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Abstract. We show how model checking can be used for the verification of protocols
underlying groupware systems. To this aim, we present a case study of those proto-
cols underlying theClock toolkit [1, 2] that are responsible for its concurrency control
and distributed notification aspects. We abstract from the original specification of these
protocols given in [3] in order to obtain a less detailed specification (model) that never-
theless covers many issues of interest. We show that this model is very well amenable
to model checking by addressing the formalisation and verification of a number of im-
portant issues for the correctness of groupware protocols in general, i.e. not limited to
those underlyingClock. In particular, we address data consistency through distributed
notification, view consistency, absence of (user) starvation, and key issues related to
concurrency control. As a result, we contribute to the verification ofClock’s underly-
ing groupware protocols, which was attempted in [3] with very limited success.
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1 Introduction

Computer Supported Cooperative Work (CSCW for short) is concerned with understanding
how people work together, and the ways in which computer technology can assist this coop-
eration [4]. By the nature of the field, this technology mostly consists of multi-user computer
systems called groupware (systems) [5, 6]. In this paper we consider groupware allowing
real-time collaboration, which is also called synchronous groupware. Examples include video
conferencing, collaborative writing, and multi-user games.

An additional difficulty that arises during the design of synchronous groupware is the in-
herently distributed nature of such systems. This forces one to address issues like network
communication, concurrency control, and distributed notification. This has lead to the devel-
opment of groupware toolkits that aid groupware developers with a series of programming
abstractions aimed at simplifying the development of groupware applications. Examples in-
cludeRendezvous [7], GroupKit [8], andClock [1, 2]. In this paper we deal with the latter
toolkit, which has been used to develop a number of groupware applications, such as a multi-
user video annotation tool [9], the multi-userGroupScape HTML browser [10], a multi-user
design rationale editor [11], and theScenicVista user interface design tool [12].

In this paper we take a closer look at several of the groupware protocols underlyingClock.
In particular, we focus on those concerned with the concurrency control and distributed noti-
fication aspects ofClock. The abstraction from details of the specification of theClock proto-
col as given in [3], gives rise to a less detailed specification (model) of the concurrency control
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and distributed notification aspects of theClock that nevertheless covers faithfully many of
the issues of interest. We show that this model is very well amenable to model checking by
addressing the formalisation and verification of a number of issues specifically of interest for
the correctness of groupware protocols in general, i.e. not limited to those underlyingClock.
In particular, we address data consistency, view consistency, absence of (user) starvation, and
key issues related to concurrency control. As a result we thus contribute to the verification of
Clock’s groupware protocols, which was attempted in [3] with very limited success.

Although time-performance issues are very important in groupware systems [13], the cor-
rectness of many of their underlying protocols is not critically depending on real time. In other
words, the groupware protocols need to function correctly under whatever time assumptions
are being made. This is mainly so because these groupware systems have often been designed
for being used over the Internet, where the time performance that can be guaranteed is usually
of the type ‘best effort’. This means that much of the correctness of the groupware protocols
can be analysed also with models that do not include real-time aspects. Of course this does
not mean that real-time and performance aspects are not relevant to the design of groupware
systems, to the contrary, but they need not necessarily be addressed in the same models as
those being appropriate to verify correctness issues. In fact, abstracting from real-time and
performance issues at first may make the difference between models that are computationally
tractable and those that cannot be analysed with the help of automatised tools.

In this paper we show that with relatively simple models we can verify highly relevant
properties of groupware protocols with currently freely available verification tools, such as
the model checkerSpin [14]. The properties we verify are mostly formalised as formulae of
a Linear Temporal Logic (LTL for short) [15]. This has as an advantage that they are close
to what are also called ‘scenarios’ that are often formulated (informally) during the initial
phases of software design. In fact, LTL formulae reflect properties of typical—desired or
undesired—behaviour (or uses) of the groupware system. Our future aim is to extend the
models developed in this paper in order to cover also session management, various forms of
replication and caching, and other concurrency control mechanisms.

We begin this paper with a brief description of theClock toolkit and its underlyingClock
protocol. We continue with an overview of the basic concepts of model checking and the
model checkerSpin, followed by a discussion of the specifications inSpin’s input language
Promela of some ofClock’s groupware protocols. Subsequently we verify a number of core
issues of theClock protocol. Finally, we conclude with a discussion of future work.

2 TheClock Toolkit

In this section we present a brief overview of theClock toolkit and its underlyingClock
protocol. For more information onClock or for obtainingClock, we refer the reader to
www.cs.queensu.ca/˜graham/clock.htm .

TheClock toolkit is a high-level groupware toolkit that is supported by the visualClock-
Works [16] programming environment and which has a design-level architecture based on
the Model-View-Controller (MVC for short) paradigm of [17]. According to this paradigm,
an architecture organising interactive applications is partitioned into three separate parts:
the Model implementing the application’s data state and semantics, the View computing the
graphical output of the application, and the Controller interpreting the inputs from the users.
In Figure 1, the MVC architecture is depicted together with its communication protocol.
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Figure 1: The MVC architecture and its communication protocol.

The Controller transforms aninput from the User into anupdate, which it sends to the
Model. In order to do so, it may need to obtain data from the Model by communicating
via requestand response. Upon receiving anupdate, the Model changes its data state and
sends anotify to both the Controller and the View. The latter, upon receiving thisnotify,
recomputes the display—for which it may need to obtain the new data state from the Model
by communicating again viarequestandresponse—and eventually sends aviewto the User.

In Clock’s design-level architecture, the Model is situated on the server, while the View
and the Controller are integrated and situated on each of the clients. The communication be-
tween the server and the clients is defined by a set of (communication) protocols, together
called theClock protocol. In [3], a simplified version—leaving out many implementation
details— of theClock protocol was formalised in the specification languagePromela and
an attempt was made to verify it with the model checkerSpin [14]. Partly due to insuffi-
cient computing resources, however, it was impossible to verify the entire simplifiedClock
protocol. Consequently, an attempt was made to verify only a part of theClock protocol
still large enough to be relevant, viz. the part relevant to the issue of concurrency control
and distributed notification. Unfortunately also this attempt was largely unsuccessful, i.e. the
verification covered only 2% of the total state space. In this paper we continue the use of
abstraction in order to obtain aPromela specification that is amenable to model checking,
but which still models the core issues of the concurrency control and distributed notification
aspects of theClock protocol. As a result of this we aim at obtaining aPromela specifica-
tion that can serve as a scenario or template specification for the verification of concurrency
control and distributed notification issues in related groupware protocols.

2.1 TheClock Protocol

The functioning of theClock protocol depends on the way it communicates with its environ-
ment. As depicted in Figure 2, its environment consists of a Session Manager communicating
with the server and a set of Users communicating with the clients.
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Figure 2: TheClock protocol embedded in its environment.

