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ABSTRACT
We investigate the suitability of statistical model checking
techniques for the analysis of probabilistic models of soft-
ware product lines with complex quantitative constraints
and advanced feature installation options. Such SPL mod-
els are defined in the probabilistic feature-oriented language
QFLan. QFLan is a rich process algebra whose operational
behaviour interacts with a store of constraints and as such
it allows to separate product configuration from product be-
haviour. The resulting probabilistic configurations and be-
haviour converge seamlessly in a semantics based on discrete-
time Markov chains, thus enabling quantitative analysis. To
this aim, we combine a Maude implementation of QFLan,
integrated with Microsoft’s SMT constraint solver Z3, with
the distributed statistical model checker MultiVeStA. This
enables analyses that range from the likelihood of specific be-
haviour to the expected average cost of products, in terms of
feature attributes. We illustrate our approach by performing
quantitative analyses on a bikes product line case study.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Formal methods, Model checking, Statistical meth-
ods; D.2.13 [Software Engineering]: Reusable Software—
Domain engineering ; F.3.2 [Logics and Meanings of Pro-
grams]: Semantics of Programming Languages—Process
models; G.3 [Probability and Statistics]

General Terms
Design, Experimentation, Verification

Keywords
Product lines, Probabilistic models, Quantitative constraints,
Statistical model checking
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1. INTRODUCTION
There is a lot of recent research on lifting successful high-

level algebraic modelling languages and formal verification
techniques known from single (software) system engineer-
ing, such as process calculi and model checking, to (software)
product line engineering (SPLE), e.g. [2,5,6,14,20,25,31,32].
The challenge is to handle the variability inherent to SPLs,
by which the number of possible products of an SPL may be
exponential in the number of features. In [8], we contributed
with the feature-oriented language FLan and its implemen-
tation in Maude [15], allowing analyses ranging from consis-
tency checking (by means of SAT solving) to model checking.

In FLan, a rich set of process-algebraic operators allows
one to specify both the configuration and the behaviour of
products, while a constraint store allows one to specify all
common constraints known from feature models as well as
additional action constraints typical of feature-oriented soft-
ware development. The execution of a process is constrained
by the store (e.g. to avoid introducing inconsistencies), but
a process can also query the store (e.g. to resolve configura-
tion options) or update the store (e.g. to add new features,
even at run time).

In [7], we subsequently equipped FLan with the means to
specify probabilistic models of SPLs, resulting in PFLan.
The main distinguishing modelling feature of FLan is the
clean separation between the configuration and run-time as-
pects of an SPL. PFLan adds to this the possibility to equip
each action (including those that install a feature, possibly
at run time) with a rate, which can represent uncertainty,
a failure rate, randomisation, or preferences. An executable
implementation in Maude, together with the distributed sta-
tistical model checker MultiVeStA [30], allows us to estimate
the likelihood of specific configurations and behaviour of an
SPL, and thus to measure non-functional aspects such as
quality of service, reliability, or performance.

An emergent fact of our investigations is the urgent need
to consider a number of further aspects in the specification
and analysis of behavioural models of SPLs, such as the
staged configurations known from dynamic software product
lines [12,17] (e.g. removal and update of features) and quan-
titative constraints (e.g. price constraints). Recent surveys
on existing approaches on applying formal analysis tech-
niques in SPLE [31] and discussions on model checking SPL
behaviour [8] reveal that there are currently no approaches
dealing with such aspects in a unifying framework. Indeed,



we are aware of only a few, quite different, approaches on
probabilistic model checking of SPLs [19,21,33], whereas, to
the best of our knowledge, [7] contains the only other appli-
cation of statistical model checking in SPLE and [16] is the
only approach (in addition to ours) to the model checking
of SPL models with quantitative constraints over feature
attributes. However, none of those approaches is able to
combine dynamic feature configurations, quantitative con-
straints and quantitative analyses based on statistical model
checking. We aim at filling this gap by extending our frame-
work for the formal specification and analysis of SPLs.

For this purpose, in this paper we enrich PFLan with
the possibility to uninstall and replace features at run time
and with quantitative constraint modelling options regard-
ing the ‘cost’ of features, i.e. feature attributes related to
non-functional aspects such as price, weight, reliability, etc.
In particular, the novel modelling options we introduce are:

1. Arithmetic relations among feature attributes (e.g. the
total cost of a set of features must be less than a certain
threshold);

2. Propositions relating the absence or presence of a fea-
ture to a quantitative constraint of type 1 (e.g. if a
certain feature is present, then the total cost of a set
of features must be less than a certain threshold);

3. Richer action constraints involving quantitative con-
straints of type 1 (e.g. a certain action can be per-
formed only if the total cost of the set of features con-
stituting the product is less than a certain threshold).

We call the new language presented in this paper QFLan.
The uninstallation and replacement of features can be the
result of malfunctioning or of the need to install a better
version of the feature (e.g. a software update). We will il-
lustrate this in our case study, as well as the use of each of
the above type of quantitative constraints over feature at-
tributes, by providing concrete examples. It is important to
note that the above type of quantitative constraints are sig-
nificantly more complex than the ones that are commonly
associated to attributed feature models [10].

As feature attributes are typically not Boolean [16], the
problem of deciding whether a product satisfies an attributed
feature model with quantitative constraints, requires more
general satisfiability-checking techniques than SAT solving.
This naturally leads to the use of Satisfiability Modulo The-
ory (SMT) solvers like Microsoft’s Z3 [18], which allow one to
deal with richer notions of constraints like arithmetic ones.
In fact, an important contribution of this paper is the in-
tegration of SMT solving into our approach by means of a
combination of our Maude QFLan interpreter and Z3.

