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Abstract. It is a known result that, when in a process algebra like LOTOS we have both
recursion and parallel composition operators, the finite-state behaviour of processes is in general
lost. Actually, this happens also when other LOTOS operators, such as enabling or disabling,
are used in a recursive context.

The purpose of our paper is to study the expressive power of Basic LOTOS in terms of the
relations between the syntactical structure and the finite-state behaviour of processes. We then
define some sufficient conditions on the syntactical shape of the specifications in order to
preserve the finite-state nature, extending those already presented in the literature. Moreover, we
define the expressive power of other LOTOS subsets, ranging from context-free processes to
Turing-equivalent processes.

This work was supporied in part by the CEC under ESPRIT project 2304 LOTOSPHERE.




1. Introduction

In the analysis of LOTOS specifications several methodologies and most of automatic tool
support can be used only if the specifications considered describe finite-state machines. For
example, an equivalence verifier is able to manipulate only specifications in this class; an attempt
to verify the equivalence of two non finite-state processes may not terminate with an answer. On
the other hand, even some simple protocol specifications can only be described (at least at a
certain level of abstraction) by a non-finite state machine, so recently some attempts have been
done to exploit more powerful verification techniques (see [FGL89, BaB90, DIN91]).

To know what can be effectively verified (e.g. equivalences, properties, and so on) on a
generic LOTOS specification it is useful to understand what is the "expressive power" of
different LOTOS operators: a subset of LOTOS has a greater expressive power w.r.t. another
if it is able 1o express a wider class of processes.

If we consider a process as the set of its computations (maximal traces), an interesting
classification of the different classes of processes can be done on the basis of the decidability of
some classical problems of formal language theory (e.g. the equivalence of two processes,
intended as having exactly the same set of computations, called maximal traces). In this
respect, the maximal expressive power that a subset of LOTOS can exhibit is that of Turing
Machines. In LOTOS the presence of values, conditional expressions and recursion is enough
to reach the expressive power of Turing Machines. It turns out, however, that even without
resorting to the use of values (that is, even using the so called "Basic LOTOS"), it is possible to
express Turing Machines; actually, different expressivity results can be given for different
LOTOS operators. This paper presents an analysis of the expressive power of Basic LOTOS
process operators: the possibility of using Basic LOTOS expressions as describing traces of
actions can be directly used to inherit known results from the theory of formal languages.

These results cannot be immediately extended to full LOTOS, but we consider that they are
useful in several respects:

1) Several analysis prototype tools and methodologies work only for Basic LOTOS, so that
a reduction to Basic LOTOS is needed in order to analyse a LOTOS specification.

2) The Basic LOTOS operators identify the general structure of a specification, hence
negative limits on the decidability of problems extend to full LOTOS specifications with the
same structure.

3) Some results obtained for Basic LOTOS can as well hold for full LOTOS specifications:
whenever we will show, for example, that a particular combination of Basic LOTOS regular
processes is also regular, this will hold also if the component regular processes are full LOTOS




ones.

Consider, for example, a specification written in a constraint oriented style [VSS88]: the
specification is achieved by the "top-level" parallel composition of a number of processes acting
as constraints. Since it is shown that "static" parallel composition of regular processes is still
regular, we can deduce that if all the constraints are regular, so is the complete specification. On
the other hand, a resource oriented specification in which an unbounded number of processes
are dynamically allocated is not, in general, regular.

Our analysis shows first how LOTOS can express Turing Machines, giving two different
minimal subsets of Basic LOTOS which are both able to reach the expressive power of Turing
machines (Section 3).

We then recall the reasons why it is impossible to find necessary conditions on the syntax for
restricting to finite-state processes (Section 4).

Starting from the simplest subset of LOTOS terms which generate finite-state process, we
proceed in our analysis by adding operators (Section 5), finding different subsets of expressive
power ranging from finite-state processes, to context free processes, to Turing equivalent
processes. For each of this subset it is briefly discussed which verification problems are
decidable and which are not. The results in this sense are summarized in Appendix A.

Appendix B collects conditions on the syntax of finite state processes, which are individually
presented throughout the analysis of the different operators in section 5. These conditions can
be checked by automated analysis tools, as equivalence verifiers, to avoid infinite loops. Some
of these conditions can be found (derived with different approaches) also in [Ail86], [GaN89]
for LOTOS and in [MaV90], [Tau89] for generic process algebras; actually, we obtain also
some finer results on the parallel composition operator. This gives the opportunity to enrich the
set of processes accepted by tools, as AUTO [MaV89], which already check finite-state
conditions on input processes.

2. Basic LOTOS

The considered language is Basic LOTOS, as defined in [BoB87], which only describes
process synchronization, while full LOTOS also describes interprocess value communication.
Basic LOTOS employs a finite alphabet of observable actions. Actions occur at gates; since no
value communication is present, we can identify the observable actions with the gate at which
they occur. The alphabet of actions include also an unobservable (or internal) action i and an
action d used to give semantics to the enabling operator (see Appendix C). In Table 1 we
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present the syntax of the operators of Basic LOTOS; the table presents also the subset formed
by stop, action prefix ;' choice '[]' and process instantiation (both recursive and renaming):
we call it DELOTOS (DEcidable LOTOS, since, as we will see, all problems are decidable on
this subset), which is able to specify every sequential non-communicating process. The
operational semantics of Basic LOTOS and the definitions of some equivalence relations on it
are presented in Appendix C.

It is necessary to point out that, both in DELOTOS and in the other subsets, we consider
guarded recursion, i.e. all the recursive calls must be preceded by an action of the alphabet.

