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ABSTRACT: We present a G0W0 approach that is based on the evaluation
of the linear response of the actions of the G0 and W0 operators. In this way
we avoid sums over empty one-particle orbitals and do not have to explicitly
develop the screened Coulomb interaction W0 on a dedicated basis. For a
given orbital, the self-energy is found by summing terms relative to a set of
points in the real-space simulation cell. This permits us to easily control the
ratio of the accuracy to the computational cost. A trivial parallelization
strategy allows strong linear scaling up to tens of thousands of computing
cores.

■ INTRODUCTION

Nowadays, the GW approach,1,2 which takes its name from the
approximation used to write the self-energy operator as a
product of the Green’s function G with the screened Coulomb
interaction W, has become a standard tool3 for obtaining
accurate quasi-particle energies starting from density functional
theory (DFT).4,5 Despite its popularity, the GW approach
remains a computationally demanding task, particularly for
implementations based on the planewaves−pseudopotentials
paradigm.5 Unfortunately, this is the framework chosen by a
large number of electronic structure codes.6−10

The computational burden is determined by the presence, in
the formalism, of sums over empty one-particle orbitals and the
need to deal with response operators, whichmust be represented
on appropriate, generally large, basis sets. Over the past decade,
several groups proposed recipes to alleviate or even remove the
problem of the sums over empty orbitals.9,11−13 These are based
on the same idea of the resolution of the identity, which is at the
base of density functional perturbation theory (DFPT).14

Indeed, the projector over the conduction manifold can be
written as the identity operator minus the projector over the
valence manifold.
Importantly, using reduced but clever basis sets to represent

response operators as eitherW or the polarizability can increase
the speed significantly.15,16 These approaches require appro-
priate checks of the quality of the used basis set. This prompted
the exploration of other roads as algorithms based on stochastic
processes, which led to remarkable increases in speed.17,18

Although frequently seen as a postprocessing of DFT
calculations, GW calculations are much more computational

demanding. This calls for elaborate parallelization strategies to
take advantage of massively parallel supercomputers.9,19

Recently, two research groups presentedmethods to avoid the
computation and memory storage of the entire screened
Coulomb interaction W within the BSE scheme for the
evaluation of neutral excitation energies.20,21 Indeed, instead
of the operator W being calculated, only its action on a vector
representing an excitation is determined. This brings the
valuable side effect of giving fully converged results, removing
any need to check the consistency of the basis for W.
Here, we extend the same idea toG0W0. Only the action of the

screened Coulomb interaction W0 and that of the Green’s
function G0 on a wave function are needed. These are calculated
through ordinary linear response approaches such as those of
DFPT. Hence, sums over empty states and dedicated basis sets
are avoided altogether. The calculation is cast as a weighted sum
over a group of points inside the real-space simulation cell. While
using just one grid point yields approximate results (with an
average error in the self-energy of ca. 20%), using a few points
gives well-converged quasi-particle energies, and adding points
permits fully converged results to be reached and used as
benchmarks.
Being based on linear response, our method inherits the

parallelizations schemes of DFPT codes on one side and is
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trivially parallelizable over groups of real space points on the
other. This means not only that the strong scaling of the code
(i.e., keeping the size of the problem fixed) is linear up to tens of
thousands of computing cores but also that runs can be easily
distributed over a computing grid.

■ METHOD
We limit our discussion to the diagonal G0W0 approximation.2

Although this procedure avoids self-consistency and identifies
the quasi-particle amplitudes with the Kohn−Sham (KS)
orbitals, it remains the most popular way to (drastically)
improve upon the KS energies.22 In a nutshell, the diagonal
G0W0 scheme prescribes the following self-consistent equation
for the quasi-particle energy Ei relative to the ith orbital:

ψ ψ⟨ | ̂ − ̂ + Σ̂ + Σ̂ | ⟩ =H V E E( )i xc c i x i i
KS

(1)

where operators are indicated with a hat, ĤKS is the KS
Hamiltonian, V̂xc is the exchange and correlation potential, Σ̂x is
the (exact) exchange part of the self-energy operator, and Σ̂c is
the correlation part of the self-energy operator.
The self-energy operator is expressed as the convolution of the

DFT Green’s function G0 with the screened Coulomb
interaction Ŵ0 as follows:

∫∑ ω
π

ω ω ω ω′ = ′ ′ ′ ′ ′ − ′η ω

−∞

+∞
− ′+i e W Gr r r r r r( , ; )

2
d ( , ; ) ( , ; )

c

i
0 0

(2)

where η+ is a positive infinitesimal, which selects the contour for
integration in the Riemann plane. For the dual purpose of
avoiding explicit sums over empty orbitals in the calculation of
Ĝ0 and Ŵ0 and avoiding the introduction of any explicit basis set
in the representation of the entirety of W0, we introduce the
following functions for a generic point r in the simulation cell:

ω ω′ = ⟨ ′| ̂ | ⟩G Gr r r( ; ) ( )r 0 (3)

and

ω ω′ = ⟨ ′| ̂ | ⟩W Wr r r( ; ) ( )r 0 (4)

which should be thought as functions of r′ and ω depending on
the parameter r. Both functions can be calculated through linear
response14,23 as detailed in the Supporting Information (SI).
We denote the term ⟨ψi|Σ̂c(ω)|r⟩, which is obtained through

frequency convolution, with the function Si(r;ω).

∫ ∫ω
π

ω ψ ω ω ω= ′ ′ * ′ ′ − ′ ′ ′η ω− ′+
S i e G Wr r r r r( ; )

2
d d ( ) ( ; ) ( ; )i

i
i r r (5)

Note that, in practice, the frequency axis must be discretized.
The expectation values of Σ̂c read:

∫ψ ω ψ ω ψ⟨ |Σ̂ | ⟩ = Sr r r( ) d ( ; ) ( )i c i i i (6)

To perform an actual computation, this integral requires
discretization. In plane-waves codes, wave functions are also
available on a grid of equally spaced rα-points:

∑ψ ω ψ ω ψ⟨ |Σ̂ | ⟩ =
α

α α
=N

S r r( )
1

( ; ) ( )i c i
r N

i i
,tot 1, r ,tot (7)

where the index α runs over all the Nr,tot points of the grid.
Summing over all the Nr,tot points would remain a formidable
task in general and would be feasible only for tiny systems. To
lower the computational burden, we observe that points rα for
which ψi(rα) ∼ 0 bring a negligible contribution. This calls for a

twofold strategy to reduce the number of grid points to be
processed. First, we consider a coarser grid that takes, along the
three Cartesian directions, one point every n of the original
dense grid. This leaves us with Ntot/n

3 grid points. We further
reduce the number of grid points by imposing the condition
|ψi(rα)|>s, where s is an opportune threshold. We indicate with
Nn,s the number of grid points to be processed. This yields an
approximate value for the self-energy expectation value, which
we indicate with ⟨ψi|Σc(ω)|ψi⟩n,s as follows:

∑ψ ω ψ ω ψ⟨ |Σ̂ | ⟩ =
α

α α
=N

S r r( )
1

( ; ) ( )i c i n s
n s N

i i,
, 1, n s, (8)

It is worth noting that the choice n = 2 and s = 0 gives a fully
converged result, as in plane-waves codes it is customary to have
real-space grids two-times denser than the corresponding plane-
waves ones. As can be easily forseen, ⟨ψi|Σc(ω)|ψi⟩n,s converges
slowly with Nn,s such that that the use of eq 8 is impractical.
Convergence can be boosted by inserting weights in the sum

over the grid points. We started to observe that if ψi were a
reasonable approximation for an eigenstate of Σ̂c, than just one
grid point would give a good estimate of the corresponding
expectation value.

ψ ω ψ
ω

ψ
⟨ |Σ̂ | ⟩ ≈ *

S r
r

( )
( ; )

( )i c i
i

i (9)

This relation would become exact if ψi were an eigenstate of Σ̂c.
In practice, the value depends on the choice of the grid point r.