TheClock protocol consists of four protocols, viz. the MVC protocol, the Cache protocol,
the Concurrency Control (CC for short) protocol, and the Replication protocol. Based on
the MVC paradigm, the MVC protocol implements multi-user communication between the
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server and its clients. The Cache protocol controls caches at the server and its clients in
an attempt to reduce the time needed to access shared data. The CC protocol implements
synchronisation of concurrent updates and controls the processing of user input and view
recomputation. The Replication protocol, finally, controls local copies of selected shared data.

Due to the size of theClock protocol, we would undoubtedly run into the infamous state-
explosion problem as soon as we would try to verify the fullClock protocol. Therefore, we
abstract from the fullClock protocol and focus on those protocols that are fundamental to that
aspect of theClock protocol that we want to verify. Since in this paper we are interested in
the concurrency control and distributed notification aspects of theClock protocol rather than
in its data aspects, we thus focus on the MVC protocol and the CC protocol. All protocols
constituting theClock protocol are implemented by one component on the server and one on
each of the clients. In case of the MVC protocol this results in a Model component on the
server and an integrated View/Controller (VC for short) component on each of the clients,
while in case of the CC protocol this results in a Concurrency Controller (CC for short)
component on the server and an Updater component on each of the clients.

In [3], two different mechanisms implementing the CC protocol are studied: the locking
mechanism and the eager mechanism. The locking mechanism uses a single, system-wide
lock that a client must acquire before it can process inputs and apply updates, thus guaran-
teeing a sequential application of updates. Moreover, no updates are allowed during view
recomputation, i.e. the locking mechanism is more involving than the standard mutual ex-
clusion paradigm. The eager mechanism, on the other hand, allows concurrent updates and
update coalescing. To this aim, all updates that are in conflict with other concurrent updates
are aborted and subsequently regenerated until they are handled. In this paper we focus on
the locking mechanism, leaving the eager mechanism for future work.

Summarising, in this paper we thus address the MVC protocol and the CC protocol. More-
over, we assume that the CC protocol is implemented by the locking mechanism. Hence we
consider the part of theClock protocol and its environment as depicted in Figure 3.
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Figure 3: The part of theClock protocol and its environment relevant to the locking mechanism.

From now on we shall refer to this part of theClock protocol and its environment as the
Model-View-Concurrency-Control (MVCC for short) protocol. A typical series of actions
that can take place in the MVCC protocol is the following.

Upon receivinginput from the User, the Updater tries to obtain the system-wide lock
by sending arequestLockto the CC. The CC handles these lock requests in their order of
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arrival by sending agrantLockback to the Updater. Only upon receiving agrantLock, the
Updater is able to forward the originalinput to the VC. The VC transforms theinput into an
update, which it returns to the Updater. The latter returns the lock by attaching areleaseLock
to theupdateand sending this back to the CC. The CC forwards theupdateto the Model,
acknowledges thereleaseLock, and is only now ready to handle the subsequent lock request.
Upon receiving anupdate, the Model changes its data state and sends anotify back to each
of the VC. Each VC, upon receiving anotify, recomputes the display, sends aview to its
associated User, and sendsfinishedback to the CC.

3 Model Checking the MVCC protocol

In this section we present the basic concepts of model checking and of the model checker
Spin, followed by specifications inSpin’s input languagePromela of the MVCC protocol.

Model checking is an automatic technique for verifying whether or not a system design
satisfies its specifications [18]. Such a verification is moreover exhaustive, i.e. all possible
input combinations and states are taken into account. To avoid to run out of memory due to
a state-space explosion—which would make an exhaustive verification impossible—a sim-
plified model is used, which captures the core of the system design while abstracting from
unnecessary details.

One of the best known and most successful model checkers isSpin, which was developed
at Bell Labs during the last two decades [14]. It offers a spectrum of verification techniques,
ranging from partial to exhaustive verification. It is freely available throughspinroot.com
and it is very well documented. Apart from these obvious advantages we have chosen to use
Spin in this paper because of the aforementioned earlier attempt at verifying a simplified
version of theClock protocol withSpin in [3], which moreover contains a specification of
that simplifiedClock protocol inSpin’s input languagePromela in one of its Appendices.

Promela is a non-deterministicC-like specification language for modelling finite-state
systems communicating through channels [14]. Formally, specifications inPromela are built
from processes, data objects, and message channels. Processes are the components of the
system, while the data objects are its local and global variables. The message channels, fi-
nally, are used to transmit data between processes. Such channels can be local or global
and they can be FIFO buffered—for modelling asynchronous communication—or handshake
(a.k.a. rendezvous)—for modelling synchronous communication. Assume that processes A
and B are connected by a channel aToB. Then A can send a messagem to B over this chan-
nel by executing the statementaToB!m . If aToB is a buffered channel and its buffer is not
full, then m is stored in the buffer until B executesaToB?mand thereby receivesm from A
over this channel. This is an example of asynchronous communication between A and B.
If, on the other hand, aToB is a handshake channel, then the two above executions must be
synchronised, i.e. aToB can pass but not store messages. This is an example of synchronous
communication. For more detailed information onPromela, we refer the reader to [14].

Promela specifications can be fed toSpin, together with a request to verify certain cor-
rectness properties.Spin then converts thePromela processes into finite-state automata and
on-the-fly creates and traverses the state space of a product automaton over these finite-state
automata, in order to verify the specified correctness properties.Spin is able to verify both
safety and liveness properties. Safety properties are those that the system under scrutiny may
not violate, whereas liveness properties are those that it must satisfy. Such properties either
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formalise whether or not certain states are reachable, or whether or not certain executions
can occur. A typical safety property one usually desires is the absence of deadlock states,
i.e. states from which there is no possibility to continue the execution that led to these states.

There are several ways of formalising correctness properties inPromela, the following
two of which we shall use in this paper. First, we may addbasic assertionsto a Promela
specification. Subsequently, we can verify their validity by runningSpin. As an example,
consider that we want to be sure that no lock has been granted the moment in which we are
to grant a lock request. Consider moreover that there is a boolean variable writelock, which
is set totrue every time a lock request is granted. Then we can add the basic assertion

assert(writeLock == false)

to thePromela specification just before a lock is granted and letSpin verify whether there
are any assertion violations. In caseSpin concludes that this assertion may be violated, it also
presents a counterexample. Otherwise it simply reports that there are no assertion violations.

