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Carpooling, i.e., the act where two or more travelers share the same car for a common trip,
is one of the possibilities brought forward to reduce traffic and its externalities, but
experience shows that it is difficult to boost the adoption of carpooling to significant
levels. In our study, we analyze the potential impact of carpooling as a collective phe-
nomenon emerging from people's mobility, by network analytics. Based on big mobility
data from travelers in a given territory, we construct the network of potential carpooling,
where nodes correspond to the users and links to possible shared trips, and analyze the
structural and topological properties of this network, such as network communities and
node ranking, to the purpose of highlighting the subpopulations with higher chances to
create a carpooling community, and the propensity of users to be either drivers or pas-
sengers in a shared car. Our study is anchored to reality thanks to a large mobility dataset,
consisting of the complete one-month-long GPS trajectories of approx. 10% circulating cars
in Tuscany. We also analyze the aggregated outcome of carpooling by means of empirical
simulations, showing how an assignment policy exploiting the network analytic concepts
of communities and node rankings minimizes the number of single occupancy vehicles
observed after carpooling.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

There is no need to advocate why traffic and its con-
sequences on the environment, our health and quality of
life, and the economy is a major problem for our societies.
Carpooling, i.e., the act where two or more travellers share
the same car for a common trip, is an old idea brought
forward, among many others, to reduce traffic and its
externalities. If a large proportion of travellers, especially
daily commuters, would adopt carpooling, a substantial
traffic reduction could indeed take place. However,
experiences from many projects internationally, as we
i),
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discuss in Section 2, have shown that it is extremely dif-
ficult to boost the adoption of carpooling to levels that
significantly diminish traffic as a whole. There are many
reasons why this happens: psychological, organizational,
technological. As a matter of fact, we do not know much
yet about the real carpooling potential that emerges from
people's mobility—a very preliminary step towards
designing the right mechanisms and incentives for a suc-
cessful carpooling system. Nevertheless, we now have
access to the data to observe individual mobility at
microscopic level and for large populations of travellers,
such as the digitized trajectories of vehicular travels
recorded by GPS-enabled on-board devices. These forms of
big data have been used in [1] to discover the mobility
profiles of individual travellers, and to understand when
two individuals have compatible matching needs, so that
they can share part of their travels. In the present work we
Boosting carpooling with network analysis, Information
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pursue this approach further, to the purpose of under-
standing the potential impact of carpooling as a collective
phenomenon, by adopting a network analytics approach.
Based on mobility data from a community of travellers in a
given territory, we construct the network of potential car-
pooling for that community, where nodes correspond to
the users and each link between user u and user v corre-
sponds to the fact that u can take a lift from v, because
there is a trip in v's profile that can serve u (u can be a
passenger of driver v). By analyzing the structural and
topological properties of this network, we can gain a
deeper insight of the potential impact of carpooling. We
adapt network analysis tools such as community discovery
and node ranking to the purpose of highlighting the sub-
populations of travellers that have higher chances to cre-
ate a carpooling community, and who are the users that
show a higher propensity to be either a driver or a pas-
senger in a shared car. Also, we can reason about the
propensity of geographical units or cities to carpooling, as
well as on the impact on externalities such as CO2 emis-
sions and costs that can be potentially reduced. Our study
is anchored to reality thanks to a large mobility dataset,
consisting of the complete one-month-long GPS trajec-
tories of more than 150,000 cars observed in Tuscany, the
region of central Italy with Florence and Pisa, during the
month of May 2011. The population of observed cars is
approximately around 10% of all circulating cars. Our
analytic observations are therefore referred to real
(anonymous) users and real cities, like Florence and Pisa.
Remarkably, our method explores the potential of car-
pooling in systematic travels, e.g., home-work commuting,
as opposed to ride sharing in occasional trips, which is the
approach of several popular apps (see Section 2). Addres-
sing the issue of sharing systematic trips is clearly more
challenging and can have a larger impact on traffic
reduction. The ultimate contribution of our study is to
analyze the potential aggregated outcome of carpooling in
the analyzed networks, using several empirical simula-
tions, in terms of expected number of single occupancy
vehicles (SOV) that we observe as a result of carpooling
matches that take place. We investigate several possible
scenarios, and show how a carpooling assignment that
exploits the mentioned network analytic concepts of
communities and node rankings is the one with the best
theoretical performance, because it reduces significantly
the expected number of SOV's observed after carpooling.
Although much further work is needed to validate in the
real world that mining carpooling networks can boost the
adoption of ride sharing among communities of commu-
ters, our study is a first in-depth analysis of the potential
impact of the approach, which sheds a new, quantitative
view on a mechanism that, like all complex social pro-
cesses, can only be explained in terms of a dynamic net-
work of interacting actors exhibiting an often surprising
aggregated behavior.

The rest of this paper is organized as follows. Section 2
contains a detailed overview of related works, addressing
carpooling frommany different perspectives. The technical
background for our study is briefly sketched in Section 3.
Section 4 describes the Never Drive Alone approach, from
the construction of the carpooling network to the
Please cite this article as: R. Guidotti, et al., Never drive alone:
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assignment method, through the analysis of communities
and the ranking measures. Section 5, after illustrating the
large mobility dataset used in this study, provides a qua-
litative and quantitative assessment of the results
obtained. Finally, in Section 6, we discuss possible future
developments.
2. Related work

The carpooling phenomenon is a subject widely studied
in the literature. It has been analyzed form various, very
different points of view. Carpooling is the second most
popular way of commuting, and maybe one of the least
understood – a fact that probably explains the need for
such a large corpus of studies in the literature.

Carpooling received wide attention in the theoretical
literature, mainly regarding high occupancy vehicle lanes
(HOV) [2–7]. Refs. [2,4] develop models to calculate the
benefits gained for eliminating traffic congestion by add-
ing HOV lanes, or by converting general purpose lanes into
HOV. Ref. [5] shows that there is no increase in ridesharing
related with the introduction of new HOV lanes, despite
the carpooling rate among commuters increases in some
periods. Others, like [3,6], consider tolls related with HOV
and how these can influence their use. Ref. [7] is a study
about carpooling related with the economy world that
examines carpooling and driver responses to fuel price
changes. It shows that traffic flows in mainline lanes
decrease when fuel prices increase, and this effect is
stronger when the presence of a HOV lane provides a
substitute to driving alone.

Another approach widely followed in the literature for
analyzing carpooling is the agent based model (ABM) [8–
13]. A multi-ABM in conjunction with Dikstra's algorithm
is used in [8] to efficiently answer real time users' queries.
In [9] an ABM is designed to optimize transports by the
ride sharing of people who usually cover the same route.
The information obtained from this simulator are used to
study the functioning of the clearing services and the
business models. In [10] the authors face the problem by
using a multi-ABM to investigate opportunities among
simulated commuters and by providing an online match-
ing for those living and working in close areas. Refs.
[11,14,13] present a conceptual design of an ABM for the
carpooling application to simulate the interactions of
autonomous agents and to analyze the effects of changes
in factors related to the infrastructure, behavior and cost.
They use agent profile and social networks to initiate the
ABM, then employ a route matching algorithm and a uti-
lity function to trigger the negotiation process between
agents. In [12] the authors define an ABM for the indivi-
dual mobility behavior during carpooling, the criteria and
the function to constitute the carpooling community and a
protocol for the negotiation of the details of the
carpooling trips.

Many carpooling works are related with the study and
analysis of mobility data to understand the carpooling
phenomena [15–22]. In [15], for example, the authors
deeply describe the characteristics of carpoolers, distin-
guishing among different types of carpooler, and
Boosting carpooling with network analysis, Information
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ing/home.aspx, http://www.bring-me.it/, http://www.viaggiainsieme.it/,
http://www.autoincomune.it/.
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identifying the key differences between a carpooler, a
single occupant vehicle (SOV), and a transit commuter.
They also describe how and why commuters carpool. In
[16], it introduced a methodology for extracting mobility
profiles of individuals, and a study criterion to match
common routes in order to develop a carpooling service.
Something similar is illustrated in [22], which tries to
understand mobility patterns, home and work locations,
and social ties between users to develop an algorithm for
matching users with similar mobility pattern. Ref. [17]
proposes a study club model to overtake psychological
barriers associated with riding with strangers, to find
compatible matches for traditional groups of users and
also to find a ride in alternative groups. Using a multilevel
regression model and a questionnaire which explains the
share of carpooling employees at a workplace, Refs. [18,19]
predict the share of carpooling at large workplaces loca-
tions, organization and carpooling promotion. In [21] the
authors analyze a rail company which provides electric
cars to commuters from the home to station trip and then
employs the same cars for other works like postal service,
medical health care, etc. Finally in [23] the authors develop
an application for car sharing recommendation by
exploiting a topic clustering algorithm applied to labeled
trajectories.