Formally, our statistical model checking approach is to
perform a sufficient number of probabilistic simulations of
an SPL model to obtain statistical evidence (with a pre-
defined level of statistical confidence) of the quantitative
properties being verified. Such properties are formulated
in MultiVeStA’s property specification language MultiQua-
TEx [30]. Statistical model checking offers unique advan-
tages over exhaustive (probabilistic) model checking. First,
statistical model checking does not need to generate en-
tire state spaces and hence scales better without suffering
from the combinatorial state-space explosion problem typi-
cal of model checking. In particular in the context of SPLs,
given their possibly exponential number of products, this

outweighs the main disadvantage of having to give up on
obtaining exact results (100% confidence) with exact anal-
ysis techniques like (probabilistic) model checking. Second,
statistical model checking scales better with hardware re-
sources since the set of simulations to be carried out can be
trivially parallelised and distributed. MultiVeStA, indeed,
can be run on multi-core machines, clusters or distributed
computers with almost linear speedup. A unique advantage
of MultiVeStA is that it can use the same set of simulations
for checking several properties at the same time, thus of-
fering even further reductions of computing time. Further
details on (probabilistic) model checking can be found in [3]
and on statistical model checking in [23,24].

The paper outline is as follows. Section 2 contains a bikes
product lines case study. Section 3 presents QFLan, fol-
lowed by a QFLan model of the case study in Section 4.
MultiVeStA is introduced in Section 5, followed by experi-
mental quantitative analyses of the case study in Section 6.
Section 7 summarises our contributions and future work.

2. BIKES PRODUCT LINE CASE STUDY
We describe in this section a case study that has motivated

the extension of our approach to the modelling and analysis
of behavioural SPL models and that we have used to validate
our novel solutions. We use the case study here as a running
example to illustrate the main concepts of our approach and
to provide intuitive cases of its possibilities and limitations.

The case study stems from an ongoing collaboration with
PisaMo S.p.A., an in-house public mobility company of the
Municipality of Pisa, in the context of the European project
Quanticol (www.quanticol.eu). PisaMo introduced the pub-
lic bike-sharing system CicloPi in the city of Pisa two years
ago. This bike-sharing system is supplied by Bicincittà S.r.l.
(www.bicincitta.com).

To create an attributed feature model of a product line
of bikes, we performed requirements elicitation on a set of
documents generously shared with us by Bicincittà. This al-
lowed us to extract the main features of the bikes they sell as
part of the bike-sharing system, including indicative prices,
and to identify their commonalities and variabilities. We
then added some features that we found by reading through
a number of documents on the technical characteristics and
prices of bikes and their components as currently being sold
by major bike vendors. The resulting model has thus more
variability than typical in bike-sharing systems. Indeed, ven-
dors of such systems traditionally allow little variation to
their customers (e.g. most vendors only sell bikes with a so-
called step-thru frame, a.k.a. open frame or low-step frame,
typical of utility bikes instead of considering other kind of
frames as we do), in part due to the difficulties of analysing
systems with high variability to provide guarantees on the
deployed products and services. We believe that the progress
of SPL analysis techniques (including the contribution of
this paper) will help the adoption and hence the provision
of richer (bike-sharing) systems with higher variability.

The resulting attributed feature model is depicted in Fig. 1.
Without taking the attributes into account this feature model
of 21 features gives rise to 1, 314 different products. Of
course, quantitative constraints over feature attributes can
partially reduce the number of products (e.g. some bikes
may be too expensive, or too heavy) but not so much as
to mitigate the inherent exponential explosion. Such con-
straints and feature attributes are specified as follows. Each

www.quanticol.eu
www.bicincitta.com


Figure 1: Attributed feature model of bikes product line (with shorthand names)

feature is equipped with a set of non-functional attributes,
like price and weight or load , which represent the specific
feature’s price in euros, weight in kilos, and computational
load, respectively.1 The set of all features of the product line
is F = {b, l , i , e, g , u, k , f , y , r ,w , o, a, t , s, d , h,m,n, u, c}.
A product P from the product line is a non-empty subset
PF ⊆ F that moreover fulfills the additional quantitative
constraints defined over features and attributes. As we have
seen in the Introduction, these can range from rather simple
constraints (e.g. price(u) ≤ 20, i.e. the price of the compu-
tational unit should be less than 20 euros) to quite more
complex ones (e.g. g 6∈ PF →

∑
f∈PF

weight(f) ≤ 10, i.e. if
the bike does not have an engine then it cannot weigh more
than 10 kilos). Without such constraints, deciding whether
a product satisfies a feature model reduces to Boolean sat-
isfiability (SAT), which can efficiently be computed with
SAT solvers [4]. However, in this paper we specifically al-
low such quantitative constraints, which requires the use of
SMT solvers like Microsoft’s Z3 [18].

For our case study, we consider the following constraints:

(C1)
∑
f∈PF

price(f)≤600: a bike may cost at most 600 euros;

(C2)
∑
f∈PF

weight(f)≤15: a bike may weigh up to 15 kilos;

(C3)
∑
f∈PF

load(f) ≤ 100%: a bike’s total computational

load may not exceed 100%.