To minimize the error, we take the point ri for which |ψ(ri)| is
maximal. The corresponding approximate expectation value
⟨ψi|Σc(ω)|ψi⟩

maxval yields

ψ ω ψ
ω

ψ
⟨ |Σ̂ | ⟩ = *

S r
r

( )
( ; )

( )i c i
i i

i i

maxval

(10)

It should be kept in mind that ψi can be considered, usually, a
reasonable approximation of an eiegenstate of the G0W0
Hamiltonian ĤKS − V̂xc + Σ̂c(Ei) + Σ̂x but not of Σ̂c. That
notwithstanding, this apparently harsh approximation yields
values for the expectation values of the self-energy with errors
within ca. 20%, as reported in the next section.
This prompted us to generalize the method to the same set of

grid points used in eq 8. This was done by weighting the grid
points according to ψi(rα). We indicate the results with
⟨ψi|Σc(ω)|ψi⟩n,s

weighted.

ψ ω ψ
ω ψ

ψ ψ
⟨ |Σ | ⟩ =

∑

∑ *
′ ′

α α α

α α α

=

′=

S r r

r r
( )

( ; ) ( )

( ) ( )i c i n s
N i i

N i i
,

weighted 1,

1,

n s

n s

,

, (11)

This is themain result of our work. It is worth noting that ifNn,s =
1 we recover the formula of eq 9, while in the opposite limit of a
dense grid whereNn,s =Nr,tot we recover the same exact results of
eq 7. This means that as the number of grid points increases the
method tends to fully converged values.

■ RESULTS
Implementation and Validation. Without loosing gen-

erality, we chose the analytic continuation scheme24,25 where the
expectation values of Σ̂c are first obtained on the imaginary
frequency axis and then analytically continued on the real one.
We implemented our method inside the pw4gww.x module of
the Quantum-Espresso DFT package,6,26 which is based on the
planewaves−pseudopotentials paradigm. The Brillouin zone is
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sampled at the sole Γ-point, permitting us to work with real wave
functions. For the case of crystalline materials, being limited to
the sole Γ-point is not an heavy drawback as we can take
advantage of symmetries in real space instead of those in the
reciprocal one. Either the Coulomb interaction can be truncated
at a given radius, when simulating finite systems, or a proper
treatment of periodic boundary conditions is needed.27 This
requires the long-range elements (head and wings) of the
symmetric dielectric matrix, which are calculated through linear
response with the head.x code. It is worth mentioning that both
the DFT charge density and the head and wings of the dielectric
matrix can be calculated through arbitrary sampling of the
Brillouin zone to achieve convergence. The pw4gww.x code
generates the Si(rα;ω) functions. These are then read by a small
python program,28 which builds the ⟨ψi|Σc(ω)|ψi⟩ expectation
values. We have made the code publicly available within
Quantum-Espresso.
To illustrate, the capabilities of our method we begin by

considering a small molecule, namely methane, as we can easily
carry out extensive sets of calculations for it. We address a cubic
simulation cell with an edge of 20 Bohr, an energy cutoff of 40 Ry
to define the plane-waves basis set representing wave functions,
the local density approximation (LDA)29 for the DFT exchange
and correlation potential, norm-conserving pseudopotentials,
and the theoretically optimized structure. Further details

regarding the calculations are given in the SI together with the
corresponding input files.
Errors defined with respect to our most accurate results are

displayed in Figure 1. For the HOMO, we could use the same
grid as that used for the wave functions (n = 2) and s values down
to s = 0.1. This implies 9095 grid points. From panel A we see
that ourmethod permits us to choose a larger n value and a larger
s value so that Nn,s can be decreased to ∼100 while maintaining
the accuracy within 0.1 eV. This means that we can reduce the
computational cost by two orders of magnitude. In contrast, the
use of the naif approach from eq 8 leads to the catastrophic
scenario of panel B; apart from the densest grids, all the others
yield errors larger than 1 eV. These very large deviations obliged
us to use a logarithmic scale in panel B of Figure 1.
For the LUMO, we find a similar situation. In this case the