In other studies [24–26,20], the authors try to find
simulated or theoretical matches among users asking for a
ride in a carpooling scenario and evaluate it in terms of
simulated users' feedbacks. Ref. [24] develops and imple-
ments the concept of real carpooling by allowing a large
base of member passengers and drivers that declared their
route to be matched against each other automatically and
instantly using mobile phone calls. In [26], the problem is
faced as an optimization task reduced to the chairman
assignment problem [27]. Ref. [28] considers simulated
straight-line trajectories observing only origin and desti-
nation of trips and classifies users as eligible or ineligible
for carpooling by minimizing the time of the trip. In [25] a
user network is built that represents planned periodic
trips, where the edges are labelled with the probability of
negotiation success for carpooling. The probability values
are calculated by a learning mechanism using the regis-
tered person features, the trip characteristics, and the
negotiation feedback. The algorithm provides advice by
maximizing the expected value for negotiation success.
The differences between the approach proposed in [25]
and ours are that we provide matches between couples of
users in a pro-active way, suggested from data and not
advertised from people. Moreover, Ref. [25] uses the net-
work structure to model the negotiation feedback process,
while we use complex networks to model the possible
interactions between users and to suggest possible
assignments by taking into account real trajectories and
systematic movements. Ref. [20] develops a methodology
that finds feature points in trajectories and organize them
in a tree data structure to speed up and refine geographical
queries for carpooling purposes. The authors of [29]
introduce a measure of enjoyability based on people's
interests, social links, and tendency to connect to people
with similar or dissimilar interests and show how this can
be used on real world datasets to reduce the number of
Please cite this article as: R. Guidotti, et al., Never drive alone:
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circulating cars through carpooling by improving at the
same time the enjoyability of the trip for both mobility and
enjoyability.

Furthermore, there are a few approaches that cannot be
clearly assigned to any of the classes discussed above. The
work in [30] estimates the energy consumption in terms of
fuel related with the impact of casual carpooling. In [31]
instead, the authors propose a carpooling based on taxi-
cab, that is, they analyze the reduction of circulating taxi in
the presence of ride sharing. Moreover, the carpooling
problem is investigated also in completely different fields,
for instance from the psychological viewpoint [32], and
the economical one [33].

Finally, it is worth to note that there are many web sites
already operative throughout the world. All of them allow
the user to register, search a ride and offer a ride. Anyway,
they present several differences.

Drivebook, Roadsharing and Blablacar1 are some of the
most famous ones because they are international, offering
intra- and inter-country services. Indeed, they treat mainly
long trips. Drivebook is characterized by the feature of
being linked with various social networks to improve the
confidence among users, while Roadsharing focuses on
commuters. The most popular services in the area where
our case studies are located (Italy) include Auto-
stradecarpooling, Avacar, Bring-me, Viaggiainsieme, and
Autoincomune.2 Autostradecarpooling, Avacar, and Bring-
me are created to find and offer rides for occasional long
trips to save money along toll roads and motorways.
Viaggiainsieme promotes bike sharing besides routes for
commuters. Finally, Autoincomune is mainly oriented
towards local mobility, and organizes trips for commuters
across neighboring municipalities and also inside the same
district.
3. Background

In this section we introduce some important concepts
that will be useful to follow the rest of the paper. In par-
ticular, here we summarize the basics for extracting
mobility routines from raw GPS traces, which will be used
later to build the network of carpooling opportunities
among users; also, we provide some basic definitions
related to network analysis, which will be the starting
point for computing ad hoc measures for our carpooling
networks.

3.1. Mobility profiles

Given a set of users, their mobility can be described by
the set of trips performed in the period of analysis. Each
trip, then, is defined by a trajectory, i.e. a sequence of
spatio-temporal points:
Boosting carpooling with network analysis, Information
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Fig. 1. The user's individual history (left: black lines), the clusters iden-
tified by the grouping function (center: C1;C2 ;C3) and the extracted
individual routines (right: r1; r2) forming her individual mobility profile.
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Definition 1 (Trajectory). A trajectory T is a sequence of
spatio-temporal points T ¼ 〈ðx1; y1; t1Þ;…; ðxn; yn; tnÞ〉, where
xi and yi ð1r irnÞ are the coordinates of the i-th point and ti
is its corresponding timestamp, with: 81r ion:tiotiþ1.

The set of all the trajectories travelled by a user umakes
her individual history:

Definition 2 (Individual history). Given a user u, we define
the individual history of the user as the set of trajectories
travelled by her and denoted by Hu ¼ fT1;…; Tkg.

Using the above definitions and following the profiling
procedure proposed in [16], we can retrieve the systematic
movements of a certain user u, thus inferring directly from
mobility data commuting patterns and other routine
behaviors of the users. The method consists in clustering
the trajectories of the user by means of an ad hoc distance
function that defines the concept of trajectory similarity to
be adopted. In particular, two trajectories closer than a
given threshold will be considered similar and contribute
to the same mobility behavior:

Definition 3 (Trajectory similarity). Given two trajectories
T and T 0, a trajectory distance function Dist and a distance
threshold ϵ, we say that T is similar to T 0 iff Dist ðT ; T 0Þrϵ.

The result of the process is a partitioning of the original
dataset of user's trajectories, from which we filter out the
clusters with few trajectories (statistically non significant
behaviors) and the trajectories that are noise (specifically
detected by the clustering algorithm). Finally, for each
valid cluster remained, we extract a representative trajec-
tory, which is called a routine. The set of all routines of a
user is called her mobility profile. More formally:

Definition 4 (Routine, mobility profile). Let Hu be the indi-
vidual history of a user u,ms a minimum size threshold, Dist a
distance function and ϵ a distance threshold. Given a parti-
tioning function ProfileðHu;ms;Dist; ϵÞ ¼M¼ fM1;…;Mkg,
with HuD⋃k

i ¼ 1Mi and 81r io jrk:Mi \ Mj ¼∅, for
each 1r irk we define a routine ri as the medoid trajectory
of group Mi. The set of routines extracted from M is called
mobility profile and is denoted by Pu ¼ fr1…rkg. The residual
trajectories, i.e. Hu⧹⋃k

i ¼ 1Mi, represent occasional trips and
do not contribute to any routine in the user mobility profile.

Following [16], function Dist will compare trajectories
based on their path and on the time of the day they took
place. Themobility profile of a user describes an abstraction
in space and time of her systematic movements: real
movements are represented by a set of trajectories
describing the generic path followed, and the representa-
tive hour of the day it takes place, not instantiated in a
specific time and date. Moreover, the exceptional move-
ments are completely ignored due to the fact they will be
not part of the profile. Fig. 1 depicts a sample instantiation
of the mobility profile extraction process, from the user's
trajectories (left) to the clustering represented by function
Profile (center) and finally to the resulting routines that
form her mobility profile.
Please cite this article as: R. Guidotti, et al., Never drive alone:
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3.2. Complex network

In this work we will make use of three main concepts
belonging to the complex networks field: (i) node degree,
(ii) link analysis, (iii) community discovery. Given a
directed graph G and one of its nodes i, we define the
incoming degree of i as the number ki

in
of links that point to

i, and its outgoing degree as the number ki
out

of links that
start from i and point to other nodes.

In network science, link analysis is a data-analysis
technique used to evaluate relationships, i.e. connections,
between nodes. In particular we used Hyperlink-Induced
Topic Search (HITS), also known as hubs and authorities, a
link analysis algorithm that rates Web pages, developed in
[34]. The algorithm assigns two scores to each page: its
authority score, which estimates the value of the content of
the page, and its hub score, which estimates the value of its
links to other pages. Authority and hub values are defined
in terms of one another in a mutual recursion: authority
values are computed as the sum of the hub values that
point to that page; hub values are the sum of the authority
values of the pages it points to.

These hub and authority scores are values that enable
us to rank nodes according to some criteria. We define
HITS as a ranking function:

Definition 5 (Ranking measure). Given a direct graph
G¼ 〈N; E〉, we define the ranking function rankingðGÞ as the
algorithm HITS, taking as input G and returning two score
vectors h and a, respectively for hub and authority.

Finally, community discovery is the problem of identi-
fying communities hidden within the structure of a com-
plex network [35]. A community is a set of entities that, in
the network sense, are closer to the other entities of the
community than with those outside it. Thus, communities
are groups of entities that share some common properties
and/or play similar roles. In the literature, several popular
community discovery algorithms exist [36–38]. Among
them, in this work we choose to adopt Infohiermap for its
ability to deal with direct graphs and for the efficient
ranking random surf approach it implements.