In formalizing recursion, Basic LOTOS makes use of the mechanism of process instantiation.
However, through process instantiation it is possible not only to model recursion, but also to
perform a sort of renaming of the actions, by passing actual parameters which are different
from the formal ones. Renaming can be simulated as a syntactical substitution of gates when no
operator acting on gates, such as hiding or parallel composition, is involved; otherwise,
renaming becomes a semantic substitution (changing gates in the computations) analogous to
CCS relabelling [Mil80]. For this reason, we will call Basic LOTOS* the subset of Basic
LOTOS where process instantiation is admitted only without renaming; we will use also the
notation DELOTOS* with the same meaning.

{BASIC LOTOS }

(DELOTOS )
M errraraner
J/
-
p—— \
i naction stop
' Unobservable action i;B
’ué Qbscrvablc action g:B
E\ Choice B1[]B2
Successful termination exit
Sequential composition  (enabling) B1>>B2
Disabling B1{>B2
Synchronization B1iB2
Interlcaving B1lIB2
Parallel composition (general form) B1ISIB2
Hiding hide S in B
J(\ Process instantiation pid[gl,...gn] )—
o o

Table 1. Basic LOTOS operators




3. Basic LOTOS and Turing Machines

Since LOTOS is a formalism which completely covers the description of concurrent systems,
we may wonder whether Basic LOTOS has the full power of computation of Turing Machines:
if so, we should manage to describe Turing Machines by means of a Basic LOTOS
specification.

Indeed, this result can be achieved formalizing a two-counter, which is known to be able to
simulate Turing Machines [JLL77]. A two-counter is a 6-tuple:
C=<Q, dg- 9> L, Cy, Cp>
where Q is a finite set of states, qye Q is the initial state, qre Q is the halting state, I is a finite
set of instructions, and C;, C, are counters able to keep a non-negative integer.

At the beginning, the counters are set to zero; the possible instructions are (the states q, q*,
T, s belong to Q):

a) (g, Dj, g*): being in the state ¢, decrease the counter C; and go to the state g*.

b) (q, Ij, g*): being in the state q, increase the counter C; and go to the state g*.

¢) (g, Tj, 1, s): being in the state g, check whether C; is set to zero: if so, go to r, otherwise

go to s.

The control program for this two-counter can be represented as a finite state automaton (FSA)
and so as a Basic LOTOS process making use only of choice, action prefix operators and
recursive process instantiation.

The following Basic LOTOS process defines a zero-counter, which is the formalization of one
of the two single counters constituting the two-counter; it is the Basic LOTOS transposition of
the corresponding CCS process given in [GoM84]:

process zero-counter :=

z [inc ,dec, tst]

where
process ¢ [a, inc, dec] := (inc; hide b in
(c [b, inc, dec] I bl (b; ¢ [a, inc, dec])) []
(dec; a; stop))
endproc
process z [inc, dec, tst] := (inc; hide b in
(c [b, inc, dec] | bl (b; z [inc, dec, tst])) []
(tst; z [inc, dec, tst]))
endproc

endproc




Now, to specify the two-counter it is simply required to write two distinct zero-counters,
C; and C,, each one with indexed instructions, to put them in interleaving and to compose them
in parallel on the appropriate gates with the control program, as shown in Fig. 1.

zero-counter 1 H ‘ zero-counter 2

| |
incl dlecl tstl inc?2. dec2, tst2

l incl, decl, tstl inc2, dec2, tst2

incl decl tstl inc2, dec2, tst2

control program

Figure 1

We can observe that in describing the two-counter we have used all Basic LOTOS operators
except enabling >> and disabling [>; thus we can already state the following result:

Proposition 1: Basic LOTOS without enabling and disabling can express Turing
Machines.

Alternatively, we can define the two-counter in Basic LOTOS#*, without using hiding: in fact,
adapting to Basic LOTOS* a result from [BeK84], it is possible to write a zero-counter using
process instantiation (without renaming), enabling and choice:

process zero-counter-bis :

i

cltst,ins,dec]
where

process ¢ [tst,inc,dec] :

(tst; exit [] inc; h [dec,inc]) >> ¢ [tst,inc,dec] endproc
process h [dec,inc] := dec; exit [] (inc; h [dec,inc]) >> h [dec,inc] endproc

endproc




As in the previous example, we can interleave two instances of this counter and compose them
appropriately with a control section, again obtaining a representation of Turing Machines.
In this way, we have shown the following statement:

Proposition 2: Basic LOTOS* without hiding and disabling can express Turing
Machines.

4. The Finite State Constraints on Basic LOTOS

Several existing verification tools (AUTO [MaV89], Squiggles [BoC89], CESAR [GaS90]...)
work correctly on Basic LOTOS processes which can be represented by a finite state automaton

(FSA), i.e. processes generating regular maximal traces, on which most of the problems are
decidable.

It would be desirable to have both necessary and sufficient conditions on the syntactical shape
of Basic LOTOS behaviour expressions in order to distinguish the regular ones, so that one can
understand which processes can be given safely as input to the verification tools, avoiding in
this way the risk of wrong and/or incomplete answers and of infinite loops. In order to establish
such conditions, we match every Basic LOTOS process with a "characteristic language", that is
represented by the set of maximal traces on the set of the actions. In this way, it is possible to
make use of the known results of the language theory in the examination of the expressive
power of Basic LOTOS processes!.

Unfortunately, as it has already been noted in [MaV89], it is not possible to establish general
necessary conditions which permit to state whether a Basic LOTOS process gives rise to regular

maximal truces:

Proposition 3: Given a Basic LOTOS process P, it is undecidable to say whether it

generates regular maximal traces.

