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Abstract: Water Distribution Networks (WDNs) can be regarded as complex networks and modeled
as graphs. In this paper, Complex Network Theory is applied to characterize the behavior of
WDNs from a topological point of view, reviewing some basic metrics, exploring their fundamental
properties and the relationship between them. The crucial aim is to understand and describe the
topology of WDNs and their structural organization to provide a novel tool of analysis which could
help to find new solutions to several arduous problems of WDNs. The aim is to understand the role
of the topological structure in the WDNs functioning. The methodology is applied to 21 existing
networks and 13 literature networks. The comparison highlights some topological peculiarities
and the possibility to define a set of best design parameters for ex-novo WDNs that could also
be used to build hypothetical benchmark networks retaining the typical structure of real WDNs.
Two well-known types of network ((a) square grid; and (b) random graph) are used for comparison,
aiming at defining a possible mathematical model for WDNs. Finally, the interplay between topology
and some performance requirements of WDNs is discussed.

Keywords: water distribution network management; complex network theory; topological analysis;
mathematical model

1. Introduction

Biological and chemical systems, brain neural networks, social interacting species, the Internet
and the World Wide Web, and the multiple and interconnected infrastructures that provide several
services to consumers in the cities are network shaped [1,2]. It seems that the efficiency of the systems
largely depends on their ability to create (if they are natural) or to have (in the case of man-made
structures) multiple links between the units. On the one hand, it ensures better performance and
self-recovering function in the case of failure of an element thanks to a redundant structure. On the
other hand, it makes it difficult to understand the principles of their functioning and behavior. In this
regard, a suitable approach to capture the local and the global properties of network systems is to
model them as graphs, where the nodes represent the units, and the links stand for the interactions
between them.

The study of networks is known as graph theory, and, since its birth in 1736 by the Swiss
mathematician Leonhard Euler, graph theory has solved several practical problems revealing
interesting properties of many systems [3]. In the past decades, two important papers [4,5] established

Water 2018, 10, 444; doi:10.3390/w10040444 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
https://orcid.org/0000-0002-7380-4515
https://orcid.org/0000-0002-3414-2686
http://dx.doi.org/10.3390/w10\num [minimum-integer-digits = 2]{4}\num [minimum-integer-digits = 4]{444}
http://www.mdpi.com/journal/water
http://www.mdpi.com/2073-4441/10/4/444?type=check_update&version=1


Water 2018, 10, 444 2 of 19

the mathematical bases of a new movement of interest and research in the study of complex networks,
i.e., networks with irregular, complex, and dynamically evolving structure. The main focus was to
provide tools for the analysis of irregular systems with thousands or millions of nodes.

The huge analysis of networks from different fields produced a series of unexpected and
interesting results about their behaviors that led to the identification of a series of unifying principles
and statistical properties. The effort was the definition of new concepts and measures to characterize
the topology and the structure of real networks, to help in understanding their behavior and dynamic
development. For example, it was shown how the robustness of the network systems to perturbations
(such as failures and attacks) strongly depends on topology [6]; the functioning of the Internet network
is studied from a topological point of view by Faloutsos et al. [7]; for the understanding of cancer cell
growth mechanism, the analysis of the p53 gene and protein, and also the study of the whole network
interacting with them, was proposed by Vogelstein et al. [8]. Consequently, a topological approach has
become crucial in the last years, helping to characterize quantitatively certain local and global aspects
of systems.

Based on the successful application of the Complex Network Theory to several fields (e.g., the
Internet, neuroscience, computer science, biology, social science, medicine, etc.), in this paper, Water
Distribution Networks (WDNs) are regarded as complex systems, modeled as graphs, and studied
within the approach of the Complex Network Theory. In fact, WDNs can be considered as complex
networks [9], as they are often constituted of thousands of elements, are strongly looped and show
irregular shape, since they follow the layout of the city they serve. Water distribution networks have
been successfully modeled as graphs to design an optimal sub-region layout [10], to study their global
robustness [11–13], to evaluate their vulnerability to single pipe failures [14], to make a spectral analysis
of the system [15,16], or to investigate possible benchmark values for the information entropy [17].
In general, strong correlations have been shown to exist among graph theory metrics and performance
measures of model planar networks [18]; hence, the complex systems approach has been proposed as
a framework to design and implement sustainable and hybrid water systems [19,20].

The complex and meshed structure of WDNs allows the system to recover from failures, exploiting
the topological redundancy provided by closed loops, so that the flow could reach a given node
through different paths. This redundant design approach gives the system an intrinsic capability of
overcoming perturbations (e.g., local pipe failures or peaks of water demand), and, together with
pipe diameters larger than those strictly necessary to fulfill the design pressure at the network nodes,
to guarantee a power surplus to be dissipated [21,22]. In [21], Todini introduced a resilience index
which accounts for the power surplus for an assigned network layout without any information about
topology. More recently, Prasad and Park [23] proposed the concept of network resilience, which
combines the effects of surplus power and reliable loops, but with a very simplified approach. Even if
there is awareness that topology affects the performance and behavior of WDNs, this effect has not
been quantified yet. Defining the topology of a WDN is a layout problem aimed at ensuring robustness
and reliability [24] and represents one of the most difficult tasks in the design [25].