Secondly, we may addprogress labelsto thePromela specification, which mark a spe-
cific point in the specification. Subsequently, we can use such labels to formulate an LTL
property and test its validity by runningSpin. LTL is an extension of predicate logic allow-
ing one to express assertions about behaviour in time, without explicitly modelling time.Spin
accepts formulae in LTL that are constructed on the basis of atomic propositions (including
true andfalse ), the Boolean connectives! (negation),& & (and), | | (or), −> (impli-
cation), and<−> (equivalence), and the temporal operators[ ] (always),<> (eventually),
and U (until). Given a sequenceσ of states from the behaviour of a system, the formula[ ] p
is true if the propertyp always remainstrue in every state ofσ, the formula<> p is
true if the propertyp eventually becomestrue in at least one state ofσ, and the formula
p U q is true if the propertyp remainstrue in the states ofσ until the propertyq becomes
true in a state ofσ. For more detailed information on LTL, we refer the reader to [15].

As an example, consider that we want to guarantee that thePromela specification of the
MVCC protocol excludes starvation of its users, i.e. we want to know whether or not a user
can always eventually provide input. Then we can add the progress label

doneInput

to thePromela specification directly following a user input, i.e. just after the statement

userToUpdater[id]!input

in the User process. In this statement,id identifies the array index of the userToUpdater array
of (buffered) channels. Subsequently we can formulate the LTL formulae

[ ] <> User[pid]@doneInput,

where pid is theprocess instantiation numberof the User process about which we want to
know whether or not every sequence of states from the behaviour of thePromela specifi-
cation of the MVCC protocol contains a state in which this user’s state is the progress label
doneInput . Starting with0, Spin assigns—in order of creation—a unique pid to each pro-
cess it creates, which can be used in LTL formulae for process identification. Finally, we can
verify the validity of the above LTL formulae by runningSpin. Again, whenSpin concludes
that this statement is not valid, then it also presents a counterexample. Otherwise it simply
reports that the statement is valid. Note that in this paper we generally explain a formula in
words only after we have stated it formally.
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3.1 ThePromela Specification

In this section we discuss thePromela specification of the MVCC protocol which we intend
to validate in the next section. Our starting point is thePromela specification of the afore-
mentioned simplifiedClock protocol as given in one of the Appendices of [3]. The source
code of this specification was generously provided by the author himself.

Recall that our focus on concurrency control and distributed notification aspects of the
Clock protocol has led to the MVCC protocol as an abstraction of theClock protocol. In
more detail, from thePromela specification as given in one of the Appendices of [3] we
have omitted the environment processes SessionManager and SessionUpdater, the simple
caching processes ServerCache and ClientCache, and the replication processes Replicator and
Replica, as well as all global variables, messages, and channels associated to these processes.
Since none of these interfered with either the concurrency control algorithm underlying the
CC protocol or the distributed notification algorithm underlying in the MVC protocol, their
removal does not alter the behaviour of these algorithms. Obviously, the described reduction
of the total number of processes, data objects, and message channels reduces the state-space
and thereby the risk to run into a state-space explosion.

Subsequently we have modified the resultingPromela specification of the MVCC pro-
tocol even further—wherever this was possible without changing its meaning—in order to
reduce the size of the state space as well as that of the state vector to a greater extent. The
state vector is used bySpin to uniquely identify a system state and contains information on
the global variables, the channel contents, and for each process its local variables and its pro-
cess counter. Minimising its size thus results in less bytes thatSpin needs to store for each
system state and thereby further reduces the risk to run out of memory. Finally, in [14] it
is noted that next to the total number of processes, data objects, and message channels in a
Promela specification, the most common reason for running out of memory is the buffersize
of buffered channels. The most important further modifications that we have performed on
thePromela specification of the MVCC protocol are the following.

1. We have reduced the number of processes and channels by integrating the Server and
Client processes into the CC and Updater processes, respectively. In Figure 3 we can see
that this is a valid abstraction, since the Server and Client processes are nothing more
than message-passing processes. Therefore, integrating them with the CC and Updater
processes does not alter the meaning of the specification. This obviously reduces both the
size of the state space and that of the state vector.

2. We have reduced the number of buffered channels by replacing them as much as possible
by handshake channels. This reduces the number of interleaving steps and thus the size
of the state space. It moreover reduces the channel contents and thus the state vector.

3. We have further reduced the number of interleaving steps by grouping assignments into
atomic blocks as much as possible. More precisely, all administrative statements (such
as the updating of bits or booleans) have been grouped intod step s. As a result, they
are treated as one deterministic sequence of code that is executed indivisibly, i.e. as if it
were one single statement. This obviously reduces the size of the state space, where all
interleaving executions are considered.

Hence we consider the modified MVCC protocol as depicted in Figure 4 in case of two users,
where buffered (handshake) channels are depicted as dashed (solid) arrows.
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Figure 4: The modified MVCC protocol in case of two users.

It is important to note the buffered channel that is shared by the two Updaters and which
connects them to the CC, as it regulates FIFO scheduling of the lock requests from the two
Users. The blocks connected by arrows labelled with messages in Figure 4 represent pro-
cesses communicating by sending variables through channels in the completePromela spec-
ification, which is given in Appendix A. For ease of reading, we have added comments to
the source code. Furthermore, we have added some basic assertions and progress labels for
verification purposes.

4 Validation with Spin

In this section we show that the abstractions which we have applied to thePromela specifi-
cation of [3] are sufficient for being able to verify a number of core issues of the concurrency
control aspects of the MVCC protocol withSpin.

All verifications reported in this paper have been performed by runningSpin Version 4.0.4
on aSUN R© Netra

TM

X1 workstation with1000 Megabytes of available physical memory.
First and foremost we have letSpin perform a full statespace search for invalid endstates,

which isSpin’s formalisation of deadlock states. This resulted in the following output.

(Spin Version 4.0.4 -- 12 April 2003)
+ Partial Order Reduction

Full statespace search for:
never-claim - (not selected)
assertion violations - (disabled by -A flag)
cycle checks - (disabled by -DSAFETY)
invalid endstates +

State-vector 160 byte, depth reached 4539, errors: 0
38473 states, stored
34009 states, matched
72482 transitions (= stored+matched)
17041 atomic steps
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hash conflicts: 918 (resolved)
(max size 2ˆ19 states)

Stats on memory usage (in Megabytes):
6.463 equivalent memory usage for states (stored*(State-vector+overhead))
4.384 actual memory usage for states (compression: 67.84%)

State-vector as stored = 106 byte + 8 byte overhead
2.097 memory used for hash-table (-w19)
0.320 memory used for DFS stack (-m10000)
6.718 total actual memory usage

real 2.0
user 1.9
sys 0.0

We see that it now takesSpin just two seconds to conclude that there are no deadlocks.
We moreover see that thePromela specification we have used has a160 byte state vector,
whereas that of [3] has a332 byte state vector. The abstractions that we have applied have
thus reduced the state vector with more than a factor2. From this we gain a lot of confidence
w.r.t. the verifiability of future extensions of thisPromela specification, e.g. by incorporating
session management, the Replication and Cache protocols, or concurrency control based on
the eager mechanism. First, however, we want to assure that the MVCC protocol satisfies
some properties that are fundamental to concurrency control based on the locking mechanism.

