk' (k. K)a (0)a (k) |0y). (1) W T W=
with For such state, Eq. (12a) reads
Pleet= [ Tan [ itk [y / ik (K K7D (ki ko, (KL B DIE S (53)
7P ({ky, ko }, {K), K, })[£, €] has the following diagrammatic expression:
ke Koki—k kR kK kR ki — M kR
X ({krs e} (ke k5 HIE € = + + + N+ 4 + X (54)

ky Ky, ks K, ke—Kk, ko kb ko kb ko—k, ky K

By using the symmetry (52a) and the normalization (52b), we can write Eq. (53) in the following way:

Ple&] —{] [ [ avpn wie e @i s

+00 Foo
_4 dk' / dk'j (k. K )L* (k') [€. &]

2
+1}

<2 [6.&). (55)
Equation (55) can be used in order to extract ngx(K) and Cg(K,K'):
np(K) = 4 / - dk” / " kg (k, K a(K, K) 2+’ / gk, KB (K K) 2], (56a)
+0o0 +0o0 2
cR<K,K/>—5<K—K'>nR<K>[1+2no<K>1—nR<K>nR<K/>+4\ [T [ awitekatixaw. k)
+4‘/ dk/ Ak (kK (k, K)B* (KK +4/ dk/ Ak, (ke I, / dkz/ Ak (s )
[a(ky.K")B(ka, K) + B(ky. K )a(ky, K) [ (K} K)o (k5. K) + a* (ky K') " (k7. K) (56b)

On the other hand, in the Minkowski case,

m()) =4 [ TapeRp. s

Cu(k, k') = 8(k = K )y (k) = nyg (k)nyg (k') + 4l (k. K) 2.

(57b)

It is interesting to notice how in this case the form of
Cr(K.K') and Cy(K, K') are different. This means that a
correlation between particles with different momenta
has been introduced by shifting from the inertial to the
accelerated frame. The result we have obtained for the two-
particle states differs from the single-particle state, as we

I
have seen in Eqs. (46). The consequence is that we can
actually discriminate Minkowski single-particle states from
two-particle states in the Rindler space-time by looking at
nondiagonal values of Cr(K, K).

Finally, we want to provide the Gaussian wave functions
as practical applications for the theory and focus on the
limit of well-localized wave packets in the momentum
space. If we define

Wk, k') < G(k; ky,0)G(K'; ky, 6) + G(k; ky, 6)G(K'; k1, 6),
(58)

we obtain the following results:
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T s SR
()~ 8(k = ky) + 8(k = o). (59b)
Cr(K.K') ~ 6(K — K') g% 1+ 2ny(K)) {g(éf )4 9(|’;f:f )] coth (g |1<|)
+ 0 (o G 0 st
[P () )
L) () e G () ]}
Cy(k. k') = o((c/a)?) (59d)

when ¢/a — 0.

It is possible to notice that for any choice of k, and k,
with the same sign, Eq. (59a) has the same form of Eq. (48)
for a specific choice of k:

+ (60)

| —
L
S =

This result can be observed by comparing Fig. 1 with
Fig. 2, where for specific choices of k, l_cl, and l_cz, we have
been able to reproduce the same probability density in the
Rindler space-time even when the number of particles
differ. This means that if we look at right-Rindler particle
density distribution, Minkowski two-particle states become

(@) na (k) (b) nr(K)a*/o
2
1L
L k L K
10 20 /a 0.5 1 /a
—/?:1/11:2, E2/a:2
—Fkija=8, kofa=8/3
—ki/a =20, kz/a=20

FIG. 2. Representation of how the probability density of two
particles with fixed momenta k; and k, changes with the
acceleration. (a) Distribution of ny,(k) for different values of
k, and k,. (b) For the same values of k; and k,, function ng(K)
defined by the right side of Eq. (59a).

indistinguishable from single-particles with momentum
equal to half of the harmonic mean of the two-particle
momenta. For instance, if both particles have the same
momentum k; = k,, the two-particle state becomes indis-
tinguishable from a single-particle with momentum
k = 2k,. The same result does not hold for the inertial
observer, who is actually able to distinguish the two cases
—e.g., by integrating n,, (k) with respect to k and obtaining
1 for single-particles and 2 for two-particles. This result
point toward the possibility for the observer to discriminate
between the inertial to the accelerated frame.