In fact, WDNs are critical infrastructures, whose reliable, robust, and efficient operation greatly
affects national economic prosperity and people everyday life. It has been widely agreed that there
are inseparable interdependencies between the robust structure of WDNs, their efficiency, as well
as that of directly and indirectly related infrastructure operations. Therefore, the understanding of
complex infrastructure systems needs a balance between holistic and reductionist methodologies [26].
This requires predictability of the complex network topology, behavior, and evolution dynamics over
time, through a novel analysis framework.

In the last years, several new methodologies and metrics have been proposed in the scientific
literature to better understand, describe, measure and optimize the topology of complex networks
(a wide review is provided in [3,27]). Previous studies on real infrastructure networks indicated that
they do not present small-world features (i.e., the presence of short geodesic distances between each
nodes, meaning that it takes only a few steps to go from one node to another [4], and so the most part
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of the communication cross these hub nodes [5]). This is because, generally, infrastructure networks
are planar networks with significant spatial limitation.

In this paper, the major and basic complex network metrics are applied to a large set of real
and synthetic WDNs of various size. Then, the relationships between the obtained values of the
metrics and the topology of WDNs are analyzed. The focus is identifying typical values for the
topological metrics of WDNs to define a range of benchmark values and a general model of WDN
structure, seeking possible relationships among these metrics and some indices of performance of
WDNs. This topological framework could be a preliminary and alternative tool to the classical methods
of analysis and design of WDNs, especially in the case of incomplete or lacking information about the
system, since a calibrated hydraulic simulation model is not required. Furthermore, two well-known
types of networks are considered, exploring the same number of nodes as the studied WDNs, namely
the square grid and the random graph. For these networks, the topological metrics are calculated
and used as a comparison to find possible relations and benchmark values. The results can help to
define a mathematical model to describe the structure and the topology of WDNs. Finally, the clear
relationships between some of the adopted topological metrics allows limiting the set of metrics
needed to successfully describe the taxonomy of WDNs and so which of them should be further
investigated and adopted as efficiently made for power grids by [28]. In this way, the paper can be
seen as a contribution to the understanding, from a topological point of view, of WDNs, which could
serve as a guidance for planning and monitoring practices.

2. Methods

From a topological and mathematical point of view, WDNs can be modeled as link-node planar
(e.g., networks forming vertices wherever two edges cross) spatially organized weighted graphs
G = (V, E, w), where junctions, water sources and water demand points are represented by the set V
of n nodes (hereinafter assumed as a measure of network size), while pipes and valves are represented
by the set E of m edges, and w is a function that assigns to each edge a weight characterizing the
physical characteristics of the pipe or of the valve [14]. In particular, WDNs belong to the class of
networks strongly constrained by their geographical embedding [3], for which connections between
distant nodes are unlikely to be found, due to physical and economic constraints [29]. In particular,
the long range connections in a spatial network are constrained by the Euclidean distance, having
important consequences on the network statistical properties. In addition, the number of edges that
can be connected to a single node is limited by the physical space to connect them (it is evident for
urban streets, where only a small number of streets can cross in an intersection).

Generally, a complete representation of a network is provided by its adjacency matrix A which
indicates which of the vertices are connected (adjacent): element aij = 1 indicates that there is a link
between nodes i and j, aij = 0 otherwise. For an undirected network, the A matrix is symmetric since
aij = aji. A weighted graph can be represented by its weighted adjacency matrix W where wij > 0
indicates the intensity of the link between nodes i and j, and wij = 0 if nodes i and j are disconnected.
In the case of WDNs, the weight of the links could be hydraulic and/or geometric characteristics
of the pipes (e.g., length, diameter, hydraulic resistance, flow, etc.) if available. From the adjacency
matrix, the Laplacian matrix L = D− A can be defined [30], where D = diag(ki) and ki = ∑j aij is
called the degree of the node i. In the case of a weighted graph, ki = ∑j wij. The matrices A and L
described above represent two of the major and most frequently used graph matrices, the spectra
of which, together with topological metrics defined and computed from them appear in many real
case applications. In the following, the definitions of several topological metrics used in the paper are
given. It is worth highlighting that most quantify the connectivity and the communication rate within
a network. Hence, their meaning is diametrically opposed if network sectorization is discussed in
terms of its effect on water flows or on potential contaminant transmission.
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2.1. Link Density q

The link density q is the ratio between the total number m of network edges and the maximum
number of edges m∗ = n(n− 1)/2 of a network with n nodes:

q =
2m

n(n− 1)
(1)

For most real networks, the link density value is low [27], since they are sparse, indicating that
they are not fully connected.

2.2. Average Node Degree k

One of the simplest, and most important characteristics of a node is its degree ki, defined as the
total number of edges concurring in the node. The node degree counts the number of neighbors of
node. The average value of ki over all nodes n:

K =
2m
n

(2)

providing immediate information on the organization and structure of network, and its connectivity.
The higher is the value of the average node degree, the better is the communication between the nodes.

2.3. Diameter D

The diameter D is defined as:

D = max dij (3)

where dij is defined as the shortest path from node i to node j, computed as the number of edges
along the shortest path connecting them (when there is no path between a pairs of nodes, the distance
is assumed infinite). The diameter D is defined as the maximum shortest distance (the maximum
geodesic length) between any pair of vertices [31]. It expresses how cohesive a system is.

2.4. Average Path Length l

The average path length l is the average number of steps along the shortest paths for all possible
pairs of nodes in the network, determining the average degree of separation between any pair of nodes:

l =
2 ∑ dij

n(n− 1)
(4)

It measures the mean distance between two nodes, averaged over all pairs of nodes [4].
The geodesic length provides an optimal path way, since one would achieve a fast transfer and
save system resources. The average path length gives information about the flow communication
between any pairs of nodes.