4.1 Correctness Properties

In [3], several correctness criteria that the CC protocol must satisfy have been formulated,
covering both safety and liveness properties. Since these properties should also be satisfied
by the MVCC protocol, we now briefly recall them.

Data consistency.The server’s shared data state must be kept consistent. Any user input that
is processed by a client must thus lead to a complete update of the shared data state, which
in its turn must result in a notification of this update to all clients.

View consistency.No updates are allowed during view recomputation. Any user’s view re-
computation must have finished before any further update of the shared data state can take
place.

Absence of starvation.Every user input must eventually be responded to. Any user’s input
must thus result in a lock request, which eventually should be granted.

We also add several core properties of concurrency control based on the locking mechanism.

Concurrency control. Every lock request must eventually be granted, at any moment in time
only one user may be in the possession of a lock, and every obtained lock must eventually
be released.

In the subsequent sections we verify all of the above properties for the modified MVCC
protocol in case of two users by usingSpin, thePromela specification given in Appendix A,
and an extension of the latter which we will discuss shortly. This shows that verifications of
the optimisedPromela specification of the MVCC protocol are very well feasible with the
current state of the art of available model checking tools such asSpin.
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4.2 Concurrency Control

In this section we verify three core properties of locking-based concurrency control.
The first property is that every lock request is eventually granted. To verify this we have

added the progress labels

doneRequestLock and doneGrantLock

to thePromela specification of the Updater just after the statements where the Updater sends
a requestLockto the CC and where it receives agrantLockfrom the CC, i.e. just after

updaterToCC!requestLock,id and ccToUpdater[id]?grantLock ,

respectively, and then we have letSpin run verifications of the LTL formulae

[ ] (Updater[pid]@doneRequestLock−> <> Updater[pid]@doneGrantLock),

where pid is3 (for Updater(0)) or6 (for Updater(1)). We thus verify whether or not it is
always the case that whenever an updater has requested a lock on behalf of a user, then it
eventually grants this user a lock. It takesSpin just over a quarter of an hour to conclude that
the above LTL formulae are valid.

Before we continue it is important to note that the above formulae are trivially valid if
the left-hand side of the implication is alwaysfalse in every run, i.e. if the Updater never
passes thedoneRequestLock label. Therefore, we have letSpin also run verifications of
the LTL formulae

! (<> Updater[pid]@doneRequestLock),

where pid is3 (for Updater(0)) or6 (for Updater(1)). We thus verify whether or not there
exists a run in which the left-hand side of the implication eventually becomestrue by veri-
fying whether or not the Updater can ever pass thedoneRequestLock label. It takesSpin
just a split second to conclude that the above LTL formulae are not valid. It moreover provides
counterexamples which show that the Updater can eventually pass thedoneRequestLock
label. Though never mentioned specifically, for all formulae in the sequel that contain a logi-
cal implication we have verified that the left-hand side of this implication can indeed actually
becometrue in at least one run.

The second property is that at any moment in time, the CC may have granted at most one
lock. To verify this we have added the basic assertion

assert(writeLock == false)

to thePromela specification of the CC just before it is about to grant a lock to a user, i.e. just
before the statement

ccToUpdater[id]!grantLock ,

and then we have letSpin run a verification on assertion violations. We thus verify whether or
not it is always the case that the boolean variablewriteLock is false (indicating that no user
currently has a lock in its possession) the moment in which the CC is about to grant a user
a lock by sendinggrantLockto the updater associated to this user. Note thatwritelock is
set to true by the CC directly after it has sentgrantLock. In just a few minutesSpin concludes
that the above basic assertion is never violated, which proves that the property is valid.
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The third property is that every obtained lock is eventually released. To verify this we
have added the progress label

doneReleaseLock

to thePromela specification of the Updater just after the statement where the Updater sends
a releaseLockto the CC, i.e. just after

updaterToCC!releaseLock,id ,

and then we have letSpin run verifications of the LTL formulae

[ ] (Updater[pid]@doneGrantLock−> <> Updater[pid]@doneReleaseLock),

where pid is3 (for Updater(0)) or6 (for Updater(1)). We thus verify whether or not it is
always the case that whenever an updater has obtained a lock on behalf of a user, then it
eventually releases this lock. Again, it takesSpin just a few minutes to conclude that the
above LTL formulae are valid as well.

The verifications performed in this section show that the concurrency control aspects of
the MVCC protocol are well designed. They moreover satisfy the core properties of concur-
rency control based on the locking mechanism, as specified in the previous section.

4.3 Data Consistency

In this section we verify data consistency, which is an important property of groupware sys-
tems in general and the MVCC protocol in particular. Data consistency not only requires the
server’s data state to be kept consistent, but each update of the shared data state should more-
over be communicated to all clients through distributed notification. Any user input processed
by a client must thus lead to a complete update of the shared data state, which in its turn must
result in a notification of this update to all clients.

Unfortunately, thePromela specification we have used so far does not contain enough
information for verifying data consistency. This is because the addition of a progress label

doneUpdate

to thePromela specification of the Model just after the statement where it receives anupdate
from the CC, i.e. just after

ccToModel?update, ,

where matches any value, would not have allowed us to conclude which user’s input caused
this update. To nevertheless verify data consistency, we have extended thePromela specifi-
cation only for verification purposes with a user ID. This ID identifies the user that hascaused
an update and is sent along with all actions involved in the resulting distributed notification
of this update, i.e.update, notify, andfinished. The completePromela specification extended
with this user ID is given in Appendix B. Consequently, we have added the progress labels

doneUpdate0 and doneUpdate1

to the extendedPromela specification of the Model just after the statement

ccToModel?update,ID
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in the form of anif -statement which guarantees thatdoneInput0 is passed if theID in
ccToModel?update,ID equals0 (for User(0)), whereasdoneInput1 is passed if it
equals1 (for User(1)). Analogously, we have added the progress labels

doneNotify0 and doneNotify1

to the extendedPromela specification of the Updater just after the statement where it receives
anotify from the CC, i.e. just after

ccToUpdater[id]?notify,ID ,

in the form of anif -statement which guarantees thatdoneNotify0 is passed if theID
in ccToUpdater[id]?notify,ID equals0 (for User(0)), whereasdoneNotify1 is
passed if it equals1 (for User(1)).

Subsequently, to verify that any user input that is processed by a client must lead to a
complete update of the shared data state, we have added the progress label

doneInput

to the extendedPromela specification of the Updater just after the statement where it receives
user input, i.e. just after

userToUpdater[id]?input ,

and then we have letSpin run verifications of the LTL formulae

[ ] (Updater[pid]@doneInput−> <> Model[1]@doneUpdateX),

where pid is3 and X is0 (for Updater(0) corresponding to User(0)) or pid is6 and X is1
(for Updater(1) corresponding to User(1)), while1 is the pid of the Model. We thus verify
whether or not it is always the case that whenever an updater processes a user input, then the
Model eventually updates the shared data state. It takesSpin about ten minutes to conclude
that the above LTL formulae are valid.