While single-particle and two-particle states cannot be
distinguished by the expression of ng(K), the correlation
function Cgx(K, K') offers a way to discriminate between

FIG. 3. In the present figure we show the correlation Cg(K, K')
in the Rindler space-time between particles with different
momenta K # K’ as defined by the right side of Eq. (59¢).
The solution we have chosen is with k;/a = 1 and k,/a = 2.
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the two of them. Indeed, Egs. (46a) and (59¢) do not have
the same form. While in the case of single-particle states the
form of Cr(K,K') is the same of Cy,(K,K’), in the two
particle state they differ. Specifically, while Cy(K,K")
vanishes faster than (¢/a)?, Cr(K,K') has a specific
distribution of order (¢/a)? shown in Fig. 3. This also
provides a way to discriminate between the Minkowski to
the right-Rindler frame.

VIII. CONCLUSIONS

The method we adopted allowed us to extract the general
expression of y(?) [£, &*] and any derivable mean values for
Minkowki-Fock states. To the best of our knowledge, this
result is not known in literature. Moreover, it allowed us to
investigate how quantities such as ny (k) and Cy,(k, k')
transform from an inertial to an accelerated observer.
Specifically, we have extracted ng(k) and Cg(k,k’) for
single-particle and two-particle states. An interesting result
of such analysis is that ngx(K), differently from n,,(k),
cannot be used as a general way to detect the presence of a
second Minkowski particle. On the other hand, by meas-
uring both Cg(k, k') and ng(k), one can distinguish
between single-particle and two-particle states in the
accelerated frame, since in the former case Cy(k, k') has
the same form of Cy;(k, k"), while in the latter they differ. A
remarkable outcome is that a noninertial observer that is
|

K|
VK

[Se]

/_ ™ dKO(KK)O(K K )2 sinh <§ |K|>

able to generate two independent particles with different
momenta will measure fictitious correlations dependent on
the acceleration. This opens a way to test noninertial
quantum field theory.

APPENDIX A: A PROOF FOR EQ. (12)

In the present section, we want to show a proof for
Eq. (12), through the procedure described in the main paper
and through the use of the following identities for the
Bogolyubov coefficients:

a(k,K) = exp <§ |K|)ﬂ(k, K), (A1)
/_ ™ 4K2 sinh (g |K|> la(k, K)p* (K, K)
4k K)a(K, K)) = 8(k — k). (A2)

Equation (A1) can be extracted from the following identity:
F(k,K) =exp (sign(k)§K> F(-k,K), (A3)

while Eq. (A2) can be proven by the following chain of
identities:

[F(k. K)F(K.~K) + F(k.-K)F (K, K)]

- 9\(/]%) U_:" dKO(kK)2 sinh (g |K> K| F(k, K)F(K ,~K)+ /_:o dKO(kK)2sinh (g |K|> |K|F (k. ~K)F (K’ Kﬂ

- ‘9\(/%) U_:" dKO(kK)2 sinh <§ |K> |K|F(k.K)F(K,—K)+ /_:o dKO(—kK)2 sinh (g IKI) |[K|F(k, K)F(K', —K)]
_ 9\(/’%'/) /_ :° dK[O(kK) + 6(~kK)]2 sinh <§ |K> IK|F(k, K)F(K, —K)

= 9\(/’;_"_19 /_:° dK?2 sinh (g |K|> |K|F(k,K)F(k',—K)

_ ‘9\(/’%’? /_:" dK?2 sinh <§|K|> (2@)2 F<§) * exp (igln %)

) [ (5

= 9\(/];%/) 6<ln % >

= H(kk/)é In E/

= 9(11:16’)5((/C —kk’>)

=8(k—K). (A4)

045013-10



MINKOWSKI-FOCK STATES IN ACCELERATED FRAMES

PHYS. REV. D 106, 045013 (2022)

Equation (21) can be proven from the definition of the
Minkowski vacuum state |0,,)

a(k)|0y) =0, VY keR, (A5)

supplemented with Egs. (3):

[ ax{ s exo (B0 ) - By

0K exp (1K1 ) ) - B350 | ow) =o.