DFT orbital is highly delocalized (see Figure S1), so we
considered smoother grids starting with n = 4. In this case our
method also permits us to increase the values of n and s while
maintaining the accuracy within 0.1 eV with only ∼100 grid
points. At the same time, themethod of eq 8 leads tomuch larger
errors.
Our calculated vertical ionization energy (i.e., the HOMO

energy with a changed sign) for themethanemolecule is 14.2 eV,
which is in nice agreement with a similar evaluation (14.1 eV),22

albeit starting from PBE30 instead of LDA, conducted using the

Figure 1. (A and C) Errors and (B and ) absolute errors in the (A and B) HOMO and (C and D) LUMO energies for methane, which were calculated
using eq 11 (panel A andC) or eq 8 (panel B andD). The number of real-space pointsNn,s refers to n = 2 (black), n = 4 (blue), and n = 6 (red) for panels
A and B and refers to n = 4 (black), n = 12 (blue), and n = 12 (red) for panels C and D. The threshold s was set to 0.1 (triangle), 0.5 (pentagon), 1
(square), 2 (diamond), and 3 (circle).
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WEST code, which also avoids explicit sums over empty states.9

The figure is also in agreement with quantum chemistry
coupled-cluster calculations at the CCSD(T) level (14.4 eV),
although all these theoretical estimates are larger than the
reported measurement (13.6 eV).22 Our electron affinity energy
(i.e., the LUMO energy with a changed sign) is−0.2 eV. Finally,
it is worth noting that the use of only one grid-point, such as in
eq 10, leads to a relatively small error of 0.4 eV for the HOMO,
while that for the LUMO, which is delocalized, is larger at 1.8 eV.
We turn now to bulk silicon, as it is a prototypical crystalline

system. As the present implementation of our method is limited
to Γ-only sampling, we are obliged to consider supercells. We
start with a cubic model of Si at the experimental lattice constant
comprised of 64 atoms. The DFT-LDA charge density and the
head and wings of the symmetric dielectric matrix are evaluated
with a regular 4 × 4 × 4 mesh of k-points. Additional details
together with input files can be found in the SI. Taking
advantage of the symmetry of the edge orbitals, we use grid
points belonging to one subcell comprised of eight atoms. In this
case, we can easily reach full convergence with either method by
setting n = 2 and s = 0. This requires the evaluation of 3375 grid
points.
Errors relative to the fully converged band gap are displayed in

Figure 2. Our method permits us to lower the number of grid

points by two orders of magnitude while retaining an accuracy of
ca. 20 meV. In contrast, eq 8 always gives errors larger than 100
meV. In this case, these large deviations also obliged us to use a
logarithmic scale in the bottom panel of Figure 2. Interestingly,
the use of a single grid point chosen according to eq 10 yields a
not-so-huge error in the band gap (1 eV), corresponding to a
relative error of 22% in the self-energy.
To further check the quality of our implementation, we added

to the code the possibility of calculating dielectric constants. For
silicon, we found a discrepancy of only 0.0024% in comparison
with an analogous calculation done using the DFPT ph.x code
within the random phase approximation (RPA) that included
local fields.
To compare the Si band gap with previous results, we chose a

large cubic supercell comprised of 512 atoms, which is roughly
equivalent to an ordinary 2 atom fcc primitive cell coupled with a
6 × 6 × 6 k-point mesh. In excellent agreement with the result
reported in ref 24 (1.20 eV), which was obtained through the
analytic continuation scheme and the results in the range 1.16−
1.28 eV reported in ref 31, which were obtained from various
integration schemes, we found an indirect gap of 1.21 eV. Such a
large system was computed on 32 cores (Intel(R) Xeon(R)
Platinum 8160 CPU at 2.10 GHz). Each real-space point took
10 h, and 27 points were required as specified by the parameters

Figure 2. Errors (upper panel) and absolute errors (lower panel) in the band gap of crystalline silicon (see text), which were calculated using eq 11
(upper panel) or eq 8 (lower panel). The number of real-space points Nn,s refers to n = 2 (black), n = 4 (blue), n = 6 (green), n = 8 (red), and n = 10
(green). The threshold s was set to 0 (star), 0.5 (pentagon), 1 (square), and 2 (diamond).
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s = 0 and n = 10. Thanks to the symmetry of the wave functions,
only points in an eight-atoms subcell were chosen. As the Gr

functions were calculated using the conjugate gradient algorithm
instead of the Krylov subspace one (see SI), we expected to
observe significantly faster calculations using the latter option.
Additional details regarding our calculation can be found in the
SI together with input files.
Timing and Scaling. Our method prescribes a group of

calculations, each of which addresses a different grid point rα.
Then, the Si(rα;ω) functions are written on the disk for each rα.
Finally, these small files are, typically, collected on a desktop
computer and easily processed by a python utility we called
easy_analyser.py.28 This permits us to trivially add a higher
parallelization level to that on the plane-waves of the pw4gww.x
code. Indeed, a main computing job can be divided in several
ones, with each one taking care of a subgroup of grid points. This
allows for almost linear scaling up to thousands of computing
cores.
We illustrate this with the case of a tetraphenylporphyrin