Finally, to verify that any update of the shared data state in its turn results in a notification
of this update to all clients, we have letSpin run verifications of the LTL formulae

[ ] (Model[1]@doneUpdateX−>
((<> Updater[3]@doneNotifyX) & & (<> Updater[6]@doneNotifyX))),

where1 is the pid of the Model,3 is the pid of Updater(0), and6 is the pid of Updater(1),
while X is 0 (for Updater(0)) or1 (for Updater(1)). We thus verify whether or not it is always
the case that whenever the Model updates the shared data state on behalf of one of the users,
then all updaters eventually receive a notification of the update for that user. It takesSpin just
over half an hour to conclude that also the above LTL formulae are valid.

The verifications performed in this section show that the distributed notification aspects
of the MVCC protocol are well designed and that data consistency is guaranteed.
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4.4 View Consistency

In this section we verify view consistency rather than data consistency as another important
property of groupware systems in general and the MVCC protocol in particular. These two
properties are related, but the focus now lies on what a user sees on his or her screen.

In [3], view consistency is defined as excluding updates during view recomputation.
Hence any user’s view recomputation must have finished before any further update of the
shared data state can occur (and trigger a new view recomputation). However, a user’s input
is based on what he or she sees on his or her screen. Therefore, we believe it to be equally
important for groupware systems in general and the MVCC protocol in particular that input
should not be based on an outdated view. Hence any user’s view recomputation based on an
earlier input should have finished before this user can provide further input.

Initially, we verify that any user’s view recomputation must have finished before any
further update of the shared data state can take place. To do so, we have used the temporal
operatorU (until) to prohibit the CC to forward anupdateto the Model for the second time
before both user’s views have been recomputed as a result of the first time it has forwarded an
updateto the Model. We thus needed to distinguish the progress label indicating that the CC
has in fact forwarded anupdatefrom the one indicating that itdoes not do so againuntil it
has received afinishedfrom the VCs of both users. Therefore we have added to the extended
Promela specification of the CC the progress labels

doneInputY and doneInputY2 ,

whereY is 0 (for anupdatefrom Updater(0)) or1 (for anupdatefrom Updater(1)), just after
the statement where the CC sends anupdateto the Model, i.e. just after

ccToModel!update,id ,

and the progress labels
doneFinishedXY ,

whereX is 0 (for a finishedfrom Updater(0)) or1 (for a finishedfrom Updater(1)) andY
is 0 (for a finishedresulting from anupdatefrom Updater(0)) or1 (for a finishedresulting
from anupdatefrom Updater(1)), just after the statement where it sends afinishedto the CC,
i.e. just after

updaterToCC!finished,id,ID .

Consequently, we have letSpin run verifications of the LTL formulae

[ ] (CC[2]@doneUpdateY2−>
((( ! CC[2]@doneUpdateY) UCC[2]@doneFinished0Y) & &

(( ! CC[2]@doneUpdateY) UCC[2]@doneFinished1Y))),

where1 is the pid of the CC and Y is0 (for anupdatefrom Updater(0)) or1 (for anupdate
from Updater(1)). It takesSpin just over one and a half hour to conclude that the above LTL
formulae are valid.

Next we verify that any user’s view recomputation based on an earlier input must have
finished before this user can provide further input. To do so, we have again used the tem-
poral operatorU (until), this time however to prohibit a user to provide input (i.e. pass the
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doneInput progress label) before both user’s views have been recomputed (i.e. both have
passed thedoneView progress label). We thus needed to distinguish the progress label in-
dicating that a userhas in fact provided input from the one indicating that itdoes not do so
againuntil both users have passed thedoneView progress label. Therefore we have added
the progress label

doneInput2

to thePromela specification of the User just after the progress label

doneInput

and then we have letSpin run verifications of the LTL formulae

[ ] (User[pid]@doneInput2−>
(( ! User[5]@doneInput) & & ( ! User[8]@doneInput)) U

(User[5]@doneView& & User[8]@doneView)),

where pid is5 (for User(0)) or8 (for User(1)), while5 and8 are the pids of User(0) and
User(1), respectively. It takesSpin just a split second to conclude that these formulae are not
valid! It in fact presents counterexamples, one of which we have sketched in Figure 5 in the
form of a message sequence chart.

userToUpdater[0]?input

Updater(0)

updaterToCC!requestLock,0

ccToUpdater[0]?grantLock

Concurrency
Controller

ccToUpdater[0]!grantLock

updaterToCC?requestLock,0

User(0)

userToUpdater[0]!input

userToUpdater[0]!input

handshake

handshake

buffe
r =

 [1
]

Figure 5: The message sequence chart of a counterexample for view consistency.

This message sequence chart describes the following problem. At a certain moment in
time, User(0) provides an input by storing aninput message in the buffered channel (with
buffersize1) connecting User(0) with its associated Updater(0). This Updater(0) consequently
participates in two handshakes with the CC, the first one to request the lock and the second
one to obtain the lock. Now that Updater(0) has obtained the lock, it reads theinput mes-
sage from the aforementioned buffered channel, thereby emptying its buffer. At this moment,
User(0) may thus fill the buffer again with aninput message, which is by definition based on
a view that has not been updated w.r.t. User(0)’s own input.

The verifications performed in this section show that view consistency is guaranteed when
it is understood as the prohibition of updates during view recomputation. However, a user’s
input may be based on an outdated view.

4.5 Absence of Starvation

A further desirable property of any groupware system in general and the MVCC protocol
in particular is that none of its users can be excluded forever, i.e. every user input must
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eventually be responded to. In this section we verify this absence of (user) starvation and the
fact that any user’s input must result in a lock request, which eventually should be granted.

The main question we thus ask ourselves here is whether or not each user can always
provide input if it wishes to do so. To verify this, we have letSpin run verifications of the
LTL formulae

[ ] <> User[pid]@doneInput,

where pid is5 (for User(0)) or8 (for User(1)). We thus verify whether or not it is always
the case that a user always eventually sendsinput to its associated Updater. Unfortunately,
in just a split secondSpin concludes that the above LTL formulae are not valid. It moreover
presents counterexamples. More precisely, it finds cyclic behaviour in which one of the user
processes can never again sendinput to its associated updater, after having done so just once
in the very beginning.

It is important to note that even when we have usedSpin’s weak fairness notion,Spin
concluded that the above formulae are not valid. In fact, it can still be the case that a user is
continuously busy updating its view through the statementvcToUser[id]?view rather
than performing an input through the statementuserToUpdater[id]!input . We come
back to this issue in the next section.