2.5. Spectral Radius (or Spectral Index) λA
1

The spectral radius λA
1 corresponds to the largest eigenvalue of the adjacency matrix A of a graph

and it is related to the mean value of vertex degrees, taking into account not only immediate neighbors
of vertices but also the neighbors of the neighbors [32]. Spectral radius plays an important role in
abstract models for computer virus spreading through a network. In particular, the smaller the radius,
the larger the network robustness against the spread of viruses is [33]. In this regard, Wang et al.
[28] showed that the epidemic threshold (i.e., once exceeded, the infection survives and becomes an
epidemic) in virus spreading is proportional to 1/λA

1 . This fact can be explained as the number of
walks in a connected graph is proportional to λA

1 . The greater is the number of walks of a network,
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the easier is the spread of the “moving substance” through it. Conversely, the higher is the spectral
radius, the better is the communication within a network.

2.6. Spectral Gap ∆λA

The spectral gap ∆λA is the difference between the first and second eigenvalue of the adjacency
matrix A. Low values of this spectral metric indicate the presence of bottlenecks (articulation points or
bridges) in the network [34], which hence can be easily split into sub-regions by removing few nodes
or links [6].

2.7. Algebraic Connectivity λL
2

The algebraic connectivity λL
2 corresponds to the second smallest eigenvalue of graph Laplacian

matrix L [30], and quantifies the strength of network connections even if the graph is sparse
(“how strong” are network connections). Its properties are extensively discussed in [35] with regard to
its application to the analysis of graph robustness in terms of node and link failures, and proneness to
clustering. Consequently, the larger the algebraic connectivity is, the more difficult it is to split the
network into independent components.

2.8. Eigengap ∆L

The eigengap ∆L(s) corresponds to the difference between the (s + 1)th eigenvalue and the sth

eigenvalue of the Laplacian matrix:
∆L(s) = λL

s+1 − λL
s (5)

where s is the number of clusters in which the network is intrinsically shaped. Choosing the proper
number s of clusters is a general problem for all clustering algorithms, and, in the case of water
distribution networks, it constitutes the arduous problem of water network partitioning [36]. A tool
which is particularly designed for spectral clustering [35], but can also be applied successfully to other
clustering algorithms, is the eigengap heuristic, which chooses the number of proper clusters copt

such that all eigenvalues λ1, . . . , λcopt are small, but λcopt+1 is relatively large. In other words, a simple
indication of the proper number of clusters copt, from a topological point of view, is given by the first
eigengap which results significantly larger than the previous ones. An explanation for this procedure,
based on perturbation theory, is that, in the ideal case of c completely disconnected clusters, the 0
eigenvalue has multiplicity copt, and there is a gap to the (copt + 1)th eigenvalue, that is λcopt+1 > 0 [37].
It is worth highlighting that the more pronounced is the cluster structure in the network, the better is
the eigengap works.

3. Materials

To represent the topology of typical water systems, publicly available datasets of real and synthetic
WDNs were used. These model networks are reported in the literature and their data-files are accessible
on-line. Furthermore, to conduct the analysis and explore the structural properties of WDNs from a
wide size range, we also compared the value of the above introduced topological metrics with that
concerning square grids and random regular graphs. In Table 1, the name, the number of nodes n, the
number of pipes m, the type (real or synthetic) and the data-file sources are reported for all networks
used in the paper.
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Table 1. Name of network, number of nodes n, number of pipes m, number of loops r, type and
data-file sources for all WDNs.

Name Number of Nodes n Number of Links m Number of Loops r Type Source

Two Loop 6 8 2 synthetic [38]
Two Reservoirs 10 17 8 synthetic [39]
New York tunnel 19 42 24 synthetic [40]
Goyang 22 30 9 synthetic [41]
Anytown 22 43 22 synthetic [42]
Blacksburg 30 35 6 synthetic [43]
Hanoi 31 34 4 synthetic [44]
Bakryan 35 58 24 synthetic [45]
Fossolo 36 58 23 synthetic [46]
Richmond Skelton 68 99 4 synthetic [47]
Pescara 41 44 32 synthetic [46]
BWSN2008-1 126 168 43 real [48]
Skiathos 175 189 15 real [49]
Parete 184 282 101 real [14]
Villaricca 196 249 54 real [14]
Monteruscello 205 231 27 real [50]
Modena 268 317 50 real [46]
Celaya 333 477 145 real [51]
Castellamare 365 439 75 real GORI Spa
D-Town 399 443 45 real [52]
Balerma Irrigation 443 454 12 real [53]
Oreto 462 792 331 real [54]
Richmond 865 949 85 real [47]
Giugliano 994 1077 84 real [16]
Matamoros 1283 1651 369 real [10]
Wolf Cordera Ranch 1782 1985 204 real [55]
San Luis Rio Colorado 1890 2681 792 real [10]
Exeter 1891 3032 1142 synthetic [56]
Exnet 1891 2465 575 synthetic [56]
Denia 6276 6555 280 real Aqualia
E-Town 11063 13896 2834 real [57]
Alcala 11473 12454 982 real Aqualia
BWSN2008-2 12523 14822 2300 real [48]
Chihuahua 34868 40330 5463 real [10]
SG1 9 12 4 synthetic Matlab
SG2 100 180 81 synthetic Matlab
SG3 1024 1984 961 synthetic Matlab
SG4 10000 19800 9801 synthetic Matlab
SG5 34969 69564 34596 synthetic Matlab
RG1 10 15 6 synthetic Matlab
RG2 100 150 51 synthetic Matlab
RG3 1000 1500 501 synthetic Matlab
RG4 10000 15000 5001 synthetic Matlab
RG5 35000 52500 17501 synthetic Matlab