(A6)
Finally, Eq. (22) can be proven from Eq. (21):
E;( K)py = Trr[b ;e( K)[0p7) (Op ]
1
= exp (311 )T I ()10 0]
— exp (1K1 e 0u) 04 5, ()
= MK Tr, [|0y) {0y DR (K)]
- eﬂ\KlpobT( ). (A7)
We rewrite Eq. (1) following steps 1 and 2,
= winly[n] ( H AT( )
n,n' keK(n
X [0y oM|/c< H A(K) ) (A8)
KeK(n
where
A(k) = Ap(k) + Ar k), (A9a)
Ack) = [ ak|exp (£ b
ek = [ Tk |exp (51K )atk. K)BL(K)
~exp (<SR )k ROBe®)|. (s

Ar (k) = /_:o dKla* (k. K)bp(K) = (k. K) by (K)]. (A9c)

and K defines a fixed ordering rule for A, (k), Ag (k) and
their adjoint operators depending on the arbitrary ordering
for a(k) operators in Eq. (2). For instance, we can order the
a(k) operators of Eq. (2) monotonically with respect to k
and obtain the following definition for K:

= Ap (AR (K),
(Al0a)

KA (k)Ar(K)) = K(Ar(K)AL(K))

K(AL (AR (K)) = K(AR (K)AL(K)) = AR ()AL (K),

(A10b)
K(Ae(DAc(K) = {ZE’:;‘C(("]C i e ’; (A100)
K(Ag (k)Ar (K')) = {j:ﬁgf;((k]z E: Z i ]I: (A10d)
AL RAL®E)) = {jg(;ff((kk; S e
K(AL (k)AL (k') = {ji?;gfg E: l/i i I; . (A10f)

The operators acting on the left and on the right of |0,,) (0|
in Eq. (A8) are combinations of chains of 13R operators.
Each chain can be rewritten using the Wick theorem by

considering b},(K) and bg(K) as creation and annihilation
operators for the normal ordering N, i.e.,

N (bp(K)br(K')) = N (br(K")by(K))

by(K)bg(K'), (A1)

and by defining C), as a real function that can be evaluated
on any chain of by operators and compute the sum of all the
full contractions of such chain, with the following funda-
mental contractions:

[br(K), br(K")] = 8(K = K'),
(Al2a)

Cr(br(K)by(K')) =

Cn(bp(K)br(K')) =0, Cy(bx(K)bR(K")) =0,
(A12b)

C(br(K)bg(K")) = 0. (Al2c)

The combination between the Wick theorem and the
K-ordering gives
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{(1L50) - 35,01 20)e(e( 11 2)

keK(n) SoCK(n) keK(n)\Sy

- SOQK(H)CK <ke1<1(_n[>\so A(k)>N <k01;£o;‘(k0)> ’ A
K <k};{n)ﬁf (k)> = sogK<n)CN (/c (kel(l;[)\soﬂ (k)) )N </c <k01;£OAT (k0)> >
- S gK(n)ClC <keK(n)\S A-F(k))N(k S AT(kO))’ (A

- Cn(Ac(VACK) + Ac(OARK) +AcK)Ar(R) + Ar(IAR() iFk<K
Cn(Ap(K)AL(k) + AL (AR (K) + A (K)Ag (k) + A (k)AR (K) if k> K
Cr(AT(K)AT(K)) = Cy (K(AT (k)AT(K)))
- Ch(ALIIAL) + AR ()AL + AR (OALK) + AR (0AR(K) if k<
Cr(AL (DAL (K) + AR (K)AL(K) + AR (WAL(K) + AR (K)AR(K) if k> K
Thanks to Eq. (A1), Eq. (A14) reads
Celh(RARK) = Celd' WA (k) = - [ 7 ak2sinn (§ |K|) B (k. KB K) + Pl K)F (K. KL (ALS)