Definition 6 (Community discovery). Given a direct graph
G¼ 〈N; E〉, we define the function communitiesðGÞ as the
algorithm Infohiermap, taking as input G and returning a
set of communities C¼ fC1…Cng, where CiDN is a set
of nodes.
4. Never drive alone

In this section we describe an approach for realizing a
carpooling service, based on the identification of pairs of
Boosting carpooling with network analysis, Information

http://dx.doi.org/10.1016/j.is.2016.03.006
http://dx.doi.org/10.1016/j.is.2016.03.006
http://dx.doi.org/10.1016/j.is.2016.03.006


Fig. 2. Example of routines containment: r1 is contained in r2 because the
starting and ending points of r1 (circular points) are spatially and tem-
porally close enough to some points of r2 (squared points).
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users that could share their vehicle for one or more of their
systematic trips. The method builds on and develops sev-
eral of the concepts summarized in the previous section.

In the following we propose a procedure for suggesting
carpooling assignments – i.e. offering to some users to
become a driver for other users, who will become their
passengers – among systematic users. The output of such
procedure also provides the means for studying the
potential of carpooling on the area of analysis. The pro-
cedure is composed by two main tasks. The first one
regards the construction of the carpooling network, the
calculus of the ranking scores and the extraction of the
communities. The second one concerns the actual assign-
ment of drivers and passengers among the users that form
the carpooling network, exploiting the ranking score and
the community information computed before.

4.1. Carpooling network construction

We talk about carpooling interaction when a user can
get or offer a ride to another one. The idea is to use
complex networks to model the potential carpooling
interactions, to use the ranking measures to evaluate how
much a user is suitable for being a driver or a passenger,
and to use community detection to characterize groups of
users that are highly related in terms of carpooling.

The starting point of this analysis is the set of routines
which constitutes the user mobility profiles. Since mobility
profiles represent users' systematic behaviors, by comparing
them it is possible to understand if a user can be served by
another one. The system can keep reasonably up-to-date rou-
tines and profiles by executing the profiling process regularly,
for instance every week, over the most recent mobility data.

A basic operation we need to perform is testing whe-
ther a routine is contained in another. If a routine r1 is
contained in a routine r2 then the user that systematically
follows r1 could leave her car at home and travel with the
user that systematically follows r2. The relation of routine
containment is defined as follows:

Definition 7 (Routine containment). Given two routines

r1 ¼ fðxð1Þ1 ; yð1Þ1 ; tð1Þ1 Þ;…; ðxð1Þn ; yð1Þn ; tð1Þn Þg and r2 ¼ fðxð2Þ1 ; yð2Þ1 ;

tð2Þ1 Þ;…; ðxð2Þm ; yð2Þm ; tð2Þm Þg, a spatial tolerance spattol and a tem-
poral tolerance temptol, we say that r1 is contained in r2, i.e.
containedðr1; r2; spattol; temptolÞ, if ( i; j:1r io jrm such
that:

J ðxð1Þ1 ; yð1Þ1 Þ�ðxð2Þi ; yð2Þi ÞJþ J ðxð1Þn ; yð1Þn Þ�ðxð2Þj ; yð2Þj ÞJrspattol4

jtð1Þ1 �tð2Þi jþjtð1Þn �tð2Þj jrtemptol

where

� spattol is the maximum total distance that the user
which is served could walk to reach the pick-up point,
and to reach her final destination from the get-off point;

� temptol is the maximum total amount of time that the
user which is served is allowed to waste, as delay or
anticipation w.r.t. her original trip, considering the
departure and the arrival time.
Please cite this article as: R. Guidotti, et al., Never drive alone:
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It is important to note that the contained relation is not
symmetric, since one routine might include another
without having the vice versa holding. This can happen
when the routines compared have different lengths, in
which case the origin of the user which serves the other
can be very far from the origin of the one who is served,
and similarly for the destination point. Fig. 2 provides a
visual depiction of the containment relation over a simple
example. This formulation basically assumes that the users
served (i.e. the candidate passengers) are willing to walk
and change their time schedule in exchange of the ride
they get, while the users which serve (i.e. the candidate
drivers) do not change their routine.

Using the routine containment relation it is possible to
build a carpooling network G¼ 〈N; E〉. Given a set of profiles
P ¼ fP1;…Png, for each pair of different users u and v, we
check the routine containment between every routine rui APu

and every routine rvj APv. If containedðrui ; rvj ; spattol; temptolÞ
holds, then u; vAN and fðu; v; rui ; rvj ÞgAE.

Definition 8 (Carpooling network). A carpooling network
G¼ 〈N; E〉 is a multi-dimensional graph where N represents
the set of all users taking part in at least a carpooling
interaction, E is the set of all labeled edges ðu; v; rui ; rvj Þ,
where rui is a routine of uAN, rvj is a routine of vAN, and rui
is contained in rvj .

Note that the carpooling network guarantees that the
trajectories considered are routines, and therefore they are
repeated systematically ensuring that a ride is most likely
available or needed on that route. In Fig. 3 (left) we have a
representation of the carpooling network. Given a car-
pooling network G¼ 〈N; E〉 we define the possible passen-
gers and possible drivers as follows:

Definition 9 (Possible passengers). Given a carpooling
network G¼ ðN; EÞ, a user uAN is a possible passenger if she
has at least an outgoing link, that is koutu 40.

Definition 10 (Possible drivers). Given a carpooling net-
work G¼ ðN; EÞ, a user uAN is a possible driver if she has at
least an in-going link, that is kinu 40.

We denote with PPG the set of all possible passengers and
with PDG the set of all possible drivers in G. Note that it is
possible (and actually rather frequent) that PPG \ PDGa∅,
thus some user can act both as possible passenger and
possible driver.
Boosting carpooling with network analysis, Information
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Fig. 3. Carpooling network (left) and carpooling user network (right).
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Finally, it is worth to highlight that a carpooling net-
work is in fact a multidimensional network: users u and v

can share for example two routines; the going trip and the
return trip because they take place at different times and
also on different roads. However, in order to use some
common network analytic tools we have to transform the
carpooling network in a mono-dimensional network (see
Fig. 3 (right)).

Definition 11 (Carpooling user network). Given a carpool-
ing network G¼ 〈N; E〉, we define a carpooling user network
as a direct mono-dimensional graph G0 ¼ 〈N; E0〉 obtained
by collapsing all multi-dimensional edges between the
same pair of users, i.e. E0 ¼ fðu; vÞjðu; v; ru1; rv1ÞAEg.

Since G0 is a direct network, then an arc (u,v) is directed
from u to v, consequently v is said to be a successor of u.

4.2. Greedy carpooling assignment suggestion

Using the carpooling network, we are now able to
extract potential assignments. The carpooling assignment
method proposed in this section follows a simple heuristic
and a greedy idea. The method takes as input a carpooling
user graph G, i.e. multidimensional edges are not con-
sidered, assuming that each pair of users can share only
one routine: the general case will be described later as an
extension of the solution described here. The idea is that
this first procedure is applied to a relatively short time
window within the day, where it is basically certain that
each user will have at most one active routine, e.g. in a
typical situation a time window covering the period from
8 a.m. to 8:15 a.m. might contain the home-to-work rou-
tine of a commuter, but not the symmetric one, which will
likely appear in another time slot in the afternoon. In
Section 4.4 we will describe the overall algorithm that
iteratively applies the present one on different time slots.
The output of the method is a classification of the users
taking part in the carpooling network. In particular, the set
D contains the drivers that host some passengers in their
car, P contains the passengers that are hosted by some
drivers, and S contains the single-occupant-vehicles (SOV)
that drive alone. The three classes form a partitioning of
the users, i.e. N¼D [ P [ SOV and jNj ¼ jDjþjPjþjSOV j.

Algorithm 1 illustrates the greedy assignment method.
This procedure uses a sorting function f to order the pos-
sible passengers u according to some criteria c0 and it iter-
ates through them (line 1). If u has not been already
Please cite this article as: R. Guidotti, et al., Never drive alone:
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assigned as driver or passenger (line 2), the algorithm
iterates through her possible drivers v (i.e. the out-linked
nodes in the network, the function successorsðuÞ returns
the set of successors of u) using f according to another
criteria c″ (line 3). If v has free places in her car (line 4),
then u is assigned as passenger (line 6) and v as driver (line
5). The procedure is repeated until every user is assigned,
or there are no free places left. All the nodes that have not
been assigned as driver or passenger, then they are con-
sidered SOV (lines 12–16).