Constraints (C1)–(C3) are part of the constraint store of our
QFLan model of the case study. As such, they prohibit the
execution of any action (e.g. the run-time (un)installation or
replacement of features) that would violate these constraints
since its execution would result in an inconsistent constraint
store. Furthermore, the store also contains two constraints
similar to (C1) as constraints on actions, which explicitly
specify the precise subset of actions that are affected by
them. These constraints are used in the behavioural part of
our model, discussed below, to forbid selling bikes that cost
less than 250 euros (C4) and to forbid dumping broken (and
irreparable) bikes that cost more than 400 euros (C5):

(C4) do(sell) →
∑
f∈PF

price(f) ≥ 250;

1We assume b, l , e, u, f , and t to have the sum of the
attributes of their respective subfeatures as attribute values.

(C5) do(irreparable) →
∑
f∈PF

price(f) ≤ 400.

The behaviour associated to our bikes product line is based
on a bike-sharing scenario that we abstracted from the bike-
sharing system CicloPi with some additional behaviour con-
cerning not yet realised features such as the use of electric
bikes and the possible run-time installation of apps. A rough
sketch of it is depicted in Fig. 2.

Initially, we assume that a pre-configured bike, containing
precisely one of the alternative subfeatures from each of the
core features Wheels and Frame, arrives at the initial state
factory (a process). In our case study, we assume such an
initial product from the bikes product line to contain the
feature set {y , d}. At this point it is important to underline
that all actions that we are to describe next actually have
an associated rate (omitted in Fig. 2) in the QFLan model
of our case study (described in Section 4).

In factory (e.g. of Bicincittà), further features may be in-
stalled or replaced (e.g. different wheels or a different frame).
At a certain point, the configured bike may be sold (as part
of a bike-sharing system), but only if it costs at least 250 euro
(to satisfy constraint (C4) on action sell), after which it ar-
rives in the depot (e.g. of PisaMo). It may then be ready
to be deployed as part of the bike-sharing system run from
this depot, or it may first need to be further fine-tuned by
(un)installing or replacing factory-installed features. Once it
is deployed, it actually results parked in one of the docking
stations of the bike-sharing system (e.g. CicloPi).

A user may book a parked bike, resulting in a moving
bike. While biking, a user may decide to listen to music or
switch on the light, in case the corresponding features have
been installed. If a user wants to consult one of the apps
(a map, a navigator, or a guide), then (s)he first needs to
stop biking, resulting in a halted bike, from where (s)he
may start to bike again or park the bike in a docking sta-
tion. Unfortunately, the bike may also break, resulting in a
broken bike. Hence, assistance from the bike-sharing sys-
tem exploiter arrives. If the bike can be fixed, it is brought
to the depot. If the damage is too severe, and the bike
has a price of at most 400 euros (to satisfy constraint (C5)
on action irreparable), then we dump the bike in the trash.
At regular intervals, assistance from the bike-sharing system
exploiter takes a parked bike to the depot for maintenance.
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Figure 2: Sketch of bike-sharing behaviour

The above described behaviour is probabilistic, in the
sense that in the presence of several enabled actions some
may occur with a higher likelihood than others. Such a
probabilistic specification models the uncertainty of the be-
haviour of the bike, its components, and its interacting en-
vironment (the users, the exploiters, road conditions, etc.).

Some typical properties of interest on the case study are:

(P1) Average price, weight and load of a bike when it is
deployed for the first time, or as time progresses;

(P2) For each of the 15 primitive features that appear as
leaves in the feature model of Fig. 1, the probability
to have it installed when a bike is deployed for the first
time, or as time progresses;

(P3) The probability for a bike to be disposed;

(P4) The probability to uninstall a factory-installed feature
of a bike during a given time interval after it was sold.

When analysed at the first deployment of a bike, P1 and
P2 are useful for studying a sort of initial scenario, in order
to estimate the required initial investments and infrastruc-
tures. For instance, bikes with a high price and a high load
(i.e. with a high technological footprint) or equipped with a
battery might require docking stations with specific charac-
teristics or they might have to be collected for the night to
be stored safely. Instead, analysing P1 and P2 as time pro-
gresses provides an indication of how those values evolve,
e.g. to estimate the average value in euros of a deployed
bike and the monetary consequences of its loss.

From a more general perspective, properties like P2 mea-
sure how often (on average) a feature is actually installed in a
product from a product line, which is important information
for those responsible for the production or programming of
a specific feature or software module. Property P3 is similar.

Property P4, finally, is useful for analysing the effect of
the factory’s pre-configuration choices, and to adapt them
to better fit specific scenarios. It might be worth, e.g., to
reconsider the installation of a certain feature if there is a
high probability of uninstalling it shortly after.

In the sequel we show how we can specify the case study in
QFLan and analyse above properties with its tool support.

3. SYNTAX AND SEMANTICS OF QFLAN

The feature-oriented language QFLan is an evolution of
probabilistic PFLan [7], a process algebra that separates
declarative (pre-)configuration from procedural run-time as-
pects. The FLan family (FLan [8], PFLan [7], QFLan) is
inspired by the concurrent constraint programming paradigm

of [27], its adoption in process calculi [13], and its stochastic
extension [11]. A constraint store allows to specify all com-
mon constraints from feature models (and more) in declar-
atively , while a rich set of process-algebraic operators al-
lows to specify the configuration and behaviour of prod-
uct lines in procedurally . The semantics unifies static (pre-
configuration) and dynamic (run-time) feature selection.

QFLan’s core notions are features, constraints, processes
and fragments (i.e. constrained processes), cf. its syntax in
Fig. 3. More precisely, the syntactic categories F , S, and P
correspond to fragments, constraint stores (with constraints
from K, using arithmetic expressions of feature attributes
from E) and processes (with actions from A), respectively.
The universe of (primitive) features is denoted by F .

