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1. Introduction and background

A parallel work-optimal heap construction algorithm has been recently presented by Rao
and Zhang [2]. However, as shown in the next section, there are some cases in which the
algorithm does not produce the correct result. Here an amended version is proposed which
builds a heap from a set of n elements in time O(n/p) using p processors, for
1<p<n/lognloglogn, on the EREW-PRAM model of computation. This algorithm is work-
optimal for a range of processors smaller than other parallel makeheap presented in
literature [1] but, it preserves the main feature, in our opinion, of algorithm [2], that is,
different processors operate upon disjoint segments of the structure.

Recall that a heap H of n elements is a complete binary tree exhibiting the heap-shape
property (i. e., all the leaves occur on the last two levels) and the max-ordering property
(i.e., every node stores a value which is no smaller than the values stored in its children).
H is implemented in situ by an array H[1..n], without additional pointers, with the root at
position 1, and the left and right children of node in position i (briefly referred as node i)
stored in position 2i and 2i+1, respectively [3]. The value of node i is indicated by H[i].

Finally, familiarity with [2] will be assumed.

2. The counterexample

Rao and Zhang [2] present two EREW-PRAM algorithms to build heaps: the not work-
optimal basic algorithm ! [2, Sect. 2] and the optimal heap construction [2, Sect. 3]. The
latter is an incorrect extension of the basic algorithm as its second phase violates Lemma 2.
Specifically, during the second phase a pair of alternating steps is not sufficient to
guarantee that every leaf, when it is compared with the value in its list, contains the
minimum among all the values on the path from the root to itself. Consequently, the
complete execution of phase two does not ensure that the final value of every leaf be at least
as large as any element in its list.
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1 More precisely, Lemma 1 of [2] can be rewritten:
A heap of n = 2! -1 elements, for some 1, can be constructed in at most (21-3) steps of an EREW PRAM
using (n+1)/2 processors.



In Figure 1, a counterexample is given: Figure 1(a) shows the state of a heap H at the
beginning of phase two. After the first comparison leaves-lists, both values stored in the
nodes 4 and 5 (Figure 1(b)) violate the max-ordering property. H[2] is exchanged with
H[5] (Figure 1(c)) while H[4] remains in the leaf 4 disclaiming Lemma 2(i). During the
subsequent comparison leaves-lists (Figure 1(d)), the list value '69' is rejected because it is
compared with H[4] instead of the minimum on the path from the root to the node 4. The
second phase is so completed without success (Figure 1(e)). Namely, the final value H[4]
is no greater than or equal to all the elements in its list.

It can be easily proved that Lemma 2(i) holds if and only if (k-1) pairs of alternating
steps are executed after every comparison leaves-lists, where k is the leaves level. The
example in Fig. 2 shows that this condition is necessary.

Hence, the second phase terminates in O(k-log n) instead of O(k+log n) as claimed in [2]
and Theorem 3 in [2] is restated as:

Theorem 3. A heap of a set S of n elements, chosen from a total order, can be
constructed in O ((n-log p)/p) time on an EREW PRAM of p processors.

3. Makeheap

Several revised versions of [2] are possible. However, none of them exhibits optimal
work for 1<p<n/log n. Here, we present a solution very close to the algorithm by Rao and
Zhang.

The processors are essentially allocated to the data as in [2]. Some minor changes are

carried out to satisfy the heap-shape property.
A heap is induced on the array H[1..n] using processors Pj,...,Pp for some p=2K-1 with
1<k<log n]. A single item, referred as H[i], is assigned to Py. Moreover, a list Lj of (IHjl -
1) items, where |H;! is the cardinality of the (implicit) binary tree rooted at node i at level k
in H, is allocated to every leaf processors Pj (i.e., 2k-1<i<2k-1).

The algorithm operates in three phases, as in [2].

In phase one the basic algorithm is applied on H[1 ..2k-1].

In phase two, every leaf processor, at first, selects locally the k biggest elements of L;
and puts them in the first k positions of L;j in non increasing order (i.e., Lij[1]<
Li[2]<...<Li[k] ).

Subsequently & pairs of alternating steps are carried out, i.e.,




the leaf processors, which operate synchronously with the processors on the levels k-2,
k-4, ..., compare their value H[i] with Lj[c], the current value in L, starting from L;[1].
They execute the following algorithm:

if H[i] < Lj[c] then begin
exchange these two values;
¢ : c+l1 {i.e., advance to the next element in the list}
end
else skip
In the third phase, each leaf processor builds a heap of the elements in its list.

The correctness of the algorithm follows immediately observing that:

a) the values in Lj can only replace the values on the path from the root to node i. Then,
it is sufficient to know the k biggest elements in every list;

b) a leaf value is preceded by at least k elements in H, when it is exchanged with a list
value;

c) after the comparison leaves-lists in the j-th pair of alternating steps, the values in the
leaves are candidates to sift-up at most as far as the j-th level of H.

Finally, recalling that every list has cardinality O(n/p) [1] and that the selection can be
executed in linear time; the three phases take respectively O(k), O(n/p +klogk + k), O(n/p)
time where O(klogk) is the time spent to sort the first k elements of every list. The overall
time complexity is:

O(n/p + logploglogp)
i.e., the product time and processors number is optimal for p = O(n/logn loglogn).
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(b) Working at levels {3, 1}
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(a) At the beginning of the second phase
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(b) After the first pair of alternating steps.
Lemma 2 (i) is violated.
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(c) After the second pair of alternating steps (without working at level k).
Lemma 2 (i) is violated.
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(d) After the third pair of alternating steps (without working at level k).
Lemma 2 (i) is verified.
Figure 2