We remark that the algorithm is intended to be applied
iteratively on successive time windows, therefore it takes
as input also the output sets obtained from previous
iterations, in order to consider in the matching process all
users that are not already and completely assigned. For
example, if a driver has already used all her free places for
an active routine, then she cannot take other passengers,
and therefore she is not considered in the matching at the
present iteration. On the other hand, a user that was
classified as SOV for an active routine can still be con-
sidered both as possible passenger and possible driver.

The main purpose of this procedure is to reduce the
number jSj of systematic cars in which the driver is driving
alone and, in second instance, the total number of sys-
tematic cars in circulation given by jDjþjSj, thus increasing
the number of systematic cars that are not needed any-
more – corresponding to the number of users that turned
into passengers, jPj. The most important component is
represented by jSj, since SOVs do not play an active role in
carpooling although they could potentially share at least
one routine with another user – a basic prerequisite for
being part of the network. The algorithm is parametric
with respect to the sorting criteria used. As baseline sort-
ing criteria we adopted a random sorting, that is, the nodes
are ordered in a random way. Other, more sophisticated
criteria are discussed in Section 4.5.

Although the algorithm has a quadratic complexity, in
practical cases it is essentially linear in the number of
nodes analyzed, OðjNjÞ. This happens because if a node has
already been marked as driver or passenger, then it cannot
be re-analyzed. Also the presence of a inner loop does not
lead to quadratic complexity because this would mean
that every possible driver could offer a lift to all (or a large
part of) possible passengers, which is highly improbable.
Moreover, we have to consider the cost of the sorting
functions f, which is ΘðN log NÞ in the worst case. The cost
of the innermost sorting function could be at worst
ΘðN2 log NÞ but, as above, this would happen if every node
Boosting carpooling with network analysis, Information
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links to all the others. In practice, the innermost sorting
function f function cost is Oðkoutu log koutu Þ each time it is
repeated, i.e. OðNkoutu log koutu Þ. Since the average koutu is very
low in this kind of networks, we have that Oðkoutu log koutu Þ
can be approximated to a constant c. Thus, the dominant
Algorithm 1. calculateGreedyAssignment ðG0; f ;m; c0; c″;D; P; SÞ.
cost remains ΘðN log NÞ.
The problem analyzed is NP-complete [39], and an

optimal approach to solve it is exponential in the number
of edges. Indeed, such an approach should take into
account the fact that every assignment might inhibit any of
the others, since each node in the network can either be a
driver or a passenger and once the choice is made it cannot
be reversed, then virtually all combinations must be tried
in order to find the best one. Finally, we note that, in spite
of its resemblance with bipartite matching, our formula-
tion of the carpooling problem cannot be solved just using
a maximal matching over the bipartite graph among pos-
sible drivers and possible passengers, because the inter-
section between possible drivers and possible passengers
is not empty. Thus, in order to reduce it to the bipartite
case we should evaluate the matching over all its possible
bipartite projections, i.e. by assigning all users to one fixed
Please cite this article as: R. Guidotti, et al., Never drive alone:
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role, trying all possible combinations. That is computa-
tionally equivalent to the exhaustive, brute force approach
mentioned above. For these reasons, the solution we pro-
pose is an heuristics, which trades optimality for
scalability.
4.3. Ranking criteria and problem partitioning

In order to find the best assignments among the users
taking part in the carpooling scenario, it is useful to dis-
cover the best passengers and the best drivers among the
candidate ones. We say that a user is a “good passenger” if
she can accept a lift from many “good drivers”, and
mutually, a user is a “good driver” if she can offer a ride to
many “good passengers”. Thus, we analyze the carpooling
network to rank a user as a “good passenger” or as a “good
driver”. The idea to reach this goal is to consider the car-
pooling user graph and the apply the HITS algorithm [34].
Indeed, the HITS task of extracting hub and authority
scores to estimate the value of a web page can be directly
mapped to the carpooling scenario for measuring how
much a user is suitable for being a good passenger or a
good driver. In the context of carpooling networks, we
Boosting carpooling with network analysis, Information

http://dx.doi.org/10.1016/j.is.2016.03.006
http://dx.doi.org/10.1016/j.is.2016.03.006
http://dx.doi.org/10.1016/j.is.2016.03.006


Fig. 4. Carpooling temporal network.
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define the hub score as passengerness, i.e. the attitude of u
for being a good passenger, and the authority score as
driverness, i.e. the attitude of u for being a good driver.

Definition 12 (Passengerness and driverness). Given the
carpooling user network G¼ 〈N; E〉 and its adjacency
matrix A, for each user uAN, we define passengerness pu
and driverness du respectively as the hub and authority
scores of u in G. Formally, vectors p and d are eigenvectors
such that p¼ AATp and d¼ ATAd.

Even though the passengerness and the driverness are
indicators of how much a user can be a good driver or a
good passenger, they do not provide information about
which groups of users could more easily travel together, or
which geographical areas could be more promising for a
carpooling service. Consequently, we extracted groups of
users sharing common routines, which have then been
analyzed to characterize each group geographically (to
understand whether such groups are localized or dis-
persed over large areas), and with respect to their pas-
sengerness and driverness.

Definition 13 (Carpooling community). Given a carpooling
user network G0 ¼ 〈N; E0〉 we define a carpooling community
CDN as a group of users who share more routines with
the users inside the community rather than with the users
outside the community.

In order to extract the carpooling communities and to
perform the carpooling suggestions without discarding the
temporal knowledge we introduce carpooling temporal
networks:

Definition 14 (Carpooling temporal network). Given a
multi-dimensional carpooling network G¼ 〈N; E〉, a time
stamp ts and a temporal duration dur, we define a car-
pooling temporal network as a direct graph G0 ¼ 〈N0; E0〉 such
that E0 ¼ feuvAEjisActiveðeuv; ts; durÞg and N0DN is the set
of all nodes comparing in E0. The isActive operator is
defined as

isActiveðeuv; ts; durÞ � ðtsrtri1 otsþdurÞ4ðtsrtrin otsþdurÞ

where tri1 is the time stamp of the first point of ri and l¼ trin
is the time stamp of the last point of ri (Fig. 4).

An edge euv is active if the contained routine is not finished
in a certain time window. Note that a carpooling temporal
network is a mono-dimensional direct graph if the used
time window is short enough (i.e., dur is relatively small)
and there are not two users u and v that systematically
follow two different pairs of matching routines in the same
time window – usually a rather extreme phenomenon for
reasonable values of dur. A carpooling network can be seen
as a particular carpooling temporal network where every
edge is active. Finally, we highlight that a carpooling
temporal network is different from a carpooling user net-
work, since the second considers every carpooling
interaction.
Please cite this article as: R. Guidotti, et al., Never drive alone:
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4.4. Never drive alone method

Using the measures and concepts defined up to now,
we describe in the following the Never Drive Alone (NDA)
method which tries to minimize the number of SOVs. The
detailed procedure is described in Algorithms 2 and 3. The
main difference between these two versions is that the
second one uses the community information, while the
first one does not. NDA performs the following steps:
(i) extracts the systematic movements (lines 3–6); (ii)
builds the carpooling network (lines 7–8); (iii) calculates
the passengerness and driverness ranking scores (line 10);
(iv) extracts the carpooling communities (lines 11);
(v) makes the assignments and classify the users as dri-
vers, passengers or SOVs using Algorithm 1 (lines 14–end).

Given a time window defined by the parameters ts and
dur discussed in the previous section, function
removeFinishedInteractions removes from D0; P0; S0 the
assignments that will not be active in the next time win-
dow because they end in the current one. In this way, a
driver can offer a lift to more then m (max number of free
places) users because if she systematically travels a long
routine, she might drop-off a passenger and later take
another one, also multiple times. The returned sets classify
the user according to their role in the carpooling scenario.
That is, a user will be in S if and only if she is left out from
every carpooling interaction in every time window. If a
user can physically act either as a driver or as a passenger
then she is counted as a driver because for at least a sys-
tematic trip she offered a ride and thus used her car. This
happens for example when a user offers a ride to someone
in the morning, then returns to the starting point and
finally in the afternoon takes a lift to go somewhere else.

When the procedure is performed taking into account
the carpooling communities (see Algorithm 3), for each
time stamp considered the communities are extracted and
analyzed in a certain order which can depend on the size
of the community. The purpose is to reduce the focus
assignment problem on sets of users that are similar in the
carpooling sense, that is, we give to the edges of nodes
belonging to different communities a lower importance,
because they are expected to offer a ride or get a lift with
lower probability – typically because different commu-
nities often correspond to different geographical areas. On
the contrary, users in the same communities are similar
each other, thus their links are evaluated with an high
importance in suggesting assignments.
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http://dx.doi.org/10.1016/j.is.2016.03.006
http://dx.doi.org/10.1016/j.is.2016.03.006
http://dx.doi.org/10.1016/j.is.2016.03.006


Algorithm 2. NeverDriveAlone ðH; dur; f ;mÞ.