F ::= [S | P ]

S, T ::= K | S T | > | ⊥
P,Q ::= ∅ | X | (A, r).P | P +Q | P ;Q | P ‖ Q
A ::= a | install(f) | uninstall(f) | replace(f, g) | ask(K)

K ::= p | ¬K | K ∨ K | E ./ E

E ::= r | attribute(f) | E ± E

Figure 3: QFLan syntax (with f ,g ∈ F , r ∈ R+, a ∈ A,
p ∈ P, ./ ∈ {≤, <,=, 6=, >,≥}, and ± ∈ {+,−,÷,×})

The declarative part of QFLan is represented by a store
of constraints on features extracted from the product line
requirements plus some additional information (e.g. about
the context wherein the product will operate). Two impor-
tant notions of a constraint store S are the consistency of S,
denoted by consistent(S) (which in our case amounts to log-
ical satisfiability of all constraints constituting S) and the
entailment S ` c of constraint c in S (which in our case
amounts to logical entailment).

A constraint store contains any term generated by S ac-
cording to the syntax of QFLan. The most basic constraint
stores are > (true, i.e. no constraint at all), ⊥ (false, i.e. an
inconsistent constraint), and arbitrary Boolean constraints
over a universe P of propositions (generated by K), exploit-
ing the fact that constraints on features can be expressed
using Boolean propositions (cf. [28]). Boolean propositions
can also be used to represent additional information such as
contextual facts, which however we do not use in this paper.
Constraints can be combined by juxtaposition (its semantics
amounts to logical conjunction) of basic constraints.

The Boolean encoding of feature constraints allows us as
to handle all common constraints, including two common



(Inst)
consistent(S has(f))

[S ¬has(f) | (install(f), r).P ]
r−−−→ [S has(f) | P ]

(Unst)
consistent(S ¬has(f))

[S has(f) | (uninstall(f), r).P ]
r−−−→ [S ¬has(f) | P ]

(Rpl)
consistent(S ¬has(f) has(g))

[S has(f) ¬has(g) | (replace(f, g), r).P ]
r−−−→ [S ¬has(f) has(g) | P ]

(Act)
S = (do(a)→ K) S ` K

[S | (a, r).P ]
r−−−→ [S | P ]

(Ask)
S ` K

[S | (ask(K), r).P ]
r−−−→ [S | P ]

(Or)
[S | P ]

r−−−→ [S′ | P ′]
[S | P +Q]

r−−−→ [S′ | P ′]
(Seq)

[S | P ]
r−−−→ [S′ | P ′]

[S | P ;Q]
r−−−→ [S′ | P ′;Q]

(Par)
[S | P ]

r−−−→ [S′ | P ′]
[S | P ‖ Q]

r−−−→ [S′ | P ′ ‖ Q]

Figure 4: Reduction semantics of QFLan

cross-tree constraints for which we sometimes use the fol-
lowing ad-hoc syntax: f .g expresses that feature f requires
the feature g, while f⊗g expresses that features f and g mu-
tually exclude each other (i.e. they are alternative). We in
fact use such logical encodings to reduce consistency check-
ing and entailment to logical satisfiability (and hence exploit
Z3’s SAT/SMT solving capabilities). We moreover assume
that the universe P of propositions contains a Boolean pred-
icate has(f) that can be used to denote the presence of a
feature f in a product. In our case study, e.g., ¬has(g)
models g 6∈ PF , i.e. a bike without an engine.

Finally, a novelty of QFLan is that we also consider quan-
titative constraints based on arithmetic relations among fea-
ture attributes. In our case study, e.g., it would be possible
to define the constraint ¬has(g)→

∑
f∈PF

weight(f) ≤ 10,
which imposes a weight bound on non-electric bikes.

As mentioned, QFLan admits a class of action constraints,
reminiscent of featured transition systems (FTS) [14]. In an
FTS, transitions are labelled with actions and with Boolean
constraints over the set of features. We associate arbitrary
constraints to actions rather than to transitions (and we
moreover add a rate to the actions, discussed below). In
general, we assume that each action a may have a constraint
do(a) → p, where p ∈ P is a proposition. Such constraints
act as a kind of guards to allow or forbid the execution of
actions (e.g. the constraints (C4) and (C5) of Section 2).

The procedural part of QFLan is represented by pro-
cesses which can be combined in sequence, in parallel, or
with non-deterministic choices, and which can consist of the
empty process or of a single (rated) action followed by a
process. We distinguish ordinary actions from a universe A
and special actions install(f) (dynamic installation of a fea-
ture f), uninstall(f) (dynamic uninstallation of a feature f),
replace(f, g) (dynamic replacement of feature f by g) and
ask(K) (to query the store for the validity of constraint K).
As we will see shortly, each action type is treated differently
in the operational semantics. Each action moreover has an
associated rate, which is used to determine the probability
that this action is executed. As usual, the probability to ex-
ecute an action in a certain state depends on the rates of all
other actions enabled in the same state. These action rates,
originating from PFLan, allow one to specify probabilistic
aspects of SPL models such as the behaviour of the user of
a product and the likelihood of installing a certain feature
at a specific moment with respect to that of other features.
We will illustrate all this in our example in Section 4.

Finally, a fragment F is a term [S | P ], composed by a
constraint store S and a process P . These two components
may influence each other according to the concurrent con-
straint programming paradigm [27]: a process may update
its store which, in turn, may condition the execution of the
process’ actions. For the sake of simplicity, we consider in
this paper initial fragments where S uniquely characterises a
product of a product line (i.e. for each feature f , S contains
either has(f) or ¬has(f)).