Proof: We have shown above that the whole Basic LOTOS has the full expressive power of
Turing Machines. This means, reasoning in terms of maximal traces, that the class of Basic
LOTOS processes coincides with the class of phrase structure grammars: but, for this class, the
problem of establishing whether the language generated by a particular grammar is regular is
known to be undecidable. Thus, it is equally unsolvable the problem of deciding whether, given

1 Note that we will consider only (maximal) traces as models of LOTOS computations; this implies that we
will refer 10 the maximal trace cquivalence. It is not obvious that all the results obtained for maximal trace
equivalence can be extended to bisimulation cquivalence, because it takes into account the branching structure of
processes.

As a reference for known results of language theory see, for example, [HoU69].




a Basic LOTOS process, the set of its maximal traces represents a regular language. ¢

As a consequence of this result, it is not possible to provide necessary conditions on the syntax
of processes for regularity; we can only define some sufficient conditions by means of:

i) searching for Basic LOTOS subsets of operators which describe only regular languages,

i) detecting the upper bounds in the expressive power of other subsets in order to recognize
when regularity is lost and trying, at the same time, to give suitable restrictions on the use of
some operators in order to obtain regular behaviours.

The results we obtain about regularity are scattered throughout the analysis of the different
operators in the next section and are grouped in a table in Appendix B.

We remark that the conditions we give are on the syntax of the process, and therefore can be
checked by a textual analysis of the process; other techniques are available, like the interpretative
technique proposed in [Del91], which are able to decide the finiteness of a process in some
cases not captured by the syntactic criteria. In this paper we restrict ourselves to what can be
obtained by a textual analysis.

5. The Expressive Power of Basic LOTOS Operators

The first Basic LOTOS subset that can be considered is finite Basic LOTOS. In this subset
there are all Basic LOTOS operators, apart from process instantiation used as recursion. Only
finite processes (thus finite computations) can be described: therefore, being in a finite context,
every problem can be decided on this class of processes. Of course, admitting finite processes
only is of little interest in practical cases, therefore it will not be further considered.

Let us now-analyze the subset DELOTOS; DELOTOS processes map directly in regular
expressions, thus we can immediately state the following result2:

Proposition 4: DELOTOS has the same expressive power of regular languages.

Hence, any problem which is decidable on regular grammars is still decidable on DELOTOS
processes: in particular, it is decidable whether a computation is admissible for a process and
whether two given processes are maximal trace equivalent (producing the same set of maximal
traces). In this last case, it is sufficient to build the minimal automata corresponding to each
process and then verify their equivalence. Also bisimulation equivalence is known to be

decidable on the automata corresponding to regular expressions.

2 The results obtained for the regular languages can be casily extended to the class of w (or «)-regular
languages using the patlerns described in [Par81]; this extension may not necessarily be obvious for the other
classes of languages (sec [Niw841), so we will limit ourselves to the finite case.




It is also easy to see that the expressive power of DELOTOS and of DELOTOS* (DELOTOS
with no renaming process instantiation) coincide: renaming process instantiation in this case can

be simulated syntactically, since no operator acting on gates is present.

We now proceed to analyze what actually happens when DELOTOS is extended with the other
operators.

5.1 Enabling

First, let us add the enabling operator >> to DELOTOS; obviously, it is necessary to introduce
also the exit operator when using enabling: we will name the obtained subset DELOTOS + >>
(the presence of exit is implicit).

When the enabling is used within recursion, DELOTOS + >> is as expressive as context-free
languages; more precisely, this result holds if we discard the unobservable actions raising from
the exit, according to the usual concept of observational equivalence:

Proposition 5: Eachprocess of DELOTOS + >> modulo observational equivalence can

be written as a context-free grammar and viceversa.

Proof: The proof follows in part the lines given for another process language, the Basic
Process Algebra in [BBK8&8], in which systems of recursive equations are used.
Let us see first how to translate a context-free grammar (CFG) in a DELOTOS + >> process
(assuming to discard unobservable actions). We recall that each CFG can be reduced to a
normal form, the so called Greibach normal form (GNF); without losing generality, we can
assume that each CFG considered here has no e-productions, i.e. productions of the form
A —> g, where € is the empty string, as it can be shown that any CFG with e-productions is
equivalent to a CFG without them; with this assumption, a stronger result holds: each CFG can
be put in reduced GNF, that is a CFG with productions of the form:

A—>ao with "a" a terminal symbol, a string of non-terminal symbols with llength of al < 2.

Given such a grammar, it is possible to write a corresponding DELOTOS + >> process using
these rules:

a) For each nonterminal symbol introduce a process name.

b) If, for this symbol, there are alternative productions, these will be represented with a
nondeterministic choice [].
¢) Any production like
A—>aBC  (with B, C possibly equal to A)
will be translated in the body of the process A using the expression a;B>>C.
Any production of the form
A—>aB



will obviously be put in the form a; B and productions like
A—>a

will be translated as a; exit.
It happens that in each finite maximal trace a 'd' action (coming from the final "exit") remains at
the end: to avoid this, each process can be put in the form

P >> stop

so that the unobservable actions produced by the enabling can be discarded.
As for viceversa, we show first that each process of DELOTOS + >>, not using the stop
operator, can be reduced to a system of recursive equations [BBK88]. A system of recursive
equations is a pair (X, E), where X is a recursion variable (the "root” variable) and Eisa
finite set of recursive equations {X; = 5{(Xg,...X)) I'i = 0,...n}. The 5;(Xg,...X;) are process
expressions on the algebra (+, -), where '+' stands for the union and "' for the concatenation,

possibly containing occurrences of the recursion variables Xg,...X .