We continue by verifying that any user’s input must result in a lock request, which even-
tually should be granted. From Subsection 4.2 we know that every lock request is eventually
granted. To verify that a user input eventually results in a lock request, we have letSpin run
verifications of the LTL formulae

[ ] (User[pid1]@doneInput−> <> Updater[pid2]@doneRequestLock),

where pid1 is5 and pid2 is3 (for User(0) and Updater(0)) or pid1 is8 and pid2 is6 (for
User(1) and Updater(1)). We thus verify whether or not it is always the case that whenever a
user provides input, then its associated updater eventually requests a lock. It takesSpin just
over ten seconds to conclude that the above LTL formulae are not valid. This does not come
as a surprise, however, because the cyclic behaviour in the above counterexample in fact is
such that the updater that is associated to the user that can never again sendinputafter having
done so once in the beginning, is continuously busy with operations related to the updating
of its associated user’s view. These operations are the result of the other user’s continuous
stream ofinput.

The verifications performed in this section show that a user input need not be responded
to. As a result, we were not able to guarantee the absence of user starvation and thus neither
the fact that any user’s input should lead to a lock request. In the next section we show that
under a proper condition, absence of user starvation can be guaranteed.

4.6 Spin and Fairness

In the previous section we have seen that, given thePromela specification of the MVCC
protocol given in Appendix A,Spin does not allow one to conclude that a user can always
provide input in the MVCC protocol, not even when using weak fairness. Instead,Spin can
continuously favour the execution of the user’s view actionvcToUser[id]?view over
that of the user’s input actionuserToUpdater[id]!input .

Recall that we have specified the User process as follows inPromela.
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proctype User(byte id)
{

do
:: userToUpdater[id]!input;
:: vcToUser[id]?view;
od

}

The reason for this is the way fairness is implemented inSpin, viz. at the process level
rather than at the statement level. Consequently, a computation is said to be weakly fair if
every process that is continuously enabled from a particular point in time will eventually be
executed after that point. Note that this does not guarantee that every (infinitely often) enabled
statement of such a process will eventually be executed after that point. This is due to the fact
that such a process may contain more than one statement that is continuously enabled from a
particular point in time and in order for this process to be weakly fair it suffices that one of
these statements will eventually be executed after that point. In this section we discuss one
possible solution to overcome this problem and thus enforce fairness on the statement level.

In [14] it is suggested to enforce weak fairness by specifying the desired fairness con-
straintc as an LTL formula and consequently verifying whether or not a specification sat-
isfies a propertyp under the condition that it satisfiesc. Rather than verifyingp one thus
verifiesc−> p. LTL is sufficiently expressive for specifying fairness constraints of this type.

To overcome the problem we encountered above, we thus had to specify a constraint
which guarantees that both users are equally given the possibility to perform input. To this
aim, we have added the progress labels

checkInput and checkNotify

to thePromela specification of the VC just after the statements where it receives aninput or
anotify from the Updater, i.e. just after

updaterToVC[id]?input and updaterToVC[id]?notify ,

respectively, and then we have letSpin run verifications of the LTL formulae

(( [ ] <> VC[pid1]@checkNotify) & & ( [ ] <> VC[pid1]@checkInput))−>
[ ] <> User[pid2]@doneInput,

where pid1 is4 and pid2 is 5 (for VC(0) and User(0)) or pid1 is7 and pid2 is 8 (for VC(1) and
User(1)). We thus verify whether or not a user can always provide input under the condition
that its associated VC checks for update notifications and user input in a fair way, i.e. it
always eventually checks for anotify from the corresponding updater and it always eventually
checks for aninput from the corresponding updater. Hence, we restrict our verification to
those computations in which the VC satisfies a kind of progress condition under which both
actions that it is able to receive, are in fact received infinitely often. We know that such
computations exist because, as said before, we have verified for all formulae in this paper
that the left-hand sides of implications can indeed actually becometrue in at least one run.
It takesSpin just about twenty minutes to conclude that the above LTL formulae are valid.

The verifications performed in this section show that absence of user starvation can be
guaranteed by adding a proper constraint as a preamble to the LTL formula expressing the
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absence of user starvation. Such a constraint could reflect a possible implementation strategy
that guarantees fair treatment of enabled options. It may sometimes be quite hard to express
the necessary constraints in LTL. In fact, it is our experience that most of the time spent on the
verifications performed in this paper actually went into formulating the proper LTL formulae.

5 Conclusion

In this paper we have shown how model checking can be used for the verification of pro-
tocols underlying groupware systems. More precisely, we have presented a case study on
the formalisation and verification of those protocols underlying theClock toolkit, that are
responsible for its concurrency control and distributed notification aspects. The correctness
properties that we have verified in this paper are related to important groupware issues such as
data consistency, view consistency, absence of (user) starvation, and concurrency control. As
a result, we contribute to the verification of some ofClock’s underlying groupware protocols,
which was attempted in [3] with very limited success.

In the future we plan to verify other interesting properties after extending the model de-
veloped in this paper in order to cover also session management, various forms of replication
and caching, and other concurrency control mechanisms. Regarding theClock toolkit this can
be achieved by incorporating some of its components that we have abstracted from in this pa-
per, i.e. the Cache protocol and the Replication protocol from theClock protocol, the part
of the CC protocol regarding the eager mechanism, and the Session Manager fromClock’s
environment. For the development of such extensions of the specification we moreover plan
to take into consideration other modelling techniques, in particular compositional ones like
process algebras and team automata [19]. The combination of compositionality together with
powerful abstraction notions supported by a sound algebraic theory (e.g. congruences and
equational laws) not only makes process algebras well suited for protocol modelling, but also
gives opportunities for effectively tackling the complexity of the analysis. Furthermore, nowa-
days several model checkers are available for process algebras (e.g. JACK [20], CADP [21],
CWB-NC [22], andµCRL [23]). Team automata were introduced explicitly for the descrip-
tion and analysis of groupware systems and their interconnections [24, 25] and were shown
to be useful in a variety of groupware settings [26, 27]. A key feature of team automata is the
intrinsic flexibility of their synchronisation operators. In [28] it was shown that constructing
team automata according to certain natural types of synchronisation guarantees composition-
ality. Moreover, in [29] some preliminary work on model checking team automata usingSpin
was carried out.