The operational semantics of fragments is formalised in

terms of the state transition relation→⊆NF×R+×F defined in
Fig. 4, where F denotes the set of all terms generated by F
in the grammar of Fig. 3. Note that we use multisets of tran-
sitions to deal with the possibility of multiple instances of
a transition F

r−→ G. Technically, such a reduction relation
is defined in structural operational semantics (SOS), i.e. by
induction on the structure of the terms denoting a fragment,
modulo a structural congruence relation ≡⊆ F× F that ax-
iomatises the structure of processes (e.g. parallel composi-
tion and non-deterministic choice are associative and com-
mutative and have the empty process ∅ as identity, etc.).

The reduction relation implicitly defines a labeled transi-
tion system (LTS), with rates as labels. It is straightforward
to obtain a discrete-time Markov chain (DTMC) from such
LTSs by normalising the rates into [0..1] such that in each
state, the sum of the rates of its outgoing transitions equals
one. As usual, in the resulting DTMC the label of a transi-
tion corresponds to the probability that such a transition is
executed starting from its source state. Recall that we advo-
cate the use of statistical model checking because in general
the DTMC is too large to generate. As usual, the reduction
rules in Fig. 4 are expressed in terms of a set of premises
(above the line) and a conclusion (below the line).

The rules Inst, Unst, Rpl, and Act of the semantics
are very similar, all allowing a process to execute an ac-
tion if certain constraints are satisfied. Rules Inst, Unst,
and Rpl deal with installation, removal ,and replacement
of features, respectively, and are applicable as long as they
do not introduce inconsistencies. Rule Act forbids inconsis-
tencies with respect to action constraints. A typical action
constraint is do(a) → has(f), i.e. action a is subject to the
presence of feature f . Other examples are (C4) and (C5) of
Section 2. Rule Ask formalises the semantics of the ask(·)
operation from concurrent constraint programming [27]. It
allows a process to be blocked until a proposition can be
derived from the store.



Rules Par, Seq, and Or, finally, are standard, formal-
ising interleaving parallel composition, sequential composi-
tion, and non-deterministic choice, respectively. Note that
the non-determinism introduced by choices and parallel com-
position is probabilistically resolved in the aforementioned
DTMC semantics.

4. BIKES PRODUCT LINE IN QFLAN

Fig. 5 sketches a QFLan model of our bikes product line.
Fragment FR is composed of store S and a process F . The
former consists of four sets of constraints:

FS Constraints from the feature diagram of Fig. 1, like
d ⊗ h, requiring precisely one feature among Diamond
and StepThru to be installed;

AS Constraints on actions discussed in Sections 2 and 3,
like (C4) or do(c) → has(c), requiring Music to be
installed in order to play music;

QS Quantitative constraints affecting all actions, like (C2);

IS The initially installed feature set has(y) has(d), im-
plying that AllYear and Diamond are pre-installed.

The process F specifies the behaviour of the bikes product
line from Section 2. In particular, it has one process for each
node in Fig. 2. F corresponds to factory, implemented as
a choice, weighted by the rates, among three main activities:

(1) With rate 7 the bike is sold and sent to the depot. This
action can only be executed if (C4) is respected;

(2) Install optional features and iterate on F . The instal-
lations are performed only if FS and QS are preserved;

(3) Replace pre-installed mandatory exclusive features IS ,
i.e. Wheels or Frame. Again, FS and QS are preserved.

Note that in (2) we assume that Music is the feature installed
with higher probability, followed by MapsApp, Dynamo, and
Light. Recall that the semantics of QFLan (Fig. 4) forbids
the re-installation of installed features. In (3), we favour the
replacement of Winter or Summer wheels by AllYear ones.
A frame may be changed as well, but with lower probability.

D corresponds to depot, and is similar to F . Clearly, D
differs from F by the possibility to perform an action deploy
leading to P (i.e. parked). In addition, D may also unin-
stall features, so as to allow for customisation. Optional
features can be installed and uninstalled with the same rate
by D , except for Engine, Battery, and Dynamo, uninstalled
with a lower rate to penalize their occurrences. This mod-
eling choice is justified by the fact that it is reasonable to
assume that uninstalling such features might cost more than
installing them. In addition, we assume that the frame iden-
tifies the bike that was sold, and thus it cannot be modified
in D . The final action that D can perform is an interesting
one: Battery can be replaced with the much cheaper Dy-
namo. According to the semantics of QFLan, this action is
performed only if no subfeature of CompUnit or the Engine
are currently installed (cf. Fig. 1). This is useful to reduce
costs and weight, in case some previously installed feature
requiring the battery has by now been uninstalled.

The remaining processes P , M , H , B , and T correspond
to parked, moving, halted, broken, and trash, respec-
tively. These processes are rather simple and are faithful to
their description in Section 2. The process T installs a fic-
titious feature trashed to express the fact that the bike has
been disposed, and then evolve in the idle process.

FR
.
= [ S | F ]

S
.
= FS AS QS IS

FS
.
= . . . AS

.
= . . . QS

.
= . . . IS

.
= . . .