By combining Eq. (A13) with Eq. (A15) we find a way to put Eq. (A8) in normal ordering at the left and right of |0,,) (0y|:

|w><w|—zw[n]w*[n'}ZcK( I A*(k))cx( 11 A(k/))fv(HA*<k0>)|oM><oM|N(HA(kw).
n.n' Ssloggllf((’;)) keK(n)\Sy K eK(n")\S ko€Sy ky €Sy,

(A16)

Step 3 gives

p=Trply)(w|
=St Y ce( T aw)ee( T aw))a( [Ta'w oov ([T A)). 1)
Sk keRONSo KeK(w)\S} =S Kes,

We can explicitly compute the normal ordering of Eq. (A17) by giving a new decomposition for A(k):

~ ~

A(k) = A, (k) +A_(k), (A18a)

AL(k) = /_ " dK [exp (g |K|> alk, K) — Bk, K)} bi(K), (AI8b)

(5]
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AL(k) = /_ :” dK [— exp <—§ |K|> B (k. K) + (K, K)} br(K).

In this way Eq. (A17) reads

C Af(k) |C A(K
p= Sy Y- e T Aw) K(k@gﬂs’o )
XZ H Al (ko H Tk(kl)ﬂo HA+ (k) H A_(kp)-

G}Csp ko€S\S; ki €Sy K\ €S k,€SH\S|
Equations (A18b) and (A18c) can be put in the following form thanks to Eq. (Al):
+o0 . /)7 e ~ +o0 . ﬁ n
Ak = / ak2sinh (21K )a(k K)D(K).  A_(K) = / ak2sinh (£ |K| ) (k. K)ba(K).

By using Eq. (22) we can manipulate Eq. (A19) in the following way:

p=Swtlw i S ce( T] dw)ec( T w)

n.n' SSI()CK(( ) keK(n)\Sy K eK(n')\S
x Z H Al (ko) H )HB+(k/1)f’o H A (ko).
1S5 k€S)\S1 es, = KES)\S!
0

l_t

with

B, (k)= / ™ dK2sinh (g |K|) e PKla(k, K)bjy(K).

(A18¢)

(A19)

(A20)

(A21)

(A22)

By following step 4, we want to put the right side of Eq. (A21) in a normal order for the entire chain of A , (k), AATi(k),

and B, (k) operators. For this reason we will use again the Wick theorem for the A’ (k) and B, (k) operators:

p= Sy WY e T Aw)e( T aw) oS ev( IT Al
SS/OCK(( )) keK(n)\So K eK(n')\S;, :Il §§9 zzgzl ki €Si\S,
1S5 $5SS]

< TI B+(k’1)> T A ko) (H G TT @) )0 TT Ak

K, eS|\S), ko€So\Sy €S, K,eS), ky€Sy\S)
=Sovlaw) 32 e TT aw)ec( T aw)325 en( T1 A
SpcK(n) keK (n \s0 KeK(n)\S, $1CS) 8,58, €S\
(K (') s/ csp) 8hc8
« TT b)) TT Ateo) [T 8.0 TLA 0 TT 400
K eS\S) ko€So\S, keS8, k€S, KeS)\S,

By defining S; = Sy\(S;\S;) and S} = S{\(S7\S%), we obtain
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p=Swile) S e T Aw)ec( TT aw))S-ew( T At

' :E?QCII(((:/)) keK(n)\Sy K'eK(n)\S;, 2922?1 KESH\S;
< Al B+(k/1)>z II Attko) J] B4 (k3) H (k)po T] A-(kp). (A24)
K, €SH\S; ;;gsz ko€S3\S, K,eS) s, K,ESI\S,
zgS{ 3

Finally, by defining S4 = So\S3 and S, = S;,\S}, we obtain

p=> iy > > cK<k€K(H AT(k))C’C<k/eK<n/>\<ngsg>A(k/)>

o S3CK(n) S4CK(n)\S;3 S;US
. sﬁcx( )5’21{(”’)\51 m\(S5U84)

ch<HA1<k4> w0)3> T Actho) TT B [T Atk T Al (429
k4€S4 52683 k,€S;\S, K,€S), kyES, kyeS5\S)
S2 S"

The full contractions appearing in Eq. (A25) can be manipulated in a combinatoric way by knowing that

Cn(AL(AL(K) =0, Cu(B.(K)B,(K)) =0, (A26a)