Algorithm 3. NeverDriveAloneCommunities ðH; dur; f ;mÞ.

R. Guidotti et al. / Information Systems ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 9

Please cite this article as: R. Guidotti, et al., Never drive alone: Boosting carpooling with network analysis, Information
Systems (2016), http://dx.doi.org/10.1016/j.is.2016.03.006i

http://dx.doi.org/10.1016/j.is.2016.03.006
http://dx.doi.org/10.1016/j.is.2016.03.006
http://dx.doi.org/10.1016/j.is.2016.03.006


R. Guidotti et al. / Information Systems ∎ (∎∎∎∎) ∎∎∎–∎∎∎10
4.5. Sorting and matching strategies

Both Algorithms 2 and 3 rely on the greedy procedure
reported in Algorithm 1. It is worth to underline that this
procedure is based on the knowledge extracted form data.
Indeed, the structure of the greedy assignment exploits the
fact that the carpooling networks show a power low dis-
tribution of the nodes’ degree (see the detailed study
provided in Section 5.2). By using smart sorting criteria,
our purpose is to lead the algorithm to consider first the
least “promising” passengers (i.e. the most difficult ones to
match), and then by ordering their drivers, to assign the
worst passengers with their least promising drivers. This
way, passengers with less possibilities to be matched are
assigned first, while passengers which have more oppor-
tunities are assigned to the remaining drivers. We can
instantiate this reasoning both using the in/out degrees
and using the passengerness/driverness ranking criteria.

In this work we consider the following criteria, in order
of complexity:

� (r) random criteria (c0 ¼ frandom orderg; c″ ¼ frandom
orderg): users are sorted randomly both if they are
drivers or passengers;

� (g1) degree criteria (c0 ¼ fkoutascending orderg; c″ ¼
fkinascending orderg): users are sorted according to the
carpooling user network out-degree kout and in-degree
kin, that is, the nodes are sorted by increasing kout and
than, their neighbors are ordered by increasing kin;

� (g2) degree – ranking scores criteria (c0 ¼ fðkout ;pÞorderg;
c″ ¼ fðkin; dÞorderg): users are sorted according to pas-
sengerness p and driverness d in addition to kout and kin,
that is, the nodes are sorted in a lexicographical order
by increasing ðkout ; pÞ and then, their neighbors are
sorted in a lexicographical order by increasing ðkin;dÞ.

In principle, the methodology can be applied also
switching passengers with drivers, i.e. by enumerating
drivers first, and then matching each of them with her
possible passengers. Yet, preliminary experiments proved
that this order is largely less successful than the original
one presented above. Therefore, in the rest of the paper we
will consider only the passengers-first approach.

Another information that can be exploited to guide
NDA is the community membership. Therefore, we con-
sider two further variants of the method: a basic one,
which is agnostic of the communities; and a community-
Fig. 5. (Left) A sample of trajectories in Pisa provi
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driven one, where the matches between intra-community
individuals have priority over all the others:

� (w) plain version, Algorithm 2, considering every edge in
the whole network with the same importance;

� (c) prioritized version, Algorithm 3, that suggests an
assignment to the users inside the same community
and then, if that fails, among users of different
communities.

Finally, we adopted two strategies for considering the
temporal dimension. The mobility profiles and the con-
tained function for comparing any pair of profiles make the
carpooling network basically a summary of a typical day
made of systematic routines and their mutual inclusion
relations. We can decompose this day in a series of time
slots with a predefined duration (dur), obtaining a series of
carpooling temporal networks. The way the sequence of
time slots is produced is a parameter of the general
method. Here we consider two main variants:

� (discrete) time slots, they start at discrete time instants,
for instance one every 5 min starting from midnight.
This produces a sliding window of length dur that
moves of step 5 min;

� (continuous) the time slots, they start in correspondence
of the last successful carpooling interaction, i.e. the time
of the last matched routines becomes the next
starting time.

In Section 5.3 we will evaluate experimentally each
combination of the three parameters discussed here
(sorting criterion, usage of communities, choice of time
slots).
5. Impact on real mobility

In this section we illustrate an instantiation of the
overall approach proposed to a real case study, and show
the results obtained. The section is divided into three main
parts, corresponding to the phases of the methodology
proposed: extraction of user profiles, construction of a car
pooling network, and selection of carpooling suggestions.
Also, a sub-section on computation times is provided,
together with a summary of the main results presented.
nce. (Right) The mobility profiles extracted.
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Fig. 6. Profile test parameters eps (left), min size (center), and time threshold (right).

Fig. 7. Distribution of routines per user (left) and starting time of trajectories and routines (right).
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5.1. User profiles

Dataset: As a proxy of human mobility, we used real
GPS traces collected for insurance purposes by Octo Tele-
matics S.p.A [40]. The full dataset contains 9.8 million car
travels performed by about 159,000 vehicles active in a
geographical area focused on Tuscany over a period from
1 to 31 May 2011. Fig. 5 (left) depicts a sample of the
considered trajectories.

Since the area and the period described in our mobility
dataset contain an heterogeneous mix of contexts and
conditions, in order to obtain better interpretable results
we split the data along time and geography. On the tem-
poral dimension, we separated working days and non-
working days, since it is commonly observed that during
Saturday and Sunday most people leave their working
mobility routines and adopt other more erratic behaviors.
Moreover, given our focus on systematic mobility, we fil-
tered out weekend trajectories maintaining only those
from Monday to Friday of every week. In order to consider
also the heterogeneity of the territory covered by the
dataset, we split it into provinces, each containing all the
trajectories that pass through it. In particular, in this work
we are reporting the results obtained for Pisa and Florence
provinces, which represent two rather different kinds of
mobility, both in terms of population and traffic flows.
Finally, too short trips (less than 1 km) have been
removed.

Profiles construction: Since the starting point of our
methodology are users' individual routines, we began with
a set of tests aimed to retrieve the best parameters to
Please cite this article as: R. Guidotti, et al., Never drive alone:
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extract reliable mobility profiles. The clustering algorithm
used to extract the routines is a variant of OPTICS, a
density-based clustering algorithm [41], which thus con-
stitutes our grouping function used in Definition 4. In
OPTICS, we employed the same distance function used in
[16] for the clustering step. To tune the parameters, we
have studied OPTICS' settings on a subset of 1000 users in
the Pisa dataset. In particular, we studied three para-
meters: ϵ, min size and time. ϵ was varied in the range
½0:1;0:3� with step 0.01, Fig. 6 (left). The bigger the ϵ, the
more different trajectories are clustered together. In other
terms, it expresses the similarity required between tra-
jectories. Parameter min size was varied in the range
½4;12�, Fig. 6 (center). It represents the minimum number
of trajectories that must be in a cluster to be considered
valid. Finally, we observed the time threshold time varying
in f900;1800;2700;3600g s, see Fig. 6 (right). It is the
maximum tolerated difference between the starting times
of two trajectories, and is used by the clustering function
to decide if two trajectories are well synchronized. The
criteria we consider to tune the values are: (i) the dataset
coverage, in terms of users having routines, (ii) the average
number of profiles per user, and (iii) the stability of pro-
files, i.e. the number of profiles per user that are con-
sistently preserved along the whole duration of the data-
set. The resulting plots do not show particular breaking
points nor strong trends, thus suggesting that the choice of
this parameters is not critical. Yet, we can observe some
minor change of the distributions around the middle value
of each figure, e.g. the time curves change more rapidly
after 1800 s. Therefore, we choose ϵ¼ 0:2 (approximatively
Boosting carpooling with network analysis, Information
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Fig. 8. Network construction test on the parameters of contained: (left) spattol and (right) temptol.

Fig. 9. Carpoolers classification pie chart for Pisa and Florence.
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meaning a 80% of similarity), time¼30 min (i.e. 1800 s)
and min size ¼8 (i.e. all trips repeated at least 8 times over
our 20 working days will be considered routines of
the user).