(TPP) molecule. The molecules has 78 atoms and 113 doubly
occupied valence states.We chose a cubic simulation cell with an
edge of 52.9 Bohr, the PBE approximation for the exchange and
correlation potentials,30 and a cutoff of 45 Ry for defining the
plane-waves basis set. Additional details can be found in the SI
together with the input files.
We performed a GW calculation by setting n = 8 and s = 2. In

total, 872 grid points must be processed, and 246 points are then
used on average for each orbital. The degree of converge of our
calculation can be checked a posteriori by increasing the values
of s and n in the analysis with easy_analyser.py. In Figure 3, we
show that increasing s to 5 au brings almost negligible changes in
the valence electronic density of states (DOS) when only 96
points are used on average for each orbital. At the same time,
using n = 16 gives, in general, only minor changes in the DOS,
although only 32 points are used on average for each orbital.

When running on 64 computing cores (IBM POWER9
AC922 at 3.1 GHz32), the execution of the code for a single grid
point required 271 s. We simultaneously launched 12 sets of
calculations while running on 64 × 12 = 768 cores. All the
calculations finished after 19 838 s. Hence, going from 64 to 768
cores causes a speed-up of 271 × 872/19838 = 11.9, which is
very close to that (12) of for ideal linear scaling.
During the development of our code, we had the opportunity

to run up to more than 30 000 cores on the same machine. For
the same TPP molecule, we calculated a total of 9135 grid
points, which were divided on 256 subgroups. For each group,
we ran pw4gww.x on 128 cores. The computation lasted 594 s
lasted for each point. All the calculations were completed after
37 h. This means going from 128 to 128 × 256 = 32768 cores
caused a speed-up of (594/3600)*9135/37 = 40.7. This does
not fully reach the linear scaling limit (256) only because we
experienced some delays in the launch of some groups, as the
machine was not entirely available to us. These results are
displayed in Figure 4.
It is important to show that the performance of our code is at

least in-line with those of well established GW ones. For this
purpose, we compare it with the WEST code,9 as it is also
implemented in Quantum-Espresso and avoids explicit sums
over empty states. We considered the HOMO energy of an
organic dye, KuQuinone, that we studied recently33 (see Figure
5). The molecule has 38 atoms and 102 valence electrons. We
used a cubic simulation cell with an edge of 20 Bohr and norm-
conserving pseudopotentials. The energy cutoff defining the
plane-wave grid was 70 Ryd. All the input files are available on
GitLab.28 Tests were carried on a four-core Intel i7 (11th Gen
Intel® Core(TM) i7−1165G7) computer. Results are reported
in Figure 5. We can see that in the limit of a large N value they
converge on the same energy within few tens of meV. N, in the
case of the WEST code, is the number of eigenvectors of the
dielectric matrix included in the calculations. In our caseN is the
number of real-space grid points. The corresponding vertical

Figure 3. Valence electronic DOS of the TPP molecule calculated at the G0W0 level for various values of grid spacing n and threshold s. The legend
reports the average number of grid points that contribute to each orbital. A Gaussian broadening of 0.25 eV was applied.
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ionization potential can be found by adding −1.85 eV to the
HOMOenergy to account for the position of the vacuum energy
level. Interestingly, our approach, in this particular case, is faster
at a comparable level of accuracy. It is worth noting that the large
plane-wave cutoff used (70 ryd), which implies a quite dense
real-space grid, allowed us to choose n = 8.
Indeed, when porting the n and s parameters from one

calculation to another one, n can be chosen in such a way that the
grid spacing remains fixed. This means taking ∝n Ecutoff ,
where Ecutoff is the energy cutoff that defines the plane-waves
basis set. To port the threshold s, we use the convention of
Quantum-Espresso, where the modulus squared of a wave
function is normalized to the total number of grid points. Hence,
we expect ∝s V V/cell orbital , where Vcell is the volume of the
simulation cell and Vorbital is the volume of the space occupied by
the orbital.
Finally, we have to discuss the scaling of the required

