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Abstract

Portable sequencing machines, such as the Oxford Nanopore MinION, are
making the genome sequencing ubiquitous. This can be particularly inter-
esting for identifying specific bacteria in air-filters or waters and for moni-
toring the microbioma composition in cultivated soils or in different animal
samples, using a simple and portable approach. However, a main problem of
these portable sequencing devices is that they stream huge amounts of data,
which management can be actually challenging. Low-power System-on-Chip
architectures represent a feasible way for designing a solution, based on the
Fog computing paradigm, for processing locally the raw data, considering
both the base calling step and the genome alignment part, and for sending
only meaningful results over Internet. Cloud services can be then used to
collect and integrate results in a Internet of Things framework, in order to
trigger notifications or alarms and, in perspective, for more sophisticated
applications based on statistical or machine learning approaches.
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1. Introduction

The Internet of Things (IoT) paradigm owes its explosive growth to
the ability of connecting physical devices (i.e., the things) to analytics and
machine learning applications, which can help to get insights from device-
generated data and enable devices to make smart decisions without human
intervention [1]. In order to exploit IoT at full power, high-speed data pro-
cessing, scalable analytics, and shorter response times are fundamental.

Meeting these requirements is somewhat problematic through the current
centralized Cloud-based model powering IoT systems. Therefore, the idea
to create a logical and efficient spot in the continuum between the data
source and the cloud has been proposed. This paradigm is usually called
Fog computing [2, 3], meaning a decentralized architectural pattern that
brings computing resources and application services closer to the edge of
the IoT network, where the data are being actually generated. Moreover,
Fog computing has the key advantage of reducing the amount of data to
be transferred to Cloud data centres for processing and analysis, while also
improving security, a major concern in the IoT industry [4].

The Fog layer is the perfect junction where there are enough computing,
storage, and networking resources to support the local ingestion of data, as
soon as they are acquired, and the quick turnaround of results. In most
cases, low-power System-on-Chip devices (SoCs) are exploited, because they
are designed to meet the best trade off between computing performance and
power consumption. Cloud servers, on the other hand, have the horsepower
to perform complex analytics and machine learning tasks to integrate time
series produced by a number of heterogeneous things.

In particular, portable genome sequencing machines as the Oxford Nanopore
MinION devices [5] can be used to monitor the bacterial communities of
different environments, providing useful information about their interaction
with human activities. For example, they can be used to monitor bacteria
in air-filters of hospitals, food industries, and pharmaceutical companies in
order to give alarms in case some pathogens are identified in the environment
[6, 7]. Moreover, they can be used for monitoring the pollutions of waters
in sees, lakes and aqueducts [8] and the bacterial communities in cultivated
soil [9, 10] and greenhouses, or to test different animal samples from farms
[11].  Other more extreme usages of Oxford Nanopore devices have been
experimented [12, 13, 14].

So far, the analysis processes are manually conducted, because they are



basically spot analyses. With the further development of this technology,
a number of these devices will be exploited on the field in a routinely way.
Therefore the Fog computing is a natural candidate for designing efficient
and effective solutions to manage the results. The key aspect is represented
by the possibility of locally processing the huge quantity of data these devices
can produce, in order to sent to Cloud applications only the most important
results.

From the computational point of view, the interesting feature of Ox-
ford Nanopore devices is that sequencing data starts streaming immediately,
rather than being delivered in bulk at the end of a sequencing run. Real-
time data streaming allows immediate analysis of the data, enabling sequence
mapping as quickly as the results become available, even during the exper-
iment. Rapid identification of organisms in samples is therefore possible,
since users recently reported the identification of bacteria and markers of
antimicrobial resistance within 5-10 minutes [15].

In this paper, we apply the Fog computing paradigm for designing a
system able to support a network of MinlON devices working on the field
(Figure 1). Our results demonstrate that it is possible to manage the data
stream processing, i.e., the possibility to perform base calling and bacteria
identification, for real-time analysis with a Fog-based infrastructure making
use of SoCs. The present prototype is able to trigger notifications in case of
dangerous situations, and we are working on other applications. In fact, when
all the data of the MinlON network is collected in the Cloud environment,
it is possible to address more complex scenarios, as the analysis of bacteria
communities with the application of machine learning techniques on the time
series.

To the best of our knowledge, no previous works have been published
about Fog computing applications in Bioinformatics, while energy efficiency
aspects have been considered [16, 17, 18] and the use of Cloud computing
is a well established technology [19, 20, 21, 22, 23]. The use of SoC devices
for Fog computing applications, instead, is receiving an increasing attention
24, 25, 26] in these last years.

This paper is organised as follows: Section 2 describes the hardware com-
ponents of the considered system, while Section 3 gives an overview of the
workflow for data processing and the IoT infrastructure; Section 4 describes
the achieved experimental results, followed by conclusions and future direc-
tions.
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Figure 1: Diagram of the computation. Data are generated from the Oxford Nanopore
MinION devices. The Fog layer, based upon SoC devices, is used to perform the base
calling and bacteria identification. The results are uploaded to a Cloud infrastructure
to be integrated in a machine learning framework, for triggering alarms or give decision
feedback to the network.
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2. The Biological device

MinION by Oxford Nanopore is a miniaturized sequencing instrument
device, with a weight under 100g and powered by its USB port, that can
be transported into the field [27]. Tt basically consists of a set of nanopores,
which are nano-scale protein channels in a membrane surface. Fach nanopore
is powered by a ionic current, which is modulated by biological molecules
passing through it, producing a real-time data streaming during the experi-
ment. The current variations can be used to identify the biological molecule
passing through the nanopore, that is one of the nucleotides (Adenine, Gua-
nine, Cytosine, Thymine/Uracile) composing the DNA/RNA sequence.