In [BBKS8] it is shown that, naming H a system of recursive equations and denoting with H*
the CFG obtained by replacing '+' by 'I' and '=' by '—>' (the start symbol being the root
variable of H), the solution of H is the context-free language generated by H'. For this reason,
the reduction of a DELOTOS + >> behaviour expression to a system of recursive equations is
enough to show our assumption. This reduction is routine: the choice will be represented as '+,
the action prefix and the enabling can be represented by a concatenation of the symbols in the
recursive system; moreover, each process in the behaviour expression will be transformed in a
recursion variable (the "root" variable will be the outermost process). The process "exit" does
not appear in the system of recursive equations when the reduction has been performed. Also in

this case, process instantiation involving renaming can be treated syntactically.
In the solution of the obtained system of recursive equations the 'd" actions, coming from the

final "exit", do not appear : to avoid this, we can add to the system the equation: Y=Xg.d.
When also the stop operator is used, it is not possible to build as before the corresponding
system of recursive equation; however, we can derive a context-free grammar with the
following procedure:

a) starting from a process P a grammar is derived as before, mantaining stop as terminal
symbol. For example, from process P [a, b, ¢] := a; stop [] b; P >> (P [] c;exit) endproc
we derive the grammar:

P—>astop IbPQ

Q—>Plc

b) from this grammar we derive the corresponding pushdown automa. Obviously it does not
recognize the maximal traces generated by P. Let us modify the automa by eliminating the
moves involving the terminal symbol stop and substituting them by €-moves to a new final
state. It is easy to see that this automa recognizes exactly the maximal traces of P. Now, the
context free grammar for this language can be derived from the automa in a standard way
[HoU69]. ¢




We have thus seen that adding enabling to DELOTOS causes an increase of expressive power,
from regular to context-free languages: as a consequence, in the subset DELOTOS + >>, even if
the problem of establishing whether a trace is produced by a process remains solvable, the
problem of the maximal trace equivalence of two processes becomes unsolvable. Anyway, the
undecidability result for maximal trace equivalence on languages does not extend in this case to
bisimulation equivalence on processes, as a result from Baeten, Bergstra and Klop shows:
Bisimulation equivalence may be decidable on processes expressing context-free languages.
The proof of this statement (see [BBK88]) is based on the regularity properties of the
computation trees, starting form the system of recursive equations defining such processes.
DELOTOS + >> processes, without the stop operator, as we have seen, can be expressed as a
system of recursive equations, and therefore share the decidability of bisimulation equivalence.
A better algorithm for this problem, based on the construction of semantic tableaus, has later
been presented by Hiittel and Stirling [HiiS91].

Two possible restrictions can be made on DELOTOS + >> processes to achieve regularity:

a) If enabling is never involved within recursive calls in a process of DELOTOS + >> and the
sequentially composed processes are regular then also their sequential composition is regular.
To see this, it is necessary to get the finite state automata corresponding to the arguments of the
enabling and then connect with an arc marked with ‘i’ the final nodes of the right argument
automaton (corresponding to the exit) to the initial node of the left argument automaton. The
obtained finite state automaton corresponds to the sequential composition which is hence
regular.

b) If enabling is present within recursion, it is sufficient that at least its left argument is a
finite-state process, not containing the recursive call.

In this case it is possible to derive a finite-state automaton (FSA) for the process, i.e. given A*,
the FSA forthe left argument of enabling, we proceed as in case a) and, at any time we meet a
recursive call in the right argument, we simply add an arc back to the initial node (coinciding
with the initial node of A*).

5.2 Disabling

Using disabling instead of enabling in extending DELOTOS, we can expect to achieve similar
results, because the maximal traces of a process of the form P[>Q are prefixes of the traces
obtained by concatenating the maximal traces of P to those of Q, that is, of the maximal traces
of P>> Q (discarding the 'i' actions produced by the exit).

Actually, it can be proved that not all the context-free grammars can be represented by a
DELOTOS + [> process.
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Proposition 6: The language DELOTOS + [> is strictly more expressive than regular
grammars, bur also strictly less expressive than context-free grammars.
Proof: This proposition is proved in three steps:
a) produce a DELOTOS + [> description of a context-free grammar;
b) exhibit a context-free grammar that cannot be represented as a DELOTOS + [>
process;
¢) prove that no more than context-free grammars can be expressed, i.e. DELOTOS + [>

cannot describe context-sensitive languages.

a) Let us consider the process:
process rec-dis [a, b] := a; (rec-dis [a, b] [> (b; stop))
endproc

According to the operational semantics of disabling, its set of maximal traces is
CF={a"b™ | n>1, 1<m<n}. The grammar generating the language CF is:
S—>aSblaSlab

which 1s a context-free grammar.

b) Let us consider the context-free language CF' = {a™" | n21}. No DELOTOS + [> process
can admit CF' as the set of its maximal traces. In fact, it cannot be produced using disabling
outside a recursive call: as we will see, in this way we still obtain regular processes. Thus, it
should be produced by a process syntactically similar to the above one. But, in this case, for
each computation produced by disabling we have also the partial traces of the left argument (of
disabling) joined with the maximal traces of the right one: for this reason we cannot find a
DELOTOS + [> process whose maximal traces are only the ones belonging to CF', which have
an exactly equal number of different symbols.

¢) Given a process P[>Q, we assume, for induction, that the maximal traces of P and those of
Q are two context-free languages. Now, the maximal traces of P[>Q are the prefixes of the
maximal traces of P, concatenated with the maximal traces of Q. It is known that the language of
prefixes of a context-free language is also context-free; since the class of context-free languages
is closed for concatenation, P{>Q is a context-free language. o

The example at point a) in the proof also shows that the context-free grammars identified by
DELOTOS + |> processes are not "simple".