Finally, an important component of groupware analysis has to do with performance and
real-time issues. Consequently we plan to carry out experimentation with quantitative exten-
sions of modelling frameworks (e.g. timed-, probabilistic-, and stochastic-automata), related
specification languages (e.g. stochastic process algebras), and proper support tools for ver-
ification and formal dependability assessment (e.g. stochastic model checking [30, 31] and
formal specification-driven discrete simulation tools [32]).
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A The CompletePromela Specification

/* Macros */

#define maxUsers 2 /* all bits below must become bytes when maxUsers > 2 */

/* Handshake and other communication channels */

mtype =
{

input, view, /* User */
requestLock, grantLock, releaseLock, /* locking mechanism */
update, notify, /* data consistency */
finished /* view consistency */

};

/* Channels between environment and client layer */

chan userToUpdater[maxUsers] = [1] of {byte}; /* not [0] due to nempty test in Updater */
chan vcToUser[maxUsers] = [0] of {byte};

/* Internal client layer channels */

chan updaterToVC[maxUsers] = [0] of {byte};
chan vcToUpdater[maxUsers] = [0] of {byte};

/* Channels between client layer and server layer */

chan updaterToCC = [6] of {byte, bit}; /* not [0] due to FIFO scheduling in Updater */
chan ccToUpdater[maxUsers] = [1] of {byte}; /* not [0] due to atomic in CC */

/* Internal server layer channels */

chan ccToModel = [0] of {byte, bit};
chan modelToCC = [0] of {byte, bit};

/* Environment processes */

proctype User(byte id)
{

do
:: userToUpdater[id]!input; /* User sends Input to Updater */

doneInput: skip; /* (progress label for verification purposes) */
doneInput2: skip /* (progress label for verification purposes) */

:: vcToUser[id]?view; /* User notes new View from VC */
doneView: skip /* (progress label for verification purposes) */

od
}

/* Server layer processes */

proctype Model()
{

byte id;

do
:: ccToModel?update,_ -> /* Upon receiving any User Update from CC, */

atomic
{

id = 0;
do
:: (id < maxUsers) ->

modelToCC!notify,id; /* Model responds with Notify to each User */
id++

:: else -> break
od

}
od

}
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proctype ConcurrencyController()
{

chan lockQ = [maxUsers] of {bit};
mtype msg;
bool writeLock = false;
byte id, numNotified = 0;

do /* if at least one user requested the lock and there is no writeLock, */
:: (nempty(lockQ) && numNotified == 0 && !writeLock) -> /* then CC */

lockQ?id; /* checks which User first did a requestLock, */
assert(writeLock == false); /* (assertion for verification purposes) */
ccToUpdater[id]!grantLock; /* sends a grantLock for the User to Updater, */
writeLock = true /* and sets writeLock to be true */

:: updaterToCC?msg,id ->
if
:: (msg == update) -> /* Upon receiving User Update from Updater */

ccToModel!update,id; /* CC forwards User Update to Model and CC */
atomic
{

id = 0;
do
:: (id < maxUsers) ->

modelToCC?notify,id; /* waits for Notify from Model, 1 a */
ccToUpdater[id]!notify; /* User, forwards Notify to Updater */
numNotified++; /* and finally augments numNotified */
id++

:: else -> break
od

}
:: (msg == finished) -> /* Upon receiving Finished from Updater, CC has */

numNotified-- /* 1 more User with View recomputation Finished */
:: (msg == requestLock) -> /* CC notes User id requestLock from Updater */

lockQ!id /* and hence must handle User id requestLock */
:: (msg == releaseLock) -> /* CC notes releaseLock from Updater */

writeLock = false /* and hence sets writeLock to false */
fi

od
}

/* Client layer processes */

proctype ViewController(byte id)
{

do
:: updaterToVC[id]?input -> /* Upon receiving User Input from Updater */

checkInput: skip; /* (progress label for verification purposes) */
vcToUpdater[id]!update /* VC responds by returning a User Update */

:: updaterToVC[id]?notify -> /* Upon receiving a Notify of Update from VC, */
checkNotify: skip; /* (progress label for verification purposes) */
vcToUser[id]!view; /* VC informs both User (by sending new View) */
vcToUpdater[id]!finished /* and Updater of View recomputation Finished */

od
}

proctype Updater(byte id)
{

mtype msg;
bool canProcessInput = true, waitingForLock = false;

do /* Updater notes User Input and */
:: (canProcessInput && !waitingForLock && nempty(userToUpdater[id])) ->

updaterToCC!requestLock,id; /* does the requestLock from CC */
doneRequestLock: skip; /* (progress label for verification purposes) */
d_step{canProcessInput = false; /* It cannot process more User Input */
waitingForLock = true} /* if waiting for lock to be granted */

:: vcToUpdater[id]?msg ->
if /* Updater deals with message from VC */
:: (msg == update) -> /* Updater notes Update from VC */

updaterToCC!update,id; /* so forwards User Update */
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updaterToCC!releaseLock,id; /* and a releaseLock to CC */
doneReleaseLock: skip; /* (progress label for verification purposes) */

:: (msg == finished) -> /* Updater notes Finished from VC */
updaterToCC!finished,id; /* and it thus informs CC that */
canProcessInput = !waitingForLock /* View recomputation Finished */

fi
:: ccToUpdater[id]?msg ->

if /* Updater deals with message from CC */
:: (msg == grantLock) -> /* as Updater notes grantLock from CC, */

doneGrantLock: skip; /* (progress label for verification purposes) */
userToUpdater[id]?input; /* it finally receives Input from User */
doneInput: skip; /* (progress label for verification purposes) */
updaterToVC[id]!input; /* Updater forwards User Input to VC & */
waitingForLock = false /* is hence no longer waiting for lock */

:: (msg == notify) -> /* Updater notes Notify from CC */
updaterToVC[id]!msg /* & thus forwards Notify to VC */

fi
od

}

/* Initialisation process */

init
{

byte Users = 0;

atomic
{

run Model(); /* pid = 1 */
run ConcurrencyController(); /* pid = 2 */
run Updater(Users); /* Updater(0) with pid = 3 */
run ViewController(Users); /* VC(0) with pid = 4 */
run User(Users); /* User(0) with pid = 5 */
Users++;
do
:: (Users < maxUsers) ->

run Updater(Users); /* Updater(1) with pid = 6 */
run ViewController(Users); /* VC(1) with pid = 7 */
run User(Users); /* User(1) with pid = 8 */
Users++

:: else -> break
od

}
}

B The CompletePromela Specification Extended with a User ID

/* Macros */

#define maxUsers 2 /* all bits below must become bytes when maxUsers > 2 */

/* Handshake and other communication channels */

mtype =
{

input, view, /* User */
requestLock, grantLock, releaseLock, /* locking mechanism */
update, notify, /* data consistency */
finished /* view consistency */

};

/* Channels between environment and client layer */

chan userToUpdater[maxUsers] = [1] of {byte}; /* not [0] due to nempty test in Updater */
chan vcToUser[maxUsers] = [0] of {byte};

/* Internal client layer channels */
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chan updaterToVC[maxUsers] = [0] of {byte, bit};
chan vcToUpdater[maxUsers] = [0] of {byte, bit};