Results: Mobility profiles model the systematicity of
each user. Fig. 5 (right) depicts the profile extracted in Pisa
province, where we can see how some areas become less
dense of trips, especially those in the country side and
those where systematic trips are less likely to occur (e.g.,
the seaside, on the left). Fig. 7 (left) shows the number of
routines per users in Pisa province, with almost every user
having one or two routines, which most likely correspond
to commuting trips between home and work. The corre-
sponding average number of routines per profile is 2.14.
Fig. 7 (right) reports the temporal distribution of the tra-
jectories and routines. Here we can see that the profiles
closely follow the timing of typical working days, high-
lighting the three peeks during the early morning (5–6),
lunchtime (11–12), and late afternoon (17–18).

5.2. Carpooling network

In this section we instantiate the network construction
step of our proposed methodology, and analyze the char-
acteristics of the resulting carpooling network. In parti-
cular, we first focus on the knowledge on mobility that can
be inferred from the network, trying to obtain preliminary
estimations of the potential reduction of traffic that can
result from carpooling initiatives. Then we study the
topological properties of the network, computing ranking
measures and extracting communities.
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5.2.1. Network construction
The carpooling network is derived by the application of

the function contained, which defines who can give a lift
to whom. Therefore, the resulting network directly
depends on the value used for its parameters spattol and
temptol. In order to find good values for these parameters
and to obtain a sound network made of reliable carpooling
interactions, we performed a network construction test on
a sample of 1000 mobility profiles. Fig. 8 shows how the
containment is affected, in percentage, in terms of routines
and mobility profiles that have at least one match. The
default values of spattol and temptol are, respectively, 1 km
and 30 min. It is worth to notice that by allowing a walking
distance (spattol) of 3 km and a wasting time (temptol) of
30 min, about 60% of the profiled users have at least one
match, which decreases to 10% if the walking distance
becomes 500 m. Similarly, by allowing a walking distance
of 1 km and a wasting time of 60 min, 30% of the profiled
users have at least one match, which decreases to 10% if
the wasting time becomes 15 min. This suggests that an
increase in the walking distance has a larger impact than
an increase in wasting time, in terms of number of car-
pooling matches. Based on these observations, we built the
carpooling networks for Pisa and Florence using a max-
imum walking distance of 1 km and a maximum wasting
time of 30 min.

5.2.2. Network analysis
Users classification: By observing the users appearing in

the carpooling networks (among those which have a
mobility profile), we can distinguish those that can join
others as passengers or drivers, and those that cannot. In
Boosting carpooling with network analysis, Information
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Fig. 10. Routines distribution: length (left), duration (center), and time start (right).

3 For this task we adopted the Python implementation of HITS pro-
vided by the NetworkX library (http://networkx.github.io), with a toler-
ance threshold of 1.0e�8.
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particular, we can classify them into four categories, based
on their in- and out-degree in the network:

� only passengers are the users that can only get rides
from other carpoolers, that is kin ¼ 0 and kout40;

� only drivers are the users that can only offer rides to
other carpoolers, that is kout ¼ 0 and kin40;

� passengers and drivers are the users that can act both as
passenger and as drivers: kout40 and kin40;

� no carpoolers are the users that do have systematic
movements but cannot share any routines with other
users: kout ¼ 0 and kin ¼ 0.

With respect to the definitions introduced in Section 4.1,
users which are only passengers belong to PP, those which
are only drivers belong to PD, and the users which are
passengers and drivers belong to both PP and PD. Fig. 9
depicts the pie chart with the percentages of different
types of users in the carpooling user networks of Pisa and
Florence. We can observe how the carpooling potentiality
is different in the two cities, with Florence showing larger
percentages of carpoolers, especially of the driver and
passenger type.

Basic carpooling network features: The analysis of the
carpooling network and the corresponding user classifi-
cation mentioned above can provide a preliminary eva-
luation of the impact of carpooling services over sys-
tematic traffic in terms of reduction of travels and number
of cars on the road. For instance, in Pisa we obtained
around 7400 mobility routines, each representing at least
8 single trips of the user (indeed, minsize¼ 8 in these
experiments), for a total of around 59,200 systematic trips.
Also, we discovered that around 1720 of the routines are
actually contained in at least one other routine, i.e. the
user could carpool with another driver, which means a
potential reduction of systematic mobility of about 23%.

We finally analyze the spatio-temporal features of the
routines extracted. Fig. 10 (left) shows the length dis-
tribution of routines for the categories we described above
on the Pisa dataset. We notice that users who are only
passengers mainly have a routine length between 0 and
10 km, while the only drivers have longer routines,
between 5 and 25 km. This fact, confirmed by the dis-
tribution of trip durations in Fig. 10 (right), meets the
intuition that users traveling for longer distances can more
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easily offer lifts to others, while short-distance travelers
can more easily be taken as passengers.

Topological features: The following analysis is focused
on some topological features of the carpooling user net-
works, in particular the degree (in-degree kin and out-
degree kout) of nodes and their ranking scores (driverness d
and the passengerness p, see Definition 12). The ranking
scores are calculated by running the HITS algorithm on the
carpooling user networks.3 Fig. 11 shows both the degrees
and the ranking scores distribution for Pisa and Florence,
with values rescaled to the [0,1] interval in order to make
the two plots comparable.

Both distributions are long tailed, meaning that there
few users have high values and many users have low
values. As highlighted in the previous section, some users
are only passenger or only driver, and therefore their cor-
responding nodes in the network have kin ¼ 0 or kout ¼ 0.
We can notice that in Pisa, many users also have a zero
driverness d, and the same happens for passengerness p.
This emphasizes the significant difference that exists
between the degree and the ranking scores, at least in the
Pisa carpooling user network. The conclusion is that,
despite the obvious correlation between kout and p, and
between kin and d, they can behave in a significant dif-
ferent way, and users that can be drivers for many pas-
sengers might possibly be not good driver, and vice-versa.
On the other hand, the carpooling user network of Flor-
ence is denser, and the correlation between degree and
ranking scores is higher.

The main differences between the two provinces are in
the p and d ranking scores. In Pisa the driverness d rapidly
falls down getting close to zero within the first one hun-
dred users, while in Florence it decreases much more
gradually. A similar consideration can be done by looking
at p. Moreover, in Pisa there are few drivers with a high d,
suggesting that only few of them can serve good passen-
gers, while Florence has more good drivers.

We remark that most of the nodes in the networks
considered here have very low degrees, between 3 and 8.
This is probably due to the strict parameters that we
Boosting carpooling with network analysis, Information
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Fig. 11. Degree and ranking scores distribution: (left) Pisa and (right) Florence.

Fig. 12. Geographical view of some carpooling communities in Pisa province.
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adopted in building the carpooling networks to have reli-
able interactions. The effect is that the carpooling users
networks are very sparse, which turns to be an advantage
for the task of suggesting assignments since each user has
only a small number choices to consider.

Finally, both datasets show a standard deviation of the
all features (kin, kout, d and p) larger than their mean,
suggesting that our users are rather heterogeneous. Also,
passengerness and driverness appear to be poorly corre-
lated, resulting in a Kendall's Tau coefficient 0.134.

5.2.3. Communities
Community discovery: The HITS algorithm returns an

indicator of how much a user can be a good driver or a
good passenger. However, these ranking scores do not help
in grouping similar users, that is, users that with an high
probability would like to share their travels. For this pur-
pose we used carpooling communities, i.e. groups of users
who share more routines with other users inside the group
than with users outside the group. Various state-of-the-art
community discovery algorithms were tested to this pur-
pose, including Infohiermap [37], Louvain [36] and Demon
[38]. Finally, the Demon algorithm was selected, due to its
better performances both in terms of runtimes and quality
of the result. DEMON is an incremental and low-
complexity algorithm for community discovery. It is
based on the extraction of ego networks, that is, the set of
nodes connected with a certain ego node u. The commu-
nities are extracted by using a bottom-up approach where
Please cite this article as: R. Guidotti, et al., Never drive alone:
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each node gives the perspective of the communities around
it, and then all the different perspectives are merged
together in an overlapping structure. In practice, the ego
network of each node is extracted and the label propaga-
tion algorithm is applied on this structure ignoring the
presence of the ego itself, since it will be judged by its peer
neighbors. Then, with equity, the vote of everyone in the
network is combined. The result of this combination is a
set of overlapping modules, the guess of the real com-
munities in the global system, made not by an external
observer, but by the actors of the network itself. We
selected DEMON because the size of the communities are
well balanced in opposition to what happens applying the
other algorithms (Louvain and Infohiermap). We removed
the overlap of the communities by setting to zero the
parameter managing the maximum overlap allowed.

Communities analysis: Fig. 12 shows a sample of car-
pooling communities in Pisa province. It is interesting to
notice that the carpooling communities are geographically
well localized. Every community acts on a specified area
that contains the systematic movements of its users. This
means, for instance, that a user who is active in the
northern area of Pisa can generally disregards the mobility
of any user that is moving in the area between Cascina and
Pontedera – two cities located 10–30 km East of Pisa.