Square grids: A lattice graph, mesh graph, or grid graph is a graph whose drawing, embedded in
some Euclidean space Rn, forms a regular tiling [3]. This type of graph may more shortly be called just
a lattice, mesh, or grid. A particular type of two-dimensional n× n lattice graph (indicated with Gn,n,
and also known as square grid graph) is the graph whose vertices correspond to the points in the plane
with integer coordinates, x-coordinates being in the range 1 . . . n, y-coordinates being in the range
1 . . . n, and two vertices are connected by an edge wherever the corresponding points are at distance
1 from each other (see Figure 1a). In other words, it is a unit distance graph for the described point
set. A two-dimensional grid graph, also known as a square grid graph, is an n× n lattice graph Gn,n.
In this paper, the two-dimensional square grid graph was considered, with a number of nodes equal to
n = 9, 100, 1024, 10000, and 34969 (respectively, named SG1, SG2, SG3, SG4, and SG5). In this way,
a benchmark value was obtained for the entire size range of the studied networks. In fact, the largest
considered square lattice has a number of nodes similar to the largest WDN considered in the paper
(Chihuahua, for which n = 34868).
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Random graph: The systematic study of random graphs was initiated by Erdos and Renyi [58].
The term random graph refers to the disordered arrangement of links between nodes. In particular,
they considered graphs obtained by uniform sampling of all possible graphs with n vertices and m
edges. In practice, random graphs are generated by connecting couples of randomly selected nodes
(prohibiting multiple connections), until the number of edges equals m (see Figure 1b). It is clear that
a given graph is only one realization of all the possible combinations of connections. A particular
class of random graphs is the random k-regular graph, for which each node has the same number
of neighbors (e.g., every node has the same degree k). A 3-regular graph is known as a cubic graph.
Some important characteristics are: (a) a graph is regular if and only if it exists an eigenvector of the
Adjacency matrix A whose eigenvalue is the constant degree k of the graph; and (b) a regular graph of
degree k is connected if and only if the eigenvalue k has multiplicity one. Since k-regular graphs are
subject to constraints, to generate them efficiently while ensuring an unbiased sampling one can resort
either to the algorithm, implementing the most general configuration model [59], or to a refinement of
such algorithm [60].

Figure 1. Examples of the synthetic networks used for comparison: (a) a small 3× 3 square grid with
9 nodes and 12 edges; and (b) a small random 3-regular graph with 10 nodes and 15 edges.

In the present paper, to compare with the water networks explored, k-regular graphs with k = 3
and with a number of nodes equal to n = 10, 100, 1000, 10000, and 35000 were considered (respectively,
named RG1, RG2, RG3, RG4, and RG5).

4. Results and Discussion

In recent years, several researchers studied the statistical and topological properties of several
systems and infrastructures to provide novel solutions and understand what kind of network is needed
to support and optimize the functioning of the systems themselves. In this regard, in this paper, the
topological characteristics of WDNs are studied, based on some real-world and synthetic systems. In
the following, the topological metrics defined in Section 2 are calculated for the networks described in
Section 3, and then they are displayed as function of the number of nodes of each WDN. The results
are reported in Table 2.

In Figure 2, the relationship between the link density q and the number of nodes n for the analyzed
WDNs is plotted in log–log scale. It can be noticed that the two groups of WDNs (synthetic and real)
follow the same trend with q ∼ n−1.04. Specifically, for increasing n, the link density tends to zero
and closely follows a power-law with exponent −1, as reported in [27] for other real-world networks
(linguistic systems, power grids, actor networks and biological systems). The link density shows
a well defined scaling behavior, resulting inversely proportional to the network size n. It is worth
highlighting that both square grids and random regular graphs show the same trend, meaning that
water distribution networks are equally sparse in these two types of graph. In fact, link density is
strongly related to the average node degree, which is not significantly different for WDNs, SG, and the
considered RG. Such a similar behavior can be interpreted by means of Equation (1). In fact, introducing
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in Equation (1) the well-known topological relationship m = n + r− 1, linking the number of pipes m,
nodes n, and loops r of a network, it results q = 2/n + 2r/n(n− 1). As in WDNs it is r << (n− 1),
the second term is always smaller than the first, so that q = 2/n. SG and RG are instead more looped
than most WDNs. In fact, in Figure 1, it is clear that the link density is slightly higher for SG and
RG, which is due to the presence of a greater number of loops (according to the above relationship),
as shown in Table 1. In this regard, since the number of loops can be regarded as a robustness metric,
clearly the link density can be used as a surrogate metric for the robustness of WDNs. In fact, it takes
into account the number of nodes, pipes and, implicitly, the number of loops.

Table 2. Topological metric values calculated for all case studies: link density q, average node degree K,
graph diameter D, average path length l, spectral gap ∆λA, algebraic connectivity λL

2 , inverse spectral
radius 1/λA

1 , optimal cluster number copt.