/* Channels between client layer and server layer */

chan updaterToCC = [6] of {byte, bit, bit}; /* not [0] due to FIFO scheduling in Updater */
chan ccToUpdater[maxUsers] = [1] of {byte, bit}; /* not [0] due to atomic in CC */

/* Internal server layer channels */

chan ccToModel = [0] of {byte, bit};
chan modelToCC = [0] of {byte, bit, bit};

/* Environment processes */

proctype User(byte id)
{

do
:: userToUpdater[id]!input; /* User sends Input to Updater */

doneInput: skip; /* (progress label for verification purposes) */
doneInput2: skip /* (progress label for verification purposes) */

:: vcToUser[id]?view; /* User notes new View from VC */
doneView: skip /* (progress label for verification purposes) */

od
}

/* Server layer processes */

proctype Model()
{

byte id;
bit ID;

do
:: ccToModel?update,ID -> /* Upon receiving an Update of User ID from CC, */

if
:: (ID == 0) ->

doneUpdate0: skip /* (progress label for verification purposes) */
:: (ID == 1) ->

doneUpdate1: skip /* (progress label for verification purposes) */
fi;
atomic
{

id = 0;
do
:: (id < maxUsers) -> /* Model responds with Notify */

modelToCC!notify,id,ID; /* to each User and indicates */
id++ /* also which User did Update */

:: else -> break
od

}
od

}

proctype ConcurrencyController()
{

chan lockQ = [maxUsers] of {bit};
mtype msg;
bool writeLock = false;
byte id, numNotified = 0;
bit ID;

do /* if at least one user requested the lock and there is no writeLock, */
:: (nempty(lockQ) && numNotified == 0 && !writeLock) -> /* then CC */

lockQ?id; /* checks which User first did requestLock, */
assert(writeLock == false); /* (assertion for verification purposes) */
ccToUpdater[id]!grantLock,id; /* sends grantLock for the User to Updater, */
writeLock = true /* and sets writeLock to be true */

:: updaterToCC?msg,id,ID ->
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if
:: (msg == update) -> /* Upon receiving User Update from Updater */

ccToModel!update,id; /* CC forwards User Update to Model and CC */
if
:: (ID == 0) ->

doneUpdate0: skip; /* (progress label for verification purposes) */
doneUpdate02: skip /* (progress label for verification purposes) */

:: (ID == 1) ->
doneUpdate1: skip; /* (progress label for verification purposes) */
doneUpdate12: skip /* (progress label for verification purposes) */

fi;
atomic
{

id = 0;
do
:: (id < maxUsers) -> /* waits for each User for */

modelToCC?notify,id,ID; /* Notify from Model which */
ccToUpdater[id]!notify,ID; /* it forwards to Updater, */
numNotified++; /* plus User ID of Update, */
id++ /* & augments numNotified */

:: else -> break
od

}
:: (msg == finished) -> /* Upon receiving Finished from Updater, CC has */

if
:: (id == 0 && ID == 0) ->

doneFinished00: skip /* (progress label for verification purposes) */
:: (id == 0 && ID == 1) ->

doneFinished01: skip /* (progress label for verification purposes) */
:: (id == 1 && ID == 0) ->

doneFinished10: skip /* (progress label for verification purposes) */
:: (id == 1 && ID == 1) ->

doneFinished11: skip /* (progress label for verification purposes) */
fi;
numNotified-- /* 1 more User with View recomputation Finished */

:: (msg == requestLock) -> /* CC notes User id requestLock from Updater */
lockQ!id /* and hence must handle User id requestLock */

:: (msg == releaseLock) -> /* CC notes releaseLock from Updater */
writeLock = false /* and hence sets writeLock to false */

fi
od

}

/* Client layer processes */

proctype ViewController(byte id)
{

bit ID;

do
:: updaterToVC[id]?input,id -> /* Upon receiving User Input from Updater */

checkInput: skip; /* (progress label for verification purposes) */
vcToUpdater[id]!update,id /* VC responds by returning a User Update */

:: updaterToVC[id]?notify,ID -> /* Upon receiving a Notify of Update from VC, */
checkNotify: skip; /* (progress label for verification purposes) */
vcToUser[id]!view; /* VC informs both User (by sending new View) */
vcToUpdater[id]!finished,ID /* and Updater of View recomputation Finished */

od
}

proctype Updater(byte id)
{

mtype msg;
bool canProcessInput = true, waitingForLock = false;
bit ID;

do /* Updater notes User Input and */
:: (canProcessInput && !waitingForLock && nempty(userToUpdater[id])) ->

updaterToCC!requestLock,id,id; /* does the requestLock from CC */
doneRequestLock: skip; /* (progress label for verification purposes) */
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d_step{canProcessInput = false; /* It cannot process more User Input */
waitingForLock = true} /* if waiting for lock to be granted */

:: vcToUpdater[id]?msg,ID ->
if /* Updater deals with message from VC */
:: (msg == update) -> /* Updater notes Update from VC */

updaterToCC!update,id,id; /* so forwards User Update */
updaterToCC!releaseLock,id,id; /* and a releaseLock to CC */
doneReleaseLock: skip; /* (progress label for verification purposes) */

:: (msg == finished) -> /* Updater notes from VC that User ID */
updaterToCC!finished,id,ID; /* Finished View recomputation, hence */
canProcessInput = !waitingForLock; /* it tells CC & User canProcessInput */

fi
:: ccToUpdater[id]?msg,ID ->

if /* Updater deals with message from CC */
:: (msg == grantLock) -> /* as Updater notes grantLock from CC, */

doneGrantLock: skip; /* (progress label for verification purposes) */
userToUpdater[id]?input; /* it finally receives Input from User */
doneInput: skip; /* (progress label for verification purposes) */
updaterToVC[id]!input,id; /* Updater forwards User Input to VC & */
waitingForLock = false /* is hence no longer waiting for lock */

:: (msg == notify) -> /* Updater notes Notify from CC */
if
:: (ID == 0) ->

doneNotify0: skip /* (progress label for verification purposes) */
:: (ID == 1) ->

doneNotify1: skip /* (progress label for verification purposes) */
fi;
updaterToVC[id]!msg,ID /* & thus forwards Notify to VC */

fi
od

}

/* Initialisation process */

init
{

byte Users = 0;

atomic
{

run Model(); /* pid = 1 */
run ConcurrencyController(); /* pid = 2 */
run Updater(Users); /* Updater(0) with pid = 3 */
run ViewController(Users); /* VC(0) with pid = 4 */
run User(Users); /* User(0) with pid = 5 */
Users++;
do
:: (Users < maxUsers) ->

run Updater(Users); /* Updater(1) with pid = 6 */
run ViewController(Users); /* VC(1) with pid = 7 */
run User(Users); /* User(1) with pid = 8 */
Users++

:: else -> break
od

}
}