The topology of the communities emerging from the
network results to be very similar to the topology of the
original carpooling user network. That is, every commu-
nity, from a topological point of view, behaves as the
Boosting carpooling with network analysis, Information
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Fig. 13. Carpooling ranking scores box-plot for Pisa (left) and Florence (right).

Fig. 14. Network of two communities in Pisa, one not autonomous and one autonomous, showing global and local ranking scores. Size of nodes represents
driverness. Darkness represents passengerness.
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overall network. The average size of the communities is
30–40 nodes and the average degree inside a community
is around 4 with a low standard deviation (1.32 on
average).

Observing the distribution of the driverness and pas-
sengerness scores within each community, shown in
Fig. 13 for Pisa and Florence province, we discover that
the carpooling communities can be classified in two
Please cite this article as: R. Guidotti, et al., Never drive alone:
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categories. Indeed, we can see from the box-plots that the
distributions on the different communities have a high
variability, showing a group of communities having con-
sistently very low values, while the others are made of
nodes with (on average) high ranking scores.

As further step, we evaluated how much the ranking
scores d and p of a node changes if they computed con-
sidering only the community it belongs to, i.e. running the
Boosting carpooling with network analysis, Information
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HITS algorithm locally to the sub-network formed by each
community. We call the new scores local driverness and a
local passengerness, to distinguish them from the global
values. By analyzing the Kendall's tau correlation between
the global and local ranking scores for each community we
found that, in the Pisa dataset, there are about 30 com-
munities with a correlation close to one, while the
remaining circa 20 communities have correlations lower
than 0.4. That means that the first group of communities is
basically autonomous, since they are very weakly influ-
enced by the nodes outside the community, and therefore
could rely on finding possible assignments without con-
sidering inter-community links. On the contrary, the other
communities are not-autonomous, since they can be
influenced by inter-community links and their users could
find potential best matches with users belonging to a
different community.

Fig. 14 shows real examples of a not-autonomous (left)
and a autonomous community (right), depicting both the
global ranking scores (left column) and the local ones
Fig. 15. Assignment results for all strategies and criteria adopted: Pisa
(left) and Florence (right).

Fig. 16. Assignment results for the two edge strategies (w) and (c) a
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(right column). The size of nodes represents the driverness
score, while its darkness represents passengerness. We
remark that virtually nothing changes for the autonomous
community, whereas completely different scores emerge
for the non-autonomous community, confirming the
observations discussed above.

5.3. Carpooling suggestions

In this section we describe the results obtained by
performing the Never Drive Alone procedure on Pisa and
Florence datasets. The assignment performance evaluation
is done by measuring the number of resulting SOVs (Single
Occupancy Vehicles), the number of systematic cars tra-
velling, as well as evaluating the impact of NDA in eco-
nomic and environmental terms.

5.3.1. Never drive alone performances
Setup of experiments: The NDA procedure described in

this paper has been tested considering all the variants
discussed in Section 4.5. Moreover, the vehicle capacity of
each user has been fixed to m¼4, i.e. each vehicle can host
four passengers in addition to the driver, which fits quite
closely the local standards of the area under study. Also,
the time slot duration for the creation of temporal net-
works out of the full carpooling network was fixed to
dur¼1 h, meaning that trips longer than 1 h might be
prevented from being matched to others even if the con-
tain relation holds – an extremely unlikely event in our
dataset, since 1-h routines are very rare.

Results: Fig. 15 shows the percentage of passengers Pn,
drivers with passengers on-board Dn and SOVs Sn obtained
over Pisa and Florence by applying each combination of
the criteria adopted (abbreviations ðrÞ, ðg1Þ, etc. are those
provided in Section 4.5). In addition, it shows the corre-
sponding number of (systematic) cars on the road (see the
dark line on the top of both pictures). As first evaluation,
we see that there are always more than one-third of users
that become passengers, in most cases around half of the
users become drivers with passengers, and only a small
percentage remains a single-occupant vehicle.

We notice also that while there are significant differ-
ences of performances among the algorithm variants
considered, the simplest (random) variant already reaches
very good results, with a SOV around 12%. Such result
suggests that the networks considered constrain sig-
nificantly the assignment phase, leaving few alternative
nd for the three sorting criteria adopted on the Pisa dataset.
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Fig. 17. SOVs percentage distribution (PDF and CDF) of random assignment tests ran 100,000 times for discrete time strategies. Left: case not considering
communities; right: communities are considered.
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opportunities to explore, although smarter assignment
methods are able to improve the results. More tolerant
settings in the construction of the carpooling network
(such as admitting matched with longer distances to walk
to take a lift) are expected to yield networks with more
alternatives to explore, and therefore make the improve-
ment margins over the random solution much larger.

The plots show that the knowledge extracted from the
mobility data and refined with network analysis progres-
sively leads to improvements regarding the minimization
of the number of SOVs. Indeed, we observe that the sorting
criterion (g2) gets better results than the sorting criterion
(g1), which in turn outperforms (r).

Moreover, Fig. 16 also depicts how the strategy con-
sidering the community information (c) slightly reduces
the number of SOVs with respect to the strategy that
considers the whole network (w). This suggests that the
carpooling service might be organized in a local way, i.e. it
might be convenient to focus the proactive suggestions
mainly among users within the same community, basically
disregarding the others.

Also the temporal information contributes with useful
suggestions: considering dynamically each change in the
carpooling interactions (d) to compute the assignments
procures a little advantage with respect to the one
obtained using fixed time slots (s). Yet, the calculus with
(d) is computationally more expensive, especially in peri-
ods where carpooling interactions are frequent (morning,
midday, evening).

So far, our considerations were focused on the mini-
mization of the number of SOVs. Anyway, if we want pri-
marily to minimize the number of systematic cars travel-
ing, and only secondarily the number of SOVs, we discover
that the best approach still uses the (g2) criteria, yet this
time considering the whole network (w) and static (dis-
crete) time slots.

Finally, Fig. 15 also shows that although Florence has
more good drivers and passengers than Pisa (see the car-
pooling user network analysis in Section 5.2), the two
carpooling networks yield comparable results in terms of
suggestions.

NDA vs. random assignment approach: In order to better
verify that the provided solution is consistently better than
those found by a random exploration of choices, we report
in Fig. 17 the results obtained by running 100,000 times
Please cite this article as: R. Guidotti, et al., Never drive alone:
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NDA with random sorting criteria (r) on the Pisa carpool-
ing network, considering the whole network without
assignment priorities (left (w)) and prioritizing the
assignments between nodes in the same community (right
(c)). What we obtain in both cases is a normal distribution.
Regarding (w) the mean value of SOVs, obtained nearly five
thousand times, is 12.44 and the standard deviation is
1.48. On the other hand, considering (c), the mean value is
12.28, a bit lower than the previous, but obtained no more
than three thousand times and a half, and with a larger
standard deviation of 1.97. The solution provided by NDA
considering both carpooling ranking measures and com-
munity knowledge provides a SOVs percentage slightly
smaller than 4.63%, which is largely better than anyone
found by the 100,000 random runs. Indeed, according to
the distributions shown in the figure the expected prob-
ability of finding a SOVs percentage lower than that is
around 6.56�10�8, therefore very close to zero.

Comparison with existing approaches: As described in
the related works, most of the literature on carpooling is
focused either on the simulation of very specific aspects
(such as the impact of high occupancy vehicle lanes on
traffic) or on the realization of a real-time service. On the
opposite, our work aims to provide a solution for car-
pooling matching and study its impact in a real context.
The main works that tackle problems close to ours are
[29,22], which we considered for a comparison of perfor-
mances. Both works are based on data sources significantly
different from those adopted in our paper: [29] is tailored
around (geo-localized) Twitter data, and exploits the
topics of the text messages posted and the social network
of users; [22], instead, is based on a mix of mobile phone
data (CDR traces) and social media (geo-localized Twitter
posts and Foursquare check-ins). That makes a direct (and
fair) comparison over a common benchmark very difficult.

Another important difference between our approach
and the two competitors considered is that the latter aim
to maximize the number of users involved in the car-
pooling, yet not considering explicitly the overall coher-
ence of the carpooling assignment, i.e. a passenger for a
home-to-work trip needs to be passenger also for the
return trip. In the following summary of results, we call
this incomplete form of assignment partial passengers, in
contrast to the complete one, called total passengers. As
described in Section 4, our approach is focused on the
Boosting carpooling with network analysis, Information
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more realistic scenario of total passengers, which is
ensured by requiring that the status of the user (passenger
or driver) is kept for the whole day.