Name q K D l ∆λA λL
2 1/λA

1 copt

Two Loop 0.5333 2.67 4 1.90 1.2213 0.68862 0.404 2
Two Reservoirs 0.3778 3.40 6 2.59 0.8799 0.37909 0.303 2
New York tunnel 0.2456 4.42 9 4.21 0.5560 0.11799 0.400 3
Goyang 0.1299 2.73 9 3.75 0.2595 0.09969 0.331 3
Anytown 0.1861 3.91 7 2.94 0.4581 0.28044 0.218 2
Blacksburg 0.0805 2.33 9 4.37 0.3077 0.08998 0.372 2
Hanoi 0.0731 2.19 13 5.31 0.2739 0.06116 0.412 4
Bakryan 0.0975 3.31 12 4.30 0.4793 0.07860 0.299 3
Fossolo 0.0921 3.22 8 3.67 0.3516 0.21888 0.307 2
Richmond Skelton 0.0537 2.15 24 9.24 0.0266 0.01091 0.411 3
Pescara 0.0435 2.91 20 8.69 0.3024 0.00891 0.306 4
BWSN2008-1 0.0213 2.67 25 10.15 0.1004 0.00750 0.330 4
Skiathos 0.0124 2.16 27 11.52 0.0461 0.00835 0.374 3
Parete 0.0171 3.10 20 8.80 0.1714 0.02117 0.303 4
Villaricca 0.0130 2.54 32 11.29 0.1194 0.00665 0.334 4
Monteruscello 0.0110 2.25 47 20.24 0.0481 0.00152 0.352 5
Modena 0.0089 2.37 38 14.04 0.1385 0.00908 0.334 6
Celaya 0.0086 2.86 32 11.81 0.1915 0.01336 0.281 6
Castellamare 0.0066 2.41 37 13.62 0.1640 0.00627 0.311 6
D-Town 0.0056 2.22 66 26.32 0.0703 0.00065 0.350 5
Balerma Irrigation 0.0046 2.05 60 23.89 0.0845 0.00069 0.370 6
Oreto 0.0074 3.43 27 11.98 0.2016 0.00492 0.252 4
Richmond 0.0025 2.19 135 51.44 0.0727 0.00014 0.345 8
Giugliano 0.0022 2.17 51 21.22 0.1354 0.00243 0.327 9
Matamoros 0.0020 2.57 80 27.76 0.1439 0.00100 0.291 8
Wolf Cordera Ranch 0.0013 2.23 69 25.94 0.0612 0.00053 0.326 8
San Luis Rio Colorado 0.0015 2.84 76 28.86 0.0063 0.00089 0.268 7
Exeter 0.0017 3.21 54 20.61 0.6121 0.01021 0.257 10
Exnet 0.0014 2.61 59 21.31 0.1190 0.00102 0.257 10
Denia 0.0003 2.09 186 70.48 0.0797 0.00004 0.328 17
E-Town 0.0002 2.51 289 71.13 0.0570 0.00003 0.281 13
Alcala 0.0002 2.17 163 64.88 0.0957 0.00009 0.295 13
BWSN2008-2 0.0002 2.37 297 93.30 0.0147 0.00002 0.308 14
Chihuahua 0.0001 2.31 368 186.05 0.0175 0.00001 0.282 18
SG1 0.3333 2.67 4 2.00 1.4142 1.00000 0.354 -
SG2 0.0364 3.60 18 6.67 0.2365 0.09790 0.261 -
SG3 0.0037 3.88 62 21.33 0.0271 0.00963 0.251 -
SG4 0.0004 3.96 198 66.67 0.0029 0.00099 0.250 -
SG5 0.0001 3.98 398 124.67 0.0008 0.00028 0.250 -
RG1 0.3333 3.00 3 1.80 1.3820 1.38200 0.333 -
RG2 0.0303 3.00 8 4.73 0.2614 0.26142 0.333 -
RG3 0.0030 3.00 13 8.04 0.1805 0.18055 0.333 -
RG4 0.0003 3.00 17 11.37 0.1737 0.17368 0.333 -
RG5 0.0001 3.00 19 13.01 0.1717 0.17170 0.333 -
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Figure 2. Relationship between the link density q and the network size n. The data points follow
a trend that can be fitted with a power law decrease q ∝ n−1.4. Both water networks, random regular
graphs and planar square lattice show a similar q ∼ 1

n scaling expected for sparse networks. The blue
continuous line and the broken red line refer to random graph and square grids, respectively. The black
dots represent the studied WDNs. For numerical values, please see Table 2.

In Figure 3, the average node degree K—the coarsest characteristic of node interconnections [27]—is
plotted in semi-log scale as a function of the size n. We observe that the average node degree is nearly
invariant with respect to the network size n—perhaps with a slightly decreasing trend—confirming
that water distribution networks are sparsely connected. Such a behavior is expected for real networks
with economic and geographic constraints [16,29]. It is possible to identify a range of values from K ∼ 2
to K ∼ 4.5 that are the typical small values of WDNs. In fact, the lower bound (K = 2) corresponds to
simple line graphs, which have the lowest topological robustness, as the failure of a single pipe leads
to a complete network disconnection. An important aspect is that the nearly invariant trend is also
observed for the square grids, for which the average node degree seems to tend, as the number of nodes
increases, to an asymptotic value of K = 4. For the random graph, the average node degree is obviously
constant and equal to K = 3 for all networks (cubic graphs were chosen for the comparison). The small
variations of the average node degree for the two groups of WDNs (synthetic and real) is another
aspect of the n−1 trend observed for link density in Figure 2; in fact, q = 2m/[n(n− 1)] = K/(n− 1).
Another important aspect to highlight is that the node degree distribution is almost homogeneous [61],
i.e., almost all nodes have the same degree.