F
.
= (sell , 7).D
//Installing optional features
+ (install(s), 6).F + (install(m), 10).F + (install(n), 6).F
+ (install(u), 3).F + (install(c), 20).F + (install(g), 4).F
+ (install(a), 5).F + (install(o), 10).F + (install(i), 10).F
+ (install(k), 8).F
//Replacing mandatory and exclusive features
+ (replace(y , r), 5).F + (replace(y ,w), 5).F
+ (replace(r , y), 10).F + (replace(r ,w), 5).F
+ (replace(w , y), 10).F + (replace(w , r), 5).F
+ (replace(d , h), 3).F + (replace(h, d), 3).F

D
.
= (deploy , 10).P
//Installing optional features
+ . . . same as F
//Uninstalling optional features
+ . . . same features and rates as installing, except for
+ (uninstall(g),1).D+(uninstall(a),2).D+(uninstall(o),3).D
//Replacing mandatory and exclusive features
+ . . . same as F, but replacubg just wheels
//Replacing battery by dynamo
+ (replace(a, o), 1).D

P
.
= (book , 10).M + (maintain, 1).D

M
.
= (stop, 5).H + (break , 1).B + (c, 20).M + (i , 20).M

H
.
= (start , 5).M + (break , 1).B + (c, 20).H + (i , 10).H
+ (s, 10).H + (u, 10).H + (m, 10).H + (n, 10).H

B
.
= (assistance, 10).D + (irreparable, 1).T

T
.
= (install(trashed), 1).∅

Figure 5: QFLan specification of bikes product line

Note that F is a pure (pre-)configuration process, while
D is not. In fact, parked bikes can be brought back into the
depot, and thus features can be (un)installed or replaced
at run time. This is an example of a staged configuration
process, in which some optional features are bound at run
time rather than at (pre-)configuration time.

The QFLan specification is completed with the definition
of the attributes of the features as depicted in Fig. 1, not
shown here due to reasons of space. The interested reader
can find the full specification of the case study at https:

//code.google.com/p/multivesta/wiki/QFLan

5. MODEL CHECKING WITH MULTIVESTA
In this section, we briefly explain the statistical model

checking capabilities of MultiVeStA and set the parameters
for the actual analyses described in the subsequent section.

MultiVeStA [30] is a distributed statistical model checker
that was co-developed and is being maintained by the fourth
author. MultiVeStA can easily be integrated with any for-
malism that allows probabilistic simulations and it has al-
ready be used to analyse a wide variety of systems, including
transportation systems [22], volunteer clouds [29], crowd-
steering [26] and swarm robotic [9] scenarios.

Recently, we investigated the suitability of MultiVeStA
for the quantitative analysis of SPL behaviour modelled in
PFLan [7]. In this paper, we use the tool to obtain statisti-

https://code.google.com/p/multivesta/wiki/QFLan
https://code.google.com/p/multivesta/wiki/QFLan


Attributes (P1) Features (P2)

C1 C2 steps to deploy price weight load y r w i o a g m n u c s k d h
600 15 17.86 391.91 7.80 33.50 0.57 0.24 0.18 0.59 0.84 0.92 0.0 0.50 0.20 0.24 0.47 0.17 0.60 0.61 0.39
800 20 18.28 509.83 11.98 34.45 0.54 0.23 0.19 0.57 0.88 0.92 0.40 0.52 0.21 0.25 0.47 0.20 0.63 0.60 0.40

Table 1: Properties P1 and P2 evaluated at a bike’s first deployment.

cal estimations of quantitative properties of QFLan specifi-
cations. MultiVeStA provides such estimations by means of
distributed analysis techniques known from statistical model
checking (SMC) [23, 24]. The integration of MultiVeStA
and QFLan is available at https://code.google.com/p/

multivesta/wiki/QFLan together with all files necessary to
reproduce the experiments discussed in this paper.

MultiVeStA’s property specification language MultiQua-
TEx (an extension of QuaTEx [1]) is very flexible, based
on the following ingredients: real-valued observations on
the system states (e.g. the total cost of installed features),
arithmetic expressions and comparison operators, if-then-
else statements, a one-step next operator (which triggers
the execution of one step of a simulation), and recursion.
Intuitively, we can use MultiQuaTEx to associate a value
from R to each simulation and subsequently use MultiVeStA
to estimate the expected value of such number (in case this
number is 0 or 1 upon the occurrence of a certain event, we
thus estimate the probability of such an event to happen).

We obtain probabilistic simulations of a QFLan model
by executing it step-by-step applying the rules of Fig. 4,
each time selecting one of the computed one-step next-states
according to the probability distribution resulting from nor-
malising the rates of the generated transitions (cf. Section 3).

Classical SMC allows one to perform analyses like “is the
probability that a property holds greater than a given thresh-
old?” or “what is the probability that a property is satis-
fied?”. In addition, MultiVeStA also allows one to estimate
the expected values of properties that can take on any value
from R, like “what is the average cost/weight/load of prod-
ucts configured according to an SPL specification?”. Estima-
tions are computed as the mean of n samples obtained from
n independent simulations, with n large enough to grant
that the size of the (1− α)× 100% confidence interval (CI)
is bounded by δ. In other words, if a MultiQuaTEx expres-
sion is estimated as x ∈ R, then with probability (1− α) its
actual expected value belongs to the interval [x−δ/2, x+δ/2].
A CI is thus specified in terms of two parameters: α and δ.
In all the experiments discussed in the next section, we fixed
α = 0.1. Also, we set δ = 20.0 for costs, δ = 1.0 for weights,
δ = 5.0 for loads, δ = 1.0 for steps, and δ = 0.1 for proba-
bilities. Experiments were performed on a laptop equipped
with a 2.4 GHz Intel Core i5 processor and 4 GB of RAM,
distributing the simulations among its 4 cores.

6. ANALYSIS OF BIKES PRODUCT LINE
In this section, we show how MultiVeStA can be used

to analyse our bikes product line case study, focusing in
particular on properties P1–P4 from Section 2. We start with
P1 and P2, which we study both at a precise point in time
(at the first deployment of a bike) and as time progresses.