Cy(AL(k)B, (K)) = / ™ dK2sinh (g |K> 2sinh <§ |K|> e PKlo* (k, K)a(K, K). (A26b)

—o0

This allows us to put the right side part of Eq. (A25) in a more compact way, by defining the following new contraction C:

CAMWAR)) = CelhA®R) = = [ axzsinn (51K1) i K)p.K) 4 BRI (KD (270

—00

CA WA () = G WA (W) = - [ akzsion (1K1) (kP K) + kKO KL (A2

CAT(K)A(K)) = Cyr (AL (k)B..(K)) = /_ :° dK2 sinh (g |K|>251nh (g |K|>e—ﬂKla*(k, K)a(K,K). (A27c)

In this way Eq. (A25) now reads

f)=§jw[n1w*[n']§jc( [ A0 T aw)> TT it I] 5.0 [TAtwn TT A-66)
o :;c:g(t ) eK(m\s, KeK (n)\S, 52553 ky€S5\S, = €S, K, ESI\S)
s’zgsg -

(A28)

It is possible to notice that the C contraction of chains of A(k) and A (k) operators does not depend of their order within
such chains; therefore, we write C as a function of sets of momenta:

c(HAT(k) 11 A(k’)) = C(U,U). (A29)

keU kel

The same convention will be used for any other ordering-invariant contraction. Thanks to the definition of C (U, U ),
Eq. (A28) reads
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p=> winlw ] > C(Km)\S, K(WN\SH)> " [ Altko) [T B+(k) [T AL (k)po [ A-(kp).  (A30)
nn' s;g;(( >) 5% ko€S3\S, K,eS) k€S, kyeS;\S)
‘2*‘3

By using again Eq. (22) on Al(k) operators we conclude step 4:

p=S "yl ] 3 CRm\SLKNS)S T Altko) [T B K)o [[ B (k) T A-ke).  (A3D)
n.n' SS;CII((((H)) 52683 k,€8;5\S, K, €S, k, €S, ko €S5\S)
K (n s,

Step 5 gives

Vg &) =Tr(pD_, [6.£])
= D_vlly' ] 3 COK()\S5 K(n/)\S})

S CK(n)

K(n")

xZTr( H Al(ko) [T B+k)po [] Bi(ka) T] A-(ki)D éé*])

Sgggg ko€S3\S, K,es), kyES, kyeSi\S,
273
= wnly*[W] > C(K(n)\S3, K(n')\S})
nn' §3CK(H
CKn)
«Sn(po[] Bk [T Awbalee] [T Ao [[Bw). %)
S;ES; k€S, ko €S5\S) ko€S3\S, K,es),
2773

As prescribed by step 6, we manipulate Eq. (A32) by using Eqgs. (24):

le£1= D vlalv ) 3 COR\S KNNSS)

S;CK()
sch( )
x> ] Batko) [T 2sky) TT -25(ka)] T [=&4 ko) Tr(poD_y €. £7)). (A33)
$2683 kye€S;\S, K,eS), k€S, K eS;\S,

S/ s/
52_53

Au(k) = /_ :° dK2sinh (g |1<|) Bk, K)%, Ay(k) = /_ :° dK2sinh (g |1<|>e—ﬂlf<la(k, Ky (A%

as derivatives acting on their right.
By using Eq. (25), we obtain

Vg &) = Zw n'] Y C(K(n)\S5. K(n)\S})

S3CK(n)
sch( )
g 2k 2k -1 "
xS T Batko) [T 2k T [F850k)] TT =840k (e &
$:583 k€85 \S, K,eS), kES, K,eS;\S,
ségsg
= wlnlw*[] Y C(K(n)\S3. K(n')\S})
n.n' ;,zccllf((n/))
ST Batko) [T 2k T La(k)le] T Latki)iels Vi €1, (A35)
$2683 ky€S;5\S, k’ eS’ kyES, k’ es! \S’
s’zgs’3 }

045013-15



RICCARDO FALCONE and CLAUDIO CONTI PHYS. REV. D 106, 045013 (2022)

with

Ly(k)[g] = /_ :" dK?2 sinh <§ |K|>e—ﬂlf<la*<k, K)(no + 1)E(K), (A36)