Hence, water distribution networks are not characterized by the presence of hubs—nodes with
very high degree—that happens in the case of scale free networks. This leads to the immediate
consequence that generally WDNs are almost equally robust against both intentional and accidental
pipe breaks. In this case, by taking into account the relationship m = n + r− 1, it is possible to better
interpret the typical values shown by WDNs. It results K = 2+ 2(r− 1)/n, which implies that K = 2 is
the lowest possible value for WDNs (i.e., no loops), and that values above 2 are related to the number
of loops and thus to the ratio r/n. In this respect, the average node degree can be used as a surrogate
measure of robustness, quantifying how a WDN is far from a line shaped network (for which K = 2).
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Figure 3. Relationship between the average node degree K and the network size n compared to the case
of random regular networks and planar square grids. Notice that, due to boundary effects, the square
grids approach their theoretical value K ∼ 4 only for large network sizes n. The blue continuous line
and the broken red line refer to random graph and square grids, respectively. The black dots represent
the studied WDNs. For numerical values, please see Table 2.

In Figure 4, the diameter D is plotted in log–log scale as a function of the number of nodes n.
It is clear that the graph diameter, for both synthetic and real WDNs, increases as the network size
increases, following a power law, with D ∝ n0.51. Thus, differently from communication systems,
WDNs do not represent the peculiar features of Small-World networks, for which—similar to in
random networks—D ∝ log(n). Such a feature leads to robustness in communications, since the
average shortest path between two nodes increases very slowly with the network size. The larger
diameter graph for the WDNs is due to economic and physical/geographic constraints that generally
do not allow the presence of long-range links, except in rare cases [29]. In fact, it is well known that
even a small fraction of links between distant nodes in a network can significantly shorten the path
lengths [4]. It is clear that, also from a communication point of view, square grids and WDNs show
a similar structure. In fact, in the SG, the nodes are always linked to the adjacent neighborhoods.
It means that, from a global communication point of view, the possible presence of few long-range
links in WDNs is not enough to reduce D, which also corresponds to the maximum of the shortest
paths between nodes. Conversely, the random regular graphs, with the same number of nodes and
with an average node degree close to WDNs, show a significantly lower diameter. In particular, they
can be well fitted by a D ∝ log(n), as expected in general for random graphs [58].

In Figure 5, the average path length l is plotted in log–log scale as a function of the number of
nodes n. The trend clearly resembles that of the diameter, as shown in Figure 3. In particular, l increases
as the network size increases following a power law, with l ∝ n0.48, for the same reasons described
above. In this case, the square grids follow a trend very close to WDNs, while the random graphs
confirm their better flow communication, showing a logarithmic increase of the average path length.
It can be observed that the n1/2 scaling of D and l in WDNs reflects their embedding in a 2D-spatial
environment. Very differently, the randomness of the cubic graphs provides the possibility to also have
long-range connections that drastically reduce the length of the shortest paths between each pair of
nodes. In this case, the global communication of the WDNs is strongly influenced by the fact that most
nodes are linked to the adjacent neighborhoods, which makes them very similar to the SG, for which
all the nodes are always and only linked to the adjacent neighborhoods.
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Figure 4. Plot of the diameter D versus the network size n for synthetic and real water networks, planar
square grids and random graphs. Notice that, similar to planar square grids, water networks also show
the D ∼ n1/2 scaling that is expected for planar spatial networks. The blue continuous line and the
broken red line refer to random graph and square grids, respectively. The black dots represent the
studied WDNs. For numerical values, please see Table 2.

Figure 5. Plot of the average path length l versus the network size n for synthetic and real water
networks, square grids and random graphs. Notice that, similar to planar square grids, water networks
also show the l ∼ n1/2 scaling that is expected for planar spatial networks. The blue continuous line
and the broken red line refer to random graph and square grids, respectively. The black dots represent
the studied WDNs. For numerical values, please see Table 2.

In Figure 6, the inverse of the spectral index λA
1 is plotted in semi-log scale as a function of the

water distribution network size n. It is possible to identify a typical WDN range with (λA
1 )
−1 ≈ 0.3± 0.1,

and so for λA
1 , which is related to the general relationship according to which K ≤ λA

1 ≤ max(k)
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[33]. For this reason, the inverse spectral radius of cubic random graphs assumes the constant value
(λA

1 )
−1 = 0.33, while for square grids it tends asymptotically to (λA

1 )
−1 = 0.25 (for these networks

the maximum node degree is equal to 4 and the larger the number of the network nodes, the fewer
of them are boundary nodes, which have a degree smaller than 4). Finally, for the water distribution
networks, λA

1 is nearly invariant with the size of the network. It means that, even if the size of the
water network increases, the topology does not vary. Since the spectral radius is linked to the “velocity
of spread” of a substance in the presence of percolation dynamics, it means that for WDNs it is possible
to define a characteristic value of the intrinsic capacity of being crossed by a substance, water flow or
contaminant. In this regard, the nearly invariant value of the spectral index suggests that, in general,
the probability of the spreading of a contaminant from a point to another in a WDN does not depend
on its dimension, as, apart from the hydraulic characteristics of the system, it is strongly related to
the number of connections of each node. The value of the spectral index for WDNs falls between
that of RG and SG as the number of nodes increases. It can be observed that the SG are the most
vulnerable in terms of substance spreading, since most of the nodes have a degree equal to 4, while
the RG, having a degree equal to 3 for all nodes, show the lowest value of (λA

1 )
−1. For WDNs, even if

the average node degree is usually lower than RG, the small fraction of nodes with a degree higher
than 3 gives WDNs a higher capability of being crossed by a substance. It can also be observed that
the relation K ≤ λA

1 ≤ max(k) indicates that the spectral radius simultaneously quantifies global and
local connectivity of the network. In fact, the lowest bound is related to the number of loops, while the
highest is related to the presence of hubs.