Listing 1 depicts a MultiQuaTEx expression to evalu-
ate P1 and P2 at a bike’s first deployment. Lines 1-4 define
a parametric recursive temporal operator ObsAtFD which is

evaluated against a simulation. The operator takes in in-
put a string obs representing a state observation of interest.
Then, if the bike has completed its first deployment (Line 1),
the value in the current simulation state of the provided ob-
servation is returned (Line 2). Otherwise, the operator is
recursively evaluated in the next simulation state (Line 3).
Intuitively, # is the one-step temporal operator, while real-
valued observations on the current state are evaluated re-
sorting to the keyword s.rval. A number of predefined ob-
servations is currently supported, e.g., we can query whether
a given feature is currently installed, obtaining 1 if the fea-
ture is installed and 0 otherwise. An example is in Line 1 for
first-deploy, a fictitious feature installed when terminat-
ing the first phase of deployment (to ease presentation, we
did not show this in Section 4). In addition, we can query for
price, weight, and load of the current product, obtained by
summing the corresponding values for all installed features,
or the number of simulation steps done to obtain the current
state. Finally, Lines 5-7 specify the properties to be studied:
the expected price, weight, and load of bikes (Lines 5-6),
as well as the probabilities of installing each of the 15 prim-
itive features (Line 7), all measured at first deployment. In
addition, we also query the expected number of simulation
steps to perform the first deployment (Line 6).

1ObsAtFD(obs) = i f {s.rval("first -deploy ") == 1.0}
2then s.rval(obs)
3else #ObsAtFD(obs)
4f i ;
5eval E[ObsAtFD ("price")]; eval E[ObsAtFD (" weight ")];
6eval E[ObsAtFD ("load")]; eval E[ObsAtFD ("steps")];
7eval E[ObsAtFD ("y")]; eval E[ObsAtFD ("r")]; . . .

Listing 1: P1 and P2 at first deployment

Notably, Listing 1 shows how MultiQuaTEx allows one
to express more properties at once (in this case 19) which
are estimated by MultiVeStA reusing the same simulations.
We remark that a procedure taking into account that each
property might require a different number of simulations is
adopted to satisfy the given confidence interval CI.

We evaluated the MultiQuaTEx expression of Listing 1
against the model discussed in Section 4. The analysis re-
quired 1, 340 simulations, performed in about 20 minutes. In
particular, steps is the property that required more simula-
tions, viz. 1, 340, while price required only 120 simulations.
The results are shown in the first row of Table 1. Notably,
the probability of installing an engine (g) is very low, esti-
mated at 0 (i.e. with probability 0.9 it belongs to [0, 0.05],
according to the specified confidence interval). We guess
that this is due to the constraints (C1) and (C2), imposing
bikes to cost less than 600 euros, and weighing less than 15
kilos. In fact, the estimated average price and weight of bikes
at first deployment is 391.91 euros and 7.8 kilos, respectively,
while engine costs 300 euros and weighs 10 kilos. In order
to confirm this hypothesis, we analysed the same property

https://code.google.com/p/multivesta/wiki/QFLan
https://code.google.com/p/multivesta/wiki/QFLan
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Figure 6: Results of measuring P1–P3 with MultiVeStA

in a new model where (C1) and (C2) allow bikes to cost at
most 800 euros and weigh at most 20 kilos. The results,
shown in the second row of Table 1, confirm our hypothesis.
This analysis thus revealed that the constraints were in dis-
agreement with the quantitative attributes of the features.
The latter analysis required 1, 360 simulations, performed in
about 20 minutes. In this case the estimation of the average
price required 1, 200 simulations rather than 120 as in the
first case. This is because the looser constraints of the latter
analysis induce a higher variability of bike prices. In fact,
the installation of an engine, the most expensive among the
considered features, results in a steep increase of bike prices.

1ObsAtStep(obs ,st) = i f {s.rval("steps") == st}
2then s.rval(obs)
3else #ObsAtStep(obs ,st)
4f i ;
5eval parametric(E[ObsAtStep ("price",st)],
6E[ObsAtStep (" weight",st)], E[ObsAtStep ("load",st)],
7E[ObsAtStep ("y",st)], E[ObsAtStep ("r",st)],. . .,
8E[ObsAtStep (" trashed",st)],st ,0,2,500);

Listing 2: P1–P3 for varying simulation steps

We now discuss the variants of P1 and P2 measured as time
progresses, demonstrating how MultiVeStA can be used to
analyse properties upon varying a parameter, in this case
the number of performed simulation steps. Listing 2 shows

how the expression of Listing 1 can be made parametric
with respect to a given set of simulation steps. First, the
temporal operator was modified so that it is evaluated with
respect to a specific step given as parameter (Lines 1-4).
Second, it was necessary to specify a range of values for
the parameter. Lines 5-8 specify that we are interested in
measuring the properties for steps going from 0 to 500, with
an increment of 2. Recall from Section 4 that dumping a bike
is modelled by the installation of a fictitious feature trash.
Hence, we can use the expression of Listing 2 to measure
also P3 (the probability of a bike being dumped) by simply
adding E[ObsAtStep("trashed",st)] (Line 8).

We evaluated the parametric property of Listing 2 against
our case study. We report the results obtained for the model
in which (C1) and (C2) bound the price and weight of the
bike to 800 and 20, respectively. All such analyses (19×251
different properties) were evaluated using the same simula-
tions. Overall, 1, 200 simulations were necessary, performed
in about 75 minutes. The results are presented in four plots
in Fig. 6: one for prices (a), one for weights and loads (b),
one for the probabilities of installing features (c), and one
for the probability of dumping the bike (d).