Below we provide an indirect comparison of the three
methods, summarizing the performance results obtained
by each of them over its own datasets:
Table 1
Number of routines extracted in the two cities, the routines that are
linked to others in the carpooling network, those that might be served by
others, those that might serve at least another one, and number of
matches found by Never Drive Alone (also in percentage w.r.t. potential
passengers).

City # routines # linked # can
ride

# can
drive

# saved trips
(%)

Pisa 7383 3049 1717 1995 1331 ð77:52Þ
Florence 9801 5712 3305 4140 2546 ð77:03Þ

Table 2
Estimates of total potential savings in a normal day obtained by using the
proactive carpooling proposed in this work. Savings are expressed in
terms of total kilometers driven, time spent driving, fuel consumed, its
cost and CO2 emissions.

City km min Fuel ðlÞ € CO2 ðkgÞ

Pisa 10,868.36 24,174.58 646.67 1001.49 1445.49
Florence 16,748.99 43,300.28 996.56 1543.37 2227.62

Fig. 18. Spatial distribution of pick-up and drop-off points of NDA solution. Left
points; second row: drop-off points.
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� CAR-O [29]: 71.95% of users in the Rome dataset and
74.82% of users in San Francisco become partial passen-
gers. Impact on single trips saved not provided.

� EN-ROUTE [22]: 65% of users in Madrid and 68% in New
York become partial passengers. Impact on single trips
saved not provided.

� NDA: 43.83% of users in Pisa and 45.10% in Florence
become total passengers. Impact on single trips is 77.52%
in Pisa, and 77.03% in Florence.

These results suggest that the matching strategies
provided by our solution can reach an impact over car
traffic that is apparently similar to those obtained by other
approaches in similar contexts, yet providing a more rea-
listic application scenario.

5.3.2. Evaluating the economic and environmental impact of
carpooling

In order to evaluate the practical importance of the
carpooling matching discussed in the previous section, we
consider here the best configuration setting for the system
and study its results from several viewpoints. The first one
is simply the impact of the carpooling in terms of reduc-
tion of cars on road. Table 1 summarizes the number of
routines observed in the two showcases with details on
the number of routines that might potentially be served by
other drivers (# can ride), those that might give a lift to
other passengers (# can drive) and their union (# linked).
Finally, the number of matches that were actually found by
the algorithm is also in terms of percentage over the
column: Pisa province; right column: Florence province. First row: pick-up
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Table 3
Runtimes of the different phases of NDA over the Pisa and Florence datasets. Notice that a single value is provided for the Profiles construction, since it is
basically independent from the specific area/user network the users belong to.

City # users Profiles (s/user) Carpooling network (s) User net. (s) Temporal net. (s) HITS (s) Assign (s)

Pisa 2168 62,5 2460 o1 o1 21.8 2
Florence 3324 3120 o1 o1 23.8 3
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maximum theoretical outcome, i.e. the number of poten-
tial passengers. As we can see, NDA is able to assign most
part of the potential passengers in both cities (around 77%
of them), also corresponding to a relevant percentage of
total routines (cars on road) saved, namely 18% in Pisa and
26% in Florence.

Tables 2 reports the economic and environmental
impact that the traffic reductions obtained with carpooling
can have. Estimates of such impact are computed con-
sidering the most common car sold in the period of data
collection, an average gasoline consumption of 0.0595 l/
km, a gasoline cost in the observation period of 1.54869 €

per liter, and a CO2 emission of 133 g per km.4 Considering
that the estimates reported in the table are relative to a
single city and a single (typical) day, the reduction values
are very significant, especially towards the environment.

Finally, we show in Fig. 18 the spatial distribution of
pick-up (top row) and drop-off (bottom row) points of the
solution found by NDA on Pisa (left) and Florence (right).
We can see that in the case of Pisa, carpooling mainly (yet
not exclusively) involves several smaller cities distributed
along an important road towards East, connecting Pisa
with the other major cities of the region. For Florence it is
interesting to notice that a major hotspot, even larger than
Florence itself, is located in a nearby city, Empoli, char-
acterized by a huge flow of commuters towards Florence
an the surrounding industrial areas. In general, carpooling
is much more concentrated around a few dense areas than
what happens for Pisa. In both cases the drop-off points
appear to be more concentrated around the main attrac-
tors, while pick-up points are slightly more dispersed.

5.4. Runtimes

An empirical evaluation of the runtimes of each step of
the proposed solution has been performed, and summar-
ized in Table 3 for the two provinces considered.

The results say that the most expensive operations are
the extraction of mobility profiles and the construction of
the carpooling network, i.e. the preprocessing tasks that
precede the actual computation of scores and the assign-
ment. The extraction of profiles is local to the single user,
and therefore independent from the network size and
structure of the dataset considered. In the present imple-
mentation it takes around 1 min of computation for each
user. Building the carpooling network has a theoretical
quadratic cost in the number of routines, yet, the software
4 http://www.patentati.it/blog/articoli-auto/classifica-auto-2011.
html, http://dgerm.sviluppoeconomico.gov.it/dgerm/prezzimedi.asp?
anno¼2011, http://www.ilsole24ore.com/speciali/emissioni.
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developed includes spatial filters that quickly recognizes
clearly incompatible profiles, and which are more effective
in larger areas, which is the case of Florence. For this
reason, the actual runtime for computing the network
grew much more slowly when moving from the smaller
dataset (Pisa) to the larger one (Florence). The other steps,
including the final assignment algorithm, have much
smaller costs that do not affect the overall times
significantly.

5.5. Summary of results

The various experiments presented in this section
describe the several faces of the approach we propose. In
the following we provide a short recap of the key results
obtained and lessons learned.

Analyzing the routines of users, typically two symme-
trical routines – home-to-work and work-to-home –

emerge, i.e. the routines follow the timing of typical
working days and summarize the overall collective
movements.

We discovered that indicators derived from the car-
pooling network, like number of only drivers/only pas-
sengers/passengers and drivers, can be used to character-
ize different areas and cities in terms of applicability of
carpooling. Also, a measure of empirical upper bound of
the potential reduction of cars on the road can be inferred,
whose average in the area of our experimentation is
around 23%.

The carpooling networks tend to be very sparse, and
are characterized by long tailed distributions both for the
in–out-degree and for the driverness and passengerness
indexes. Also, carpooling networks can usually be parti-
tioned into sub-networks which are well isolated from
other components and can be treated separately, each
having pools of potential passengers and drivers.

The heuristics for carpooling assignments we devel-
oped greatly benefits from the knowledge provided by the
driverness and passengerness scores, as well as the frag-
mentation into communities. Performances show a per-
centage of single occupancy vehicles (SOVs) as low as
4.63%, which is less than half of what any random
assignment can reach in practice.

As overall result, about 77% of the trips could be saved
on both datasets, and the estimates of saved kms, time,
fuel, money and CO2 emissions are significant.
6. Conclusion and future work

In this paper we have proposed a novel approach for
analyzing the potentiality of a carpooling service and for
Boosting carpooling with network analysis, Information
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suggesting an assignment among systematic car drivers in
order to have them not to drive alone. Many useful
observations for a carpooling service resulted from our
study. We showed how ranking measures and commu-
nities extracted from mobility networks can be used to
characterize different aspects of human mobility. By
exploiting them, we proposed an approach for boosting
carpooling using network analysis. Moreover, we have
seen that the ranking values distributions characterize in a
different way for different geographical areas. Further-
more, we have found that carpooling communities can be
classified into two categories: autonomous communities,
that, being independent from the rest of the car drivers,
are made by many good carpoolers offering and taking lifts
to many users; non-autonomous communities, that being
influenced by extra community car drivers, cannot be
managed on their own. A suggestion from this last point is
that if a new carpooling service is to be realized, a good
start point would be autonomous communities. Finally, we
saw how the potential carpooling network can be used to
suggest assignments among systematic car drivers and
how ranking measures considered on communities lead to
valuable reductions of the cars employed in systematic
mobility. In particular, we have shown how the con-
junctive application of these features lead to valuable
performances in terms of assignments and reduction
of SOVs.

Our task is obviously a starting point with respect to
the proposal of a real carpooling service. For example, it
could be considered in the matching phase that a pas-
senger is willing to wait or to walk a bit more for a long
travel then for a short one. Moreover, instead of con-
sidering matches only between systematic movements, it
could be interesting to consider the number of non-
systematic movements that can be saved. Thanks to the
proposed approach, the knowledge about systematic
behavior, and the measures regarding carpooling, could
really help our everyday life in reducing traffic, saving
money and producing less pollution.
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