A CFG is said to be simple if there is no pair of different productions A —> ac, A—> af: this
means that, at each step of derivation, the choice of the production to apply is deterministic.

It has been shown that, for this subclass of context-free grammars, the problem of equivalence
is decidable. As DELOTOS + [> describes context-free languages that do not belong to this
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"simple" subclass, the problem of maximal trace equivalence is not, in general, decidable.

For what concerns restrictions on DELOTOS + [> processes to fall into the regular class, the
same observations made about enabling hold:

a) When the disabling is the outermost operator and its arguments are regular processes, then
the whole behaviour expression is regular.

By merging the FSA of P and that of Q, so that each node of the FSA corresponding to P is
merged to the initial node of the FSA corresponding to Q, we obtain a FSA for P[>Q. This
proves the statement.

b) If disabling is involved within a recursive call and at least its left argument is finite-state,
not containing the recursive call, the process still has regular maximal traces.

To see this, we first build A*, the FSA for the left argument of disabling, and thereafter a

"special” FSA for the right argument, where there is a node marked with "x" for any recursive

call.

We then make use of the merging technique seen for point a), being careful to substitute the "x"

marked node with the initial node of A*: in this way, we have built a FSA for the result process.

To close our analysis about DELOTOS enriched with enabling and/or disabling, the case is left
in which enabling and disabling are added together to DELOTOS: in this case the expressive
power is not greater than DELOTOS + >>.

Proposition 7: The subset DELOTOS + >> + [> has exactly the same expressive

power of DELOTOS + >>.

Proof: The exit operator alone does not add expressivity to disabling; in fact, if we have an
exit operator in the subprocess P of P[>Q (the other case does not hurt), the maximal traces of
P are added to the set of already known maximal traces of P[>Q. Since, for induction, the
maximal traces of P form a context-free language, and the class of context-free languages is
closed under union, then the maximal traces of P[>Q form a context-free language.

For the conditions of regularity given for enabling and disabling, therefore the cases of interest
are those processes in which enabling and disabling interact recursively, for instance processes
like:

process rec.en.dis|a,b,c] := ((a; rec.en.dis[a, b, c]) [> (b; exit)) >> c; exit endproc

Now, a process of the form (P [> Q) >> R, even containing recursion, has as maximal traces
those of P [> Q linked with the maximal traces of R. As the class of context-free languages is
closed under concatenation, this is sufficient to prove the proposition. The symmetric case, i.e.
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the processes of the form (P >> Q) [> R, can be solved analogously. ¢

For DELOTOS + >> + [>, the restrictions to get regular processes are of course represented by
the union of the constraints required in the two previous cases. For this class the algorithms for
deciding bisimulation equivalence cannot in general be applied.

5.3 Parallel composition operators

Let us now consider DELOTOS enriched with the parallel composition operator; first, we
analyze the two degenerate cases of parallel composition:

* synchronization (the operator Il), is used when two processes wish to proceed

together and synchronize on all the gates,

> interleaving (the operator Ilf), is used when two processes wish to proceed in a
completely independent way and never synchronize.

In treating parallel composition, we must point out that up to now we have considered process
instantiation used also as renaming. Since parallel composition acts on the gates, renaming has a
semantic side effect, so using DELOTOS instead of DELOTOS* may cause an increase in the
expressive power of the subset.

5.3.1  Symchromization

As follows from the operational semantics, synchronization is insensitive to 'i' actions, i.e. it is
not possible to synchronize on unobservable actions. So the 'i' actions present in two
synchronized processes are interleaved, rather than performed together. In this sense,
synchronization does not perform differently from general parallel composition, in which some
actions are synchronized and some are interleaved.

Since we are interested in distinguishing synchronization from general parallelism, it is
implicitly assumed that no unobservable action is present in the processes to be synchronized.

Under this assumption, it can be proved that DELOTOS* + Il is as expressive as regular
languages:

Proposition 8: The languages described by DELOTOS* + || processes are regular.
Proof: As the interesting cases regard the interaction between synchronization and
recursion, we need to investigate only two interesting cases:
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a) the synchronization is outside a recursive call, i.e.

process syn_out :=
x|y
where
process x := P(x) endproc
process y := Q(y) endproc
endproc

b) the synchronization is inside a recursive call, i.e.

process x :=Px) Il Q(x)
endproc

a) Let us make the assumption that both x and y express regular languages. If so, it is possible
to build the finite state deterministic automaton (FSDA) that recognizes the traces of x and y.

It is easy to build the FSDA recognizing the traces of x |l y: the FSDA for x Il y is built starting
from the FSDA's for x and y: if they do not have two arcs with the same labels outgoing from
the initial node, the new automaton will collapse to one node with no outgoing arcs; otherwise,
the automaton to be built will have this arc from the initial node. Now, we can repeat this
procedure for the nodes reached in the original FSDA's for x and for y (unless they are, in the
original automata, the initial nodes, in which case we can stop): if there are no arcs satisfying
the conditions, the corresponding node in the new automaton will be final; if we reach a final
node in one automaton, this will correspond to a final node in the automaton for x Il y.