Fig. 6(a) shows that the average price (on the y-axis) of
the intermediate bikes generated from the product line starts
at 200 euros, in line with the initial configuration (IS , with
AllYear and Diamond installed). Then the price grows with
respect to the number of performed simulation steps. In



particular, it is possible to see an initial fast growth until
reaching an average price of about 510 euros, after which the
growth slows down, reaching about 537 euros at step 100 and
542 at step 500. This is consistent with our QFLan specifi-
cation, which has a pre-configuration phase (factory) dur-
ing which a number of features can be installed, followed
by a customisation phase (depot), where features can be
(un)installed and replaced. We recall that factory does
not perform any uninstalling, while we note that the unin-
stalling actions of depot do not introduce decrements of the
price, on average. A manual inspection of the data revealed
that the phase of fast growth terminates after about 19 steps.
This is consistent with the analysis described in the second
row of Table 1, where the average number of steps to com-
plete the first depot phase is estimated as being close to
19. In addition, the average price at the end of such a phase
is estimated to be around 510 euros, as in Table 1. Note,
finally, that the probability of a bike to return to the depot
after its first deployment is quite low. In fact, as specified in
Fig. 5, parked has a transition with rate 10 towards mov-
ing and one with rate 1 towards deposit. Thus, in average,
the price of bikes is only slightly affected by (un)installations
and replacements performed by successive depot phases.

Fig. 6(b) shows that the weight and load of a bike evolve
similarly to the price: there is a first phase of growth during
the first 19 steps, followed by a slower growth.

As confirmed by Fig. 6(c), the probabilities (on the y-axis)
for each of the features that can be installed evolve similarly
to the average price, weight, and load of the generated prod-
ucts, although, clearly, with different scales. It is interesting
to note that the pre-installed features AllYear (y) and Dia-
mond (d) have probability 1 of being installed at step 0, after
which the probability decreases during the first 19 steps.

Fig. 6(d) shows that bikes are dumped with very low prob-
ability. The reason is twofold. First, the transition from
broken to trash has a much lower rate than the one to
depot, and similarly for those from moving and halted
to broken (cf. Fig. 5). Second, the average price of bikes
quickly rises above 400 euros (Fig. 6(a)), and constraint (C5)
prohibits dumping bikes costing more than 400 euros.

We conclude this section by considering P4. This prop-
erty was analysed against a slight variant of our scenario,
viz. without the factory phase but with the following set
of features pre-installed: AllYear (y), Diamond (d), Battery
(a), and Basket (k). In particular, we studied how the prob-
ability of having each of these 4 features not installed in a
certain simulation step changes upon varying the considered
simulation step. The corresponding MultiQuaTEx expres-
sion can easily be obtained from Listing 2 by changing Line 2
in “then 1 - s.rval(obs)”, and writing in Lines 5-8 only
the “E” corresponding to the 4 features. We again focus on
the case in which (C1) and (C2) bound the cost and weight
of bikes to 800 and 20, respectively.

The analysis required 380 simulations performed in about
15 minutes. The results are presented in Fig. 7, where we
can again appreciate the two distinct phases with faster and
slower growth, respectively. A manual inspection of the data
revealed that the two phases change again around step 19.
Diamond (d) has 0 probability of being uninstalled. This is
coherent with the considered model, as the frame can be re-
placed only during the factory phase, removed for this ex-
periment. As regards the 3 remaining features, Fig. 7 high-
lights the effect of constraints to the behaviour of QFLan
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Figure 7: P4 (uninstalling factory-installed features)

specifications. In fact, we can clearly see that the features
can be partitioned in two, based on the probability of being
uninstalled: a has almost no probability of being uninstalled,
while y and k are uninstalled with higher probability. The
lower uninstall probability manifested by a is justified by the
fact that the Engine and all CompUnit subfeatures require
it, thus the presence of one of these features in the store pre-
vents the uninstallation of a. Finally, the other two features,
y and k, uninstalled with higher probability, have a similar
graph. This is consistent with process D for depot given in
Fig. 5, as AllYear is replaced with rate 10 (due to the two
replace actions), while Bike is uninstalled with rate 8.

7. CONCLUSIONS AND FUTURE WORK
In a recent workshop, we have presented the probabilis-

tic feature-oriented language PFLan [7]. In this paper, we
have introduced QFLan, which extends PFLan with dy-
namic uninstallation and replacement of features and with
advanced quantitative constraint modelling options, thus al-
lowing for more involved quantitative analyses (now requir-
ing SMT solving). We have achieved this by integrating
an efficiently executable Maude implementation of QFLan
with Z3 and with the distributed statistical model checker
MultiVeStA. We have applied the resulting modelling and
analysis framework to a bikes product line case study taken
from companies with whom we cooperate in the context of
the European project Quanticol. Our analysis has revealed
some interesting properties of the model, like the existence
of a disagreement among constraints imposed on the price
and weight of bikes, and prices and weights of bike com-
ponents, as well as the high probability of replacing some
features that tend to appear in initial configurations, which
suggest to prioritise their installation in the early stages of
the configuration. All in all, our detailed analysis has served
to validate our methodology and its tool support. We be-
lieve that our work will hence provide a further contribution
towards the adoption of formal specification and analysis
techniques in SPLE.

In future work we plan to further develop the integration
of Z3 with MultiVeStA, e.g. to equip our toolset with op-
timisation capabilities, so that users can not only validate
configuration choices but also automatically obtain configu-
ration options optimising their objective functions (possibly
combining behavioural and non-functional aspects).
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