Figure 6. Relationship between the inverse of the spectral index λA
1 and the network size n for water

networks, random cubic networks and planar square grids. The blue continuous line and the broken
red line refer to random graph and square grids, respectively. The black dots represent the studied
WDNs. For numerical values, please see Table 2.

In Figure 7, the behavior of the spectral gap ∆λA is plotted in log–log scale as a function of the
network size n. A decreasing trend of the spectral metric with increasing size is visible for all the
studied networks, which could be fitted with a power scaling law ∆λA ∼ n−0.36. While, for square grids
and random graphs, the trends are quite clear—respectively, a power law decay and an exponential
decay to a plateau—for WDNs, the trend with network size is less clearly defined. However, the dots
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representing the studied WDNs fall between the trend lines of square grids and random graphs.
As a small ∆λA indicates high probability of having articulation points or bridges (the failure of which
can cause the disconnection of the network in more sub-regions), this result points out that large WDNs
tend to be increasingly less robust against disconnection. It is also clear that random graphs show a
higher robustness than the square grids, since they show a higher value of the spectral gap ∆λA. This is
due first to the fact that the chosen cubic graphs have constant average node degree K = 3 which
guarantees that all nodes are linked to other three nodes. Furthermore, their randomness ensures the
presence of long-range links that lead to a more cohesive and compact structure. Clearly, this metric
does not depend on the number of connections, but rather on how nodes are connected to each other.
In fact, the SG have highest K, but at the same time they show the smallest spectral gap. In this respect,
the possible presence of few long-range links gives some randomness to WDNs, thus resulting more
similar to RG. This behavior resembles the concept of Pseudorandom graph (e.g., Torres et al. [18]),
in which random connections are allowed only between neighboring nodes.

Figure 7. Relationship between the spectral gap ∆λA and the network size n. For the water networks,
the fit of the data points is a power law ∆λA ∼ n−0.36; for the random networks, thick line is fitting
to an exponential approach ∼ e−n/35 to a plateau value of ∆λA; and, for the square grids, to a power
law ∆λA ∼ n−0.93. The blue continuous line and the broken red line refer to random graph and square
grids, respectively. The black dots represent the studied WDNs. For numerical values, please see
Table 2.

In Figure 8, the behavior of the algebraic connectivity λL
2 is plotted in log–log scale as a function of

the network size n. A clear decrease of the connectivity metric with increasing size can be seen for all
the networks, confirming the results of the spectral gap, but with clearer trends. Specifically, the water
distribution networks and the square grids show a power law behavior, respectively, λL

2 ∝ n−1.26

and λL
2 ∝ n−0.99, thus both curves tend to zero for increasing system size. This implies that the

robustness of these networks, and in particular of WDNs, decreases as the number of nodes increase,
with a high probability to have bottlenecks that can be easily broken with small effort (low value of
λL

2 ). The algebraic connectivity of WDNs results always smaller than for the square grids, implying in
general lower robustness, owing to the smaller number and less regularity of the connections between
nodes. On the other hand, the randomness of the k-regular graphs provides a higher robustness to the
system: in fact, the algebraic connectivity shows an exponential trend ∼ e−n/35, approaching a plateau
value of λL

2 = 0.17; hence, fragility does not increase with system size but stabilizes at a constant value.
Hence, the algebraic connectivity indicates that large WDNs can be easily subdivided (i.e., create
clusters with high density intra-clusters and low density infra-clusters), meaning that, as suggested by
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Wang et al. [28] for power grids, WDNs show a nested layout. In other words, it is easy to identify
regions with different levels of density that can be isolated from the rest of the network. Clustering
seems to constitute an intrinsic topological property of WDNs.

Figure 8. Relationship between the algebraic connectivity λL
2 and the network size n. For the water

networks, the fit of the data points is a power law λL
2 ∼ n−1.26; for the random networks, thick line

is fitting to an exponential approach ∼ e−n/35 to a plateau value of λL
2 ; and, for the square grids,

to a power law λL
2 ∼ n−0.99. The blue continuous line and the broken red line refer to random graph

and square grids, respectively. The black dots represent the studied WDNs. For numerical values,
please see Table 2.