As a consequence, x Il y is regular if x and y are regular; an inductive reasoning hence suffices
to prove the proposition for point a).

b) This is the most interesting case, particularly when the recursion call appears in both
processes that synchronize, such as in

process
syncla,b,c] := (a;b;sync[a,b,c] [] a;c;sync[a,b,c]) Il a;b;sync[a,b,c] [] a;stop

endproc
which has the same maximal traces of:
process synclfa,b,c] := a;b;syncla,b,c] [] a;stop endproc.

which is a regular process.
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By structural induction, we can assume that P(x) and Q(x) in case b) are regular processes.
Hence, the maximal traces of the two processes P(x) and Q(x) are the same of the processes
P'(x) and Q'(x) respectively, defined as follows:

P'(x) = spx [J..[] smx [1 f

Q'(x) = ty;x [J...[1 tmyx [] *
where f and f* do not contain x and we have liberally extended the action prefix operator to
sequences of actions.
Let us now consider the synchronization P(x) Il Q(x): it is possible to distinguish two cases
within the synchronization of the subterms si;x Il tj;x (the synchronizations involving f or f*
produce only finite computations):
i) if no si matches completely with any tj, then we obtain only finite strings.
ii) The most general case is left where siis a substring of tjor viceversa, i.e. the
synchronizations are of the form:

si;(x I qj;x) where tj=si-qj or

tj;(x Il qi;x) where si=tj-qi  (gj, Qi possibly empty)

From this assumption we obtain the following general form:

P'(0) 1 Q) = [] Finy, [1 [ pisx i)

h k
where Finn stands for the finite strings deriving from the partial matches of si's and tj's.
To show that the language of the maximal traces is regular, we provide a procedure to build the
FSA corresponding to the process P'(x) Il Q'(x) 3.
From the initial node of the automaton there will be, possibly, a number of arcs going into final
nodes, corresponding to the finite traces Finh, and outgoing arcs marked with the pk's satisfying
the above matching condition (by arc marked with pk we intend here a sequence of arcs marked
with the actions of pk). There are now two cases: if the maximal traces of x |l rk;x are the same
of the starting process x, then the arc marked with pk will sink back into the initial node;
otherwise, we introduce a new node Py in which this arc sinks.
From this node, the traces will follow the pattern of rk and could possibly be blocked at any
actions of 1k, due to the semantics of synchronization, giving rise, in the automaton, to branches
towards final states. When rk is completed, the automaton has to proceed with the initial parts of
the maximal traces of x itself, so there will be the same outgoing arcs of the initial node: the
ones corresponding to the partial matches will sink into final states, the other marked with the
pk's will go back to the nodes Px's, since after pk only rk is possible (see Fig. 2). ¢

3 Considering only maximal traces does not, in general, preserve bisimulation, since the branching structure of
the synchronized processes is lost.
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5.3.2 Imterleaving

Intuitively, interleaving is rather powerful, meaning that it shuffles in any possible way the
traces of the two processes to which it is applied; the following proposition formalizes this
intuition:
Proposition 9: The Basic LOTOS subset DELOTOS + /|| can express (some) context
sensitive languages.
Proof: To show the assumption, we refer to the results on process algebras obtained by
Bergstra and Klop [BeK84].
Let D be a finite set of actions, which we can consider as data values, and D = {d 1d € D}.
Over D we can define a bag, that is a set of values on which two operations (per value) are
possible:
d: put d into the bag
d: take d from the bag.
It is easy to specify the behaviour of a bag by means of a process in DELOTOS+II:

process bag [D U D] := []g e p di(d Ill bag [D U D]) endproc

It can be shown [BeK84] that a bag whose domain contains at least two elements cannot be
recursively defined in the algebra with signature (+, -). This algebra corresponds to our subset
DELOTOS + >>, which, as we already saw, is equivalent to the context-free grammars. Thus,
DELOTOS + lllis strictly more expressive than context-free languages.
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On the other hand, the language CS = {a"b%" | n>1} cannot be produced as the set of maximal
traces of a DELOTOS + Il process, because, due to the definition of the operational semantics of
interleaving, if in the set of maximal traces of a DELOTOS + lll process there are strings of the
language CS, there must be also some permutations of theirs: so DELOTOS + |l is not able to
represent all the context-sensitive languages.

Moreover, if we consider the word problem for a language defined by a DELOTOS + lii
process, it is shown to be decidable: in fact, all the computations of a process of length at most
n can be found unfolding the recursion until we have traces longer than n, because the
interleaving behaves in a monotonic way and only longer traces can be obtained by unfolding.
This can be considered as a decision procedure for the word problem.

In this way we have also shown that DELOTOS + lll is not able to describe phrase structure
languages, for which the word problem is undecidable. ¢

5.3.2  General parallel composition

The former result regarding context sensitivity can be extended to parallel composition, as
interleaving lll is a particular case of | G | (G = &): actually, we are able to give a more precise
result:
Proposition 10: DELOTOS* + | G | is strictly more expressive than DELOTOS* + [//.
Proof: Again, we use here some results from [BeK84], where it is shown that, supposing
X a not finite process recursively defined on the signature +, -, lll, X must have an infinite
regular (eventually periodic) trace.
If we substitute the composition "' with its restricted form action prefix ;' (as the first member
must be a single actién), it is clear that the previous result still holds and, at the same time, it is
not difficult to see that the algebra defined on the signature +, ;, lll corresponds exactly to
DELOTOSHIIL.
Let us now examine the maximal traces of the DELOTOS* + |Gl process:

process par [a,b] := (a; b; par [a,b] | bl a; b; par [a,b]) [] exit endproc

The maximal traces of this process are of the form:

aabd

aabaaaabd

a?ba%...a2nbd
If we call p; the first trace aabd, the n-th trace py is defined as {pp.1 - 'd'}a2nbd. Using the so
called "uvwxy" theorem, it is easy to show that this language cannot be context-free.
On the other hand, the infinite trace clearly is not eventually periodic: this fact, together with the
previous observation, shows that par [a,b] cannot be described using only interleaving without

parallel composition. ¢
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For what concerns the restrictions on DELOTOS* + |Gl to represent only regular processes, we
have to mention an interesting result from Park [Par81], originally given for the fair merge
operator but easily extendable to interleaving:

a) When interleaving is the outermost operator in a behaviour expression and there are not
mutual recursive calls berween the arguments (which describe regular languages), DELOTOS +
//] still describes regular languages.