La(k)[E] = / ™ 4K sinh (’g |K|) B (k, K) (ng + DEK). (A36b)

—0

Equation (A36) can be computed thanks to the help of Eq. (Al):

Latwle = [ akzsion (1K1 exp (=5 1K1 )5 (k) o + D)

— [ Tax(- e (%_1 + 1)ﬁ*<k, K)E(K)

o0

+o0 eﬁ‘Kl —_ 1 eﬂlK‘ "
— [Tk S p e KEE)

—0o0

- /_ AR (k, K)E(K), (A37a)

La(k)[E] = /_ :° dK?2 sinh <§ |K|> exp (-g |K|)a*(k, K)(no + 1)E(K)

- /_+°° dK (1 — e PIKl) (eﬂKl_ ot l)a*(k, K)¢(K)

[Se]

—+o00 eﬂ'Kl —_ 1 e/}‘K‘ N
_ / Ak e @ (L K)E(K)

—o0

- / " dKka (k, K)E(K). (A37b)

The derivatives A, z(k) now have to be evaluated on both L A.5(k)[£] and )(0 [5 &*]. In order to simplify the calculation,

we define A (k) as derivatives identical to A (k) but acting on their left. Moreover, we define A, (k) =
&A’B(k) + &A,B(k). In this way, Eq. (A35) can be put in a more compact form:

Vg el = Zw Z C(K(n)\S5. K(n)\S5) [T {Balks) + Ly(ks)] a1l {Rp(K) + La(k)) &) " [e. €7,

S3CK(n V= / /
PCK 7 3 3 k ES

(A38)

A further simplification can be made by defining C, (U, U’) as a contraction with the following fundamental contractions:

Cal{k. K}, @) = Aa(K)Lp(K)[E] + A (K)Lp(k)[E], (A39a)
Ca(@. {k.K'}) = Bp(k)La(K)[E] + Ag(K)La(K)[E], (A39b)
Cal{k}AK}) = Ba(K)LA(K)[E] + Ap(K) L5 (K)[E (A39¢)

and by using the following identities, with, again, the help of Eq. (Al)
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(B0 + Lo e = [ ak2sion (4 1K1 gtk )

13
— P

seqy TPk

K)E(K )} 25 Ve €]

. /_ :" dK{—z sinh <§ |K|> Bk, K)lno(K) + 1)E(K) + (k. K)E(K) }xé‘” &,&°]

+00
_ / dK
X;((()_l)

[

{-

+o00

{&B(k)+LA(k)[§]})(E)_1>[§’§*]:/_

[Se]

dK

/+oo
—o0

dK

/+oo
—00

L(K)E &Y xy

dK {2 sinh <§|K|> e PKla(k,K)

(1= 1yexp (=2 1K1 otk 0
£.&]

+o0
/ dK

—exp( |K|) (k. K& (K) + f (.

(K) + " (k. K)§(K)x
Vie.el,

s
6&(K)

_ 1
__(eﬂ\K\ —1)exp <—§|K|) ePKla(k.K) (eﬁll(;_jL
x;(é_l)[f,f*]

:—exp <—§K|> a(l, K)E (K) +a*(k,K)§(K)] 2508

1
ePIKl 1

1) K) 4 5 (L RE)

K):(K)]xé‘”[é, £

Ve e

(A40a)

+a*<k,K>¢<K>}xé‘”[é,¢*]

[ dK{—Zsinh @m) e a(k, )y (K) + 11E* (K) + a* (k. K)E(K) }xé‘”[g,m

1)e K)o (K)S(K)|

= /_ de[—ﬂ(k,K)é*(K)+a*(k,1<)g(1<)]x<0-1>[g,§*]

= L(K)[£. 0

[.&]-

In this way, Eq. (A38) can be computed in the following way:

Vg & =

Zv/

nn

XH{L

keS

n'] Y C(K(n)\S5. K(n)\S5)

S/SCK (n) Sch
') s'cs)

e e TILw)e el Ve &1

KeS’

(A40b)

Ca(S5\8,85\8")

(A41)