Given a graph G = (V, E), a community (or cluster, or cohesive subgroup) is a sub-graph
G = (V′, E′), whose nodes are tightly connected, i.e., cohesive. The community structure of the
complex network systems constitutes a powerful tool for better understanding the functioning of the
network itself, as well as for identifying a hierarchy of connections within a complex architecture.
Different metrics can lead to different communities; however, for physical networks, one of the most
natural methods to partition its graph in reasonable communities is spectral partitioning [62], since it
allows the separation into subgraphs minimizing the number of links between such subgraphs. Spectral
partitioning uses the eigenvectors of the Laplacian matrix of a graph to determine the subgraphs
corresponding to separate communities. To optimize the number of such communities, it is customary
to look at the eigengap, i.e., at the maximum jump in the spectrum of the Laplacian matrix. According
to such a criterion, only the eigenvectors whose eigenvalue is smaller than the eigengap are used
to partition the network; in this regard, it has been shown that the eigengap can constitute a valid
and useful tool to solve the problem of establishing a preliminary number of districts for the water
network partitioning [16], according to only topological criteria, especially when no other information
is available. In Figure 9, the first largest eigengap ∆L(s) of the Laplacian matrix is used to calculate
the optimal number of cluster copt as a function of the network size n. It looks clear how the number
of clusters copt in which the water distribution networks are divided according to ∆L increases with
the system size. In particular, it follows approximatively a power law copt ∝ n0.28. Hence, the
number of districts grows sub-linearly with the network size, indicating that the optimal number of
districts does not increase significantly with system size. It is worth noticing that, since copt grows
sub-linearly, the number of partitions grows more slowly than the number of elements of the network.
Hence, for large water networks, the size of optimal districts grows, compared to small water networks.
It is worth noting that this result holds for network partitioning only from the topological point of
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view, while also the aims of the sectorization of the network should be considered in the choice of the
optimal dimension of districts. In fact, it is known that the larger districts are, the more difficult is the
identification of bursts and leakages from night flow data, although smaller districts imply higher costs
for valves, flow meters and maintenance. Conversely, in terms of network safety against accidental or
intentional water contamination, the larger is the district, the larger is the number of users potentially
exposed to injected pollutants.

However, the obtained result points out that, in large WDNs, the size of the districts should
necessarily increase. Otherwise, the benefits of an easier management guaranteed by smaller districts
would be partly nullified by the increased vulnerability (or lower robustness) of the network, caused
by the excessive fragmentation.

Figure 9. Relationship between the optimal number of clusters copt and the network size n. The thick
brown line is a power law fit for the analyzed water networks, yielding copt ∼ n0.28, providing
an indication for the optimal number of District Metered Areas (DMAs) of a water network of given
size. The black dots represent the studied WDNs. For numerical values, please see Table 2.

5. Conclusions

The topological analysis of several real and synthetic water distribution networks shows that such
networks tend to be sparse, being characterized by small values of the average degree K and of the link
density q ∼ n−1. The nearly homogeneous value of the node degree marks a distance between WDNs
and scale-free networks. The studied networks show many characteristics of planar lattices, since both
the diameter D and the average path length l scale as n1/2. Such power law trends confirm that WDNs,
similar to power grids or street networks, cannot be modeled as small world systems. Summarizing,
all the evaluated topological connectivity metrics indicate that the graphs of WDNs are far from being
totally random, as often claimed in theoretical studies, and rather resemble regular square grids.

The analysis of the spectral metrics, however, points out that WDNs present some randomness
which can have a positive effect on their topological robustness, despite the geographical constraints,
which make them close to planar graphs. In fact, for large network size, both the spectral index λA

1
and the spectral gap ∆λA fall in between the values of random graphs and square grids. On the one
side, the spectral index λA

1 , similar to planar lattices (for which λA
1 ∼ K), results nearly constant with

network size, indicating that WDNs are topologically protected from the spread of a contaminant,
apart from the hydraulic characteristics of the pipes. On the other side, the decreasing trend of the
spectral gap ∆λA with the network size indicates the presence of bottlenecks and articulation points,
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but not leading to the complete disintegration of the network, as for regular square grids. In fact, while
the strongly decreasing trend of the algebraic connectivity λL

2 with the network size indicates that
the “energy” required to break the network into independent sub-regions becomes lower, the optimal
number of clusters copt, identified by means of the eigengap ∆L(s), grows less than linearly with the
network size. Such a sub-linear growth hints that, from a connectivity point of view, the larger the
WDN, the larger is the optimal size of DMAs.

The topological analysis of an extensive number of real and synthetic water distribution networks
indicates that it is possible to identify a limited set of metrics that completely characterize the
topological structure of WDNs. In particular, the average node degree K strongly influences the
values of the spectral index λA

1 and of the link density q. Regarding the communication metrics, it is
evident that the graph diameter D and the average path length l provide nearly the same information
about the topology of a WDN. It seems preferable to use l, since it expresses a mean value over all
paths, and because it is more sensitive than D to the addition or removal of an edge. The comparison
between the two spectral robustness metrics, the spectral gap ∆λA and the algebraic connectivity λL

2 ,
suggests that, in the case of WDNs, the latter is more significant, both because it is strongly related to
the strength needed to split the network into sub-regions, and because it shows a clearer trend with
the network size. Finally, from a topological connectivity point of view, the eigengap ∆L(s) provides
a quick and good estimate of the optimal number of districts for the partitioning of a WDN.

According to the results presented in this study, the topological structure of WDN is very
far from the “totally” random networks often used in theoretical studies. Similar to the concept
of Nested-Smallworld, introduced for power-grids [28], and to the concept of Pseudorandom
graph, introduced by Torres et al. [18], WDNs could be classified as a novel structure defined
as Nested-Pseudorandom graph, because they show simultaneously nested and pseudorandom
characteristics. In particular, such a model is the result of connecting several pseudorandom
sub-networks through few long-range links, also in accordance with the above mentioned intrinsic
clustering property of WDNs.

The typical values of the topological metrics calculated in this paper could be used to generate
graphs of synthetic water distribution networks, which retain the topological characteristics of real
WDNs, e.g., through a graph generating software. This would allow having many test cases for
modeling purposes (it is not always easy to have the data and the graph of real WDNs), with realistic
topologies and with network size. In this respect, the automatic generation would be a useful tool,
as the currently used synthetic WDNs generally have small dimensions.
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