This result and the analogous one relative to synchronization (see above) can indeed be extended
to DELOTOS* +1G .

b) A process with a parallel composition at the "top level” and not involved into recursive calls
of the regular arguments has regularly behaving maximal traces.

In fact, to build the FSDA corresponding to parallel composition, when in both the processes
we meet a gate in G we use the building technique previously exploited for synchronization,
otherwise we proceed using the technique introduced by Park for the fair merge, suitably
adapted for interleaving.

5.3.4  Parallel composition wsed as enabling

For parallel composition it is not possible in general, as it happens for enabling and disabling, to
have a recursive call in one of the two arguments without losing regularity. It happens,
however, that some particular forms of parallel composition with recursive calls in one of the
two arguments maintain regularity: these are the forms which have a behaviour similar to that of
the enabling operator. Actually, the following equivalence holds:

a; by c; exit >>Q = hidetin (a;b;c;t; stop I[t]l t; Q)

Where the action on gate t synchronizes the end of the left process with the beginning of the
right one, and acts as the fictitious d gate in the enabling.

Hence we can use the regularity conditions for the enabling to enlarge the cases of regular
processes involving parallel composition; in particular, the interested condition is:
“If enabling is present into recursion, it is sufficient that at least its left argument is a finite-state

process, not containing the recursive call".

It is now straightforward to give the following condition:
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a process of the form:
process x := P1 G| Q(x) endproc
is regular if all the following hold:
1) P is a regular process, not containing the recursive call x;
i) G is the set of actions which are performed as last actions by P, and actions in G are not
performed before by P (that is, the gates in G appear only before a stop operator in P);
iii) The set of first actions performed by Q(x) is contained in G.

It can be noted that the last point can be weakened in the following way:
iii") Any possible execution of Q(x) has a finite prefix of actions not in G, followed by an
action in G, i.e., the synchronization action is preceded by a finite number of actions not in G.

Therefore, a process like the following:

process R := (Q [] a;b; stop) I [b,c] | (e; f; b; R[]f;e;R)[1f;e;¢; (R[] e; £ R))
where process Q := (d; Q [] a;c; stop) endproc
endproc

is regular.

Note that the conditions above can be expressed syntactically and can be checked by a textual
analysis.

The same reasoning can be applied to define a class of process definitions using the parallel
composition operator, which generate context free languages: let us define the subclass
DPCLOTOS (for Decidable Parallel Composition LOTOS) of DELOTOS+IGI, where parallel
composition appear only in the form:

process x := P(x) | G1Q(x) endproc
where:
- P(x), Q(x) are themselves DPCLOTOS processes, calling recursively x;
- G is the set of actions which are performed as last actions by P(x), and actions in G are not
performed before by Bexp! (that is, the gates in G appear only before a stop operator in P(x));
- The set of first actions performed by Q(x) is contained in G

Proposition 11. DPCLOTOS processes generate context-free languages.

Proof: Obvious, by translating the parallel composition into the corresponding enabling

expression, and by Proposition 5.
For the same reason, processes in the classes DPCLOTOS+>>, DPCLOTOS+[>,
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DPCLOTOS+>>+[> generate context-free languages.

5.4 Hiding

About the hiding operator, we can observe that it can be seen as a particular case of "renaming"
and therefore behaves as a syntactical substitution when no operator acting on gates is present in
its scope and as a semantic substitution otherwise.

Hence we can conclude that adding hiding to Basic LOTOS subsets which do not contain
synchronization, parallel composition or process instantiation used as renaming does not change
the expressive power, while adding hiding to all the other subsets may generally increase it.

6. CONCLUSIONS

The results obtained prove that all the LOTOS operators, except enabling and disabling, are
needed to reach the full power of Turing Machines. On the other hand, enabling can take the
place of hiding and of the renaming functionality of process instantiation in achieving the power
of Turing Machines.

Thereafter, we have pointed out a regular subset, called DELOTOS, and, starting from this, we
have studied the expressive power of the subsets obtained by enriching DELOTOS with the
other operators (see the schema in Appendix A).

As most verification tools are designed for finite-state specifications, we have provided some
sufficient conditions on the static structure of the processes (see the schema in Appendix B) in
order to preserve regularity: it is in fact impossible to give general necessary conditions.

We believe that designers and users of verification tools can take advantage from our work: on
one hand, we give precise indications on the expressive power of Basic LOTOS subsets and,
thus, on the problems decidable on them, on the other hand we individuate a wide range of
regular processes which can be submitted safely as input to the tools working on finite-state
objects.
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APPENDIX A

Here is shown a table which summarizes the results obtained about the expressive power of
Basic LOTOS subsets, in relation with the classes of formal languages; the decidability of some

problems on these classes is also reported.

s LOTOS PE—. [ ———— ~ 2QQ [
SUBSETS EXPRESSIVE POWER
Regular Context Context Turing
(finite state) Free Sensitive Machines
DELOTOS
DELOTOS* +hiding
+cnabling +cnabling
+disabling +disabling 0
+synchroniz. -1)
+interlcaving | +interlcaving 3)
+parallcl
composition 2)
+cnabling +cnabling
+par. comp. +par, comp.
+parallel
composition
DPCLOTOS
. . . Max. trace
Decidable Undecidable Undecidable Undecidable equivalence
Decidable Decidable Undecidable? | Undecidable | Bisimulation
(enabling)
Decidable Decidable Decidable Undecidable Admitted .
computation
PROBLEMS

Notes:

1) a subclass of Context-Free Languages

2) a class containing some Context-Sensitive Languages

3) a subclass of the previous ong, still containing some Context-Sensitive Languages

4) (-i) with only obscrvable actions

Table 2. The expressive Power of LOTOS subsets
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APPENDIX B

The following definition of regular process summarizes the syntactical restrictions to achieve a
finite-state behaviour.