The fundamental contractions of C, (U, U’) defined in Egs. (A39) can be computed with the help of Eq. (A1)

Cal{k. K}, @) = /_ :° dK2sinh (g |K|) Bk, K)B* (K, K) + f* (k, K)B(K', K)]

Ca(@. (k) = [

—o0

—C({k. '}, @),
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(Ad2a)

" 4K2 sinh <§ |K|> e PKla(k, K)o* (K, K) + o (k, K)a(K, K)]

400 . ﬂ
[ akzsion (S151) e 605 )+ 1 KOPCR )

—C(@.{k,K}),

(A42b)
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Ca({k}, {K}) = / 4K sinh (g |K|) Bk, K)o (K, K) + e PKIp*(k, K)a(K', K)). (A42c)

—0

The contractions C(U,U’) and C, (U, U’) appearing in Eq. (A41) can be combined into a single contraction ¢(U,U’) =
C(U,U’) + CA(U,U’) which has the following fundamental contractions:

c({k,kK'},@) = CHk,k'}, @) + Ca({k,k'}, @) =0, c(@,{k,k'}) = C(@,{k,k'}) + Co(D,{k,k'}) =0, (A43a)

c({k} {K'}) =C({k}.{K'}) + Ca({k}.{K'})
= / :odKZSinh <§|K|> [2sinh <§|K|> e PRl (k, K)a(K',K) 4 p(k, K)a* (K, K) + e PKIp* (k, K)a (K, K)
/oo dK2sinh <’§|K|> [exp <—§|K|>a*(k,K)a(k’,K) —exp <—§ﬂ|K|>a*(k,K)a(k’,K)
+p(k, K)o (K, K) + e PKIg*(k, K)a (K, K)] . (A43b)

The last contraction can be computed through Eqs. (A1) and (A2):

c({k}. {KY) = / :" dK2 sinh (g |1<|> o (k. K)B(K.. K) + k. K)a* (K. K)] = 8(k — k). (A44)

The coefficients ¢(U, U’) of Eq. (13) are identical to the contractions ¢(U, U’) defined by Eqgs. (A43a) and (A44). Thanks to
the definition of ¢(U,U’) = C(U,U’) + CA(U,U’), Eq. (A41) reads

Dig, & = Zw Zc w\S. KN\ [[{-L®0)e. e T[LK)e el Vg €. (A49)

S kesS KeS

CK
CK

In this way we have concluded step 6.
Finally, with step 7, we obtain Eq. (12).
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APPENDIX B: A PROOF FOR EQ. (17)
Equation (17) with p = —1 can be proved in the following way:

el = e (W)l (- [ akgym0a0 ) exo( [ angutoav)) )
= vini e o) exp (— I dkf&(k)a(k)> e [ ke ) )
= Svtny e[ @ o o [Tl exp(- [ aweionae)

X exp ( /_ :° dk”gM(k”)aT(k")))

= Sty e Jo) oulT Tt “exp(- [ e, wane)

n,n’' -

><exp</_:o dk"Ey (K" k”)l?[& >
:,ZZ,;W["W H[(%M } 1;[{ ] Tr(|0M><oM|exp< / jdk"«:mk”)a(k”))

+
X exp </ dk" &y (K")a' (k") ))

= vt ] [seo]  TI|- 55*5( | e

= Syl ] ] H[ o] (= [ aeoor)

= Svinw L] 57 | e e~ [~ aviewe)

= Syl i) 3 (Ko, KOs T w0 57 (= [ awiaawnr)

o SeKi) Kes kes

= Syl ) 3 etk Ko [T en [ 180 exp (- [ awieu @)

= Syl ) 3 K\ KNS TTewt -8l - i (B1)
The general case of Eq. (17) j:a:‘t))e proven from the case p = —1 and the following identity:

0 1 _
ee=en ([T ax? S amp ) e e
— Feo p+1 2 (_1) £3 / /
—ep ([ ar" o )XOM Gty ) 3 0005 K\ [T [Tt

n,n' keS kK'eS’

f'Hﬁ

K(n)\S. K(n)\S"] ]I —esM(k [ én®). (B2)

keS k'eS’

= ronln. &> winly

m mM
ﬁ
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