computational time with respect to the system size. The
computational time scales linearly with number of real grid
points involved. For orbitals, which exhibit a similar spatial
localization, we expect that the required number of grid points is
independent of the system size. This means that the time scaling
with respect to the system size is the same as that for a single grid

point. For this, the most time-consuming and the worst scaling
part is the calculation of the screened Coulomb interaction,
which scales as the number of valence statesNv times the scaling
for applying the KS Hamiltonian operator Nr,tot log(Nr,tot). For
the scaling time T for a single orbital, we write

∝ · ·T N N Nlog( )v r r,tot ,tot (12)

If we indicate withN the generic system size and assume both
Nv ∝ N and Nr,tot ∝ N, the scaling time for a single orbital
becomesN2 log(N). We tested eq 12 by estimating the time cost
of the calculation for the KuQuinine dye from a calculation for
SiH4. Inputs file are publicly available.

28 For this small molecule,
we used a cubic simulation cell with an edge of 20 Bohr and
energy cutoff-defining planewaves of 25 Ryd. For the
KuQuinone dye, we have Nv = 51 and Nr,tot = 1083. For SiH4,
we have Nv = 4 and Nr,tot = 643. A GW calculation comprised of
100 grid points for SiH4 lasted 220 s, while a calculation
comprised of 124 grid points for KuQuinone lasted 15505 s.
This is in line with the estimated time length 220× (124/100)×
(1083/643) log(1083)/ log(643) = 19501 s. As expected, the
estimated time is larger than the effective one, as other terms in
the calculation of G scale more favorable than W.
As our approach has been implemented only for the Γ-only

sampling of the Brillouin zone, we must adopt supercells for the
study of crystalline solids. Luckily, the selection of grid points
can be easily limited to the fraction of the supercell that
comprises only one primitive cell unit. Hence, the scaling of the
computational time will then be N2 log(N), where N is the
system size. By comparing a corresponding calculation done
with Nk k-points sampling, we identify N = Nk. To retain the
more favorable Nk

2 scaling of ordinary GW codes with k-point
sampling, an implementation of the evaluation of the KS
Hamiltonian that accounts for system periodicity should be
added.

■ CONCLUSIONS

Beside the advantages of our method discussed in the previous
sections, additional ones are worth a mention. Our approach can
be easily implemented in any DFT-DFPT package. Indeed, the
present implementation consists of no more than 5000 Fortran
lines. Although it supports, now, only norm-conserving
pseudopotentials, the method can be extended to ultrasoft

Figure 4.Circles indicate the observed computational time required by
the two sets of calculations for TPP as a function of the number of
computing cores. The dashed line indicates the ideal linear scaling.

Figure 5.GW calculations done with this code (red) and with the WEST code9 (blue) for the KuQuinone dye,33 which is displayed as a ball-and-stick
model (right panel). The HOMO energy is indicated by filled circles (left scale). The total execution time is indicated by filled diamonds (right scale).
N is the number of grid points (this code) or the number of eigenvectors of the dielectric matrix (WEST code). Solid and dotted lines are guides to the
eye. Dashed lines are linear extrapolations.
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(US)34 and projected augmented wave35 (PAW) ones.
Analogously, it could be extended to support non-collinear
spin magnetism and spin−orbit coupling.36,37 The support of
hybrid density functionals is on the way thanks to their
implementation in Quantum-Espresso38,39

The code not only scales linearly up to thousands of
computing cores but can take advantage of distributed grid
computing, as subgroups of real space grid points can be
distributed on heterogeneous hardware resources. Luckily,
calculations can be refined at a later time by simply adding
more grid points. It is interesting to observe that to effectively
treat crystalline materials we can retain the present implementa-
tion based on the Γ-only sampling of the Brillouin zone and add
an appropriate treatment of translational and point symmetries
to take real-space grid points only inside the irreducible zone of
the primitive cell.
Finally, we make it clear that our method can become very

competitive for the study of orbitals localized in a subsystem of
the simulation cell (e.g., a molecule in a solvent or a defect in a
bulk). Indeed, only grid points localized in a small region of the
cell would require calculation.
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