A regular behaviour expression has the following syntax:

stop lexit | P | x[]y | x>>y | x[>y | xIGly

where x and y are regular behaviour expressions and P is the identifier of a regular process, or a free
identifier.

We will indicate by RBE a regular behaviour expression with no free identifier and by RBE(X) a

regular behaviour expression with occurrences of free identifier X.

A regular process RP is a process defined by one of the following definitions:
process RP := RBE (RP) endproc

process RP := RBE1 >> RBE2 ( RP ) endproc

process RP := RBE1 [> RBE2 ( RP) endproc

process RP := RBE1 (RP ) Il RBE2 (RP) endproc where RBE1 and RBE2 do not
perform internal actions

process RP := RBE1 IGI RBE2 ( RP) endproc where G is the set of actions
performed as last actions by RBE1, and actions in G are not performed before by RBE1 (that is, the
gates in G appear only before a stop operator in RBE1). Any possible execution of RBE1 has a finite
prefix of actions not in G, followed by an action in G
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APPENDIX C

The semantics of Basic LOTOS is based on the concept of "Labelled Transition Systems" (LTS in the
following). A LTS is a 4-uple (S,Act, {Ry, xe Act}, s,) such that S is a set of states, Act is a set of
actions, R, €S xS, s e Sis the initial state.

We will use the notation B;-g->B, to mean that (B,B,)e R, and we will say that the system in the state
B, is able to perform action 'g' and transform in the state B,.

In Table 1 we present the actions and operators of Basic LOTOS and their related operational semantics.
From the operational semantics we can observe that the transitions of programs are labelled by the
observable actions (marked as o) and by the unobservable (i) actions. We also distinguish transitions
which involve the successful termination action 'd". Since observable actions occur at gates, we can
define the set Act of actions for Basic LOTOS as GatesU {i}u{d}.

On LTSs several equivalence relations are defined; among them we consider the bisimulation the
maximal trace equivalences.

We will consider only "strong" equivalences, which do not distinguish between observable and
unobservable actions: it is the same as considering processes as only performing "concrete” or
observable actions. The corresponding weak equivalences, which forget unobservable action, can be
found in literature.

Definition C.1: ce Act*UAct® is a maximal trace of a process peP, if the length of ¢ is infinite, or
there exist actions aj, ay, ...,4p,...€ Actand processes pi, P, ----Pp.--€ P such that 6=aj.a5-....a, and

p --aj-->pq --8-->Py ...--8p-->Py and do not exist ae Act, qe P such thatp, —a— q.

Definition C.2: Two processes p and q are said maximal trace equivalence if the related sets of
maximal traces are equal, and we write p~(.

Definition C.3: A bisimulation R is a binary relation on P such that whenever pRq and ac 2 then:
i) p—a—p' = 3q. ¢—a—q' and p'Rq,
i) g—a—q = dp'. p—a—p' and q'Rp"

Definition C.4: Two processes p and q are said bisimulation equivalent if and only if there exists a

bisimulation R with pRq, and we write p = q.
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operator synlax opcrational scmantics informal meaning
Inaction stop denotes a process which cannot perform
any action.
Unobservable action ;B i;B -i->B models an event internal to the
process.
Observable action
B B -g->B models a process which can perform
the transition g.
Choice B1[]B2 Bl-odi->B1 implies the actions of the process are the
B1[]B2 -0di->B1’ set of possible actions of B1 and B2.
B2-0di->B2' implies
B1[]B2 -0di->B2'
Parallel composition B1ISIB2 B1-0i->B1" and gate(oi)e S the parallel composition forces the
implies B1iSIB2-0i-> B1'ISIB2 subprocesses to interact at every gate in
B2-0i->B2' and gate(oi)e S the set S.
implies B1i1SIB2-0i-> B1ISIB2'
B1-0d->B1" and B2-0d->B2'
and gatc(od)e S implies
B1ISIB2-0d-> B1'SIB2'
Successful termination  exit exit -d->stop this operator models the process able to
emit a successful termination signal
Sequential composition B1>>B2 B1 -d->B1' implies this operator allows sequential process
(enabling) B1>>B2 -i->B2 composition.
B1 -0i->B1' implies
B1>>B2 -0i->B1'>>B2
Disabling B1[>B2 B1 -d->B1' implies this operator allows process B1 to
B1{>B2 -d->BI" be disabled by process B2.
B1-0i->B1" implies
B1[{>B2 -0i->B1'[>B2
B2-0di->B2' implies
B1[>B2 -odi-> B2’
Hiding hide S in B B-odi->B' and gale(odi)e S this operator allows transitions
implies at gates in S to be internalized.
hide S in B-odi-> hide S in B’
B-0->B' and gaic(o) €S implies
hide S in B-i-> hide S in B'
Process instantiation plgt....enl  Bplgi/hy,...gn/hy] -odi->B' the transitions of a process instantiation

implies
plg1,...gnl -0di->B’

are those of the body of the process
declaration (Bp) which substitute
formal parameters (h;) with actual ones.

Tablc 3. Syntax and semantics of Basic LOTOS

26