Before sequencing, the sample has to be prepared, which means that
DNA/RNA must be extracted and chemically predisposed for sequencing.
The actual protocol for library preparation is possible in 5 minutes and us-
ing only a minimum of equipment, making the portability of this device, at
least from the experimental point of view, the best possible. Moreover, Ox-
ford Nanopore announced the release of an automated sample and library
preparation devices, called VoOITRAX and shown in Figure 2, relying on a
sophisticated micro-fluidics approach, to simplify the workflow even further
and enabling its usage without direct human intervention.

The MinION device produces very long reads (reads over 100 Kilo base
pairs - Kbp - were reported), although it suffers from high sequencing error
rate, up to 15-18%. This can be corrected with bioinformatic approaches,
in particular using machine learning techniques. DNA base calls are usually
performed using a Cloud-based software provided by Oxford Nanopore, called
Metrichor, that employs Hidden Markov Models (HMMs) to infer sequences
from these ionic current changes [28].

Although this approach provides good performances, a broadband Inter-
net connection is required, since basically all the raw data (electric signals)
produced by the sequencer have to be uploaded to the Cloud. The device has
a declared peak throughput of 5-10 Gbp in 48 hours, resulting in about the
same amount of GB, even if the real throughput is of usually about 0.5-2.5
Gbp, considering the same time interval [29]. Moreover, results may be given
back from Metrichor, in terms of raw DNA /RNA sequences, for further anal-
ysis, producing other intensive I/O, which can be very difficult to manage on
the field, thus partially impairing the portability of the device.

From the metagenomic perspective, some works have been already done
with MinION. To complete real-time environmental genomic experiments, a
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Figure 2: The sample preparation process for sequencing, which consists in the DNA /RNA
fragmentation and the ligation of the sequences to chemical primers that enable the se-
quencing reaction. With the development of the technology, this preparation will be
performed automatically using the VoI TRAX device, before sequencing using the Oxford
Nanopore Minion.



tool has been developed relying on the cloud-based Metrichor platform, which
is called Whats in my Pot? (WIMP) analysis pipeline [30]. The WIMP
application classifies microbial species in real time, using a data structure
that is pre-built and shared by all the application runs, which relies on a
taxonomy classification and a reference database.

This data structure maps all k-mers of length 24 present in the cho- sen
database to nodes in the NCBI taxonomy tree. Because of this pre- pro-
cessing, new sequencing reads can be quickly classied by looking at k-mers,
rather than aligning them against the original reference. During the sequenc-
ing run, the reads are basecalled by the Metrichor system and classified by
the WIMP pipeline against the pre-built data structure [31].

As introduced, such approach has the drawback of requiring large band-
width for data transmission, which represents a major drawback considering
that this device has been designed to work on the field, also in remote regions.
This is the reason why a Fog computing approach well suits such technology.
In particular, our approach aims at performing on SoC devices, co-located
with the sequencer, the work done on the Cloud by Metrichor and WIMP.
This entails in the need of uploading on the Cloud only the metagenomic
results, which are basically a few KB containing the identified bacteria and
their relative abundance.

3. The SoC Devices

SoC hardware platforms are integrated circuits, designed for the mobile
and embedded markets, composed of low power multicore processors com-
bined with a GPU and all the circuitry needed for several 1/O devices. In a
laboratory hosted at INFN-CNAF data center in Bologna, the COSA project
(COmputing On SoC architecture, www.cosa-project.it) built and maintains
several racks of low power SoCs, which are available to explore the possi-
bility of a greener, cost-effective and less power hungry scientific computing
(32, 33]. In this work, we considered only x86-based hardware, because port-
ing applications to these platforms is straightforward compared to other ones,
i.e., ARM based, having all the dependencies already compiled and available
(34, 35, 36].

The COSA x86_64 bit cluster includes four mini-ITX boards powered by
the Intel C-2750 Avoton SoC, four mini-ITX motherboard based on the Intel
Xeon D-1540 CPU, two mini-ITX boards based on the Intel Pentium N3700
processor, two mini-I'TX boards based on the Intel Pentium J4205 processor,
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Figure 3: The low power devices used in this work. From left to right: Intel Avoton C2750,
Intel XeonD 1540, Intel Pentium J4205, Intel Pentium N3700.

and finally four mini-I'TX boards based on the newer Intel Pentium N3710
processor. The remarkably low Thermal Design Power (TDP) of the boards,
when declared, ranges from 6W of Intel Pentium N3700 to 45W of the 8-cores
Intel Xeon-D processor.

All SoCs are interconnected with standard 1Gbit/s Ethernet, whereas
the Avoton and the XeonD are connected with both 1 Gbit/s and 10 Gbit/s
Ethernet connections. Wireless and 4G connections are also available.

A master server is used as a monitoring station and a power meter is
attached to the monitoring station to measure the energy consumption for
every test or real-life application. On all platforms, the operative system
Ubuntu 16.04.2 is installed. An external network file system hosting all
software and datasets is mounted on every cluster node.

4. The FoG Infrastructure for Metagenomic Analysis

In this section we describe the FoG infrastructure that relies on SoC
devices, for local processing of raw sequencing data and uploading the results
on a loT platform, such as Amazon Web Services (AWS).

In particular, the Fog layer takes in input the sequencing information in
terms of variations in the ionic currents of the Nanopore device, which are
data in FAST5 format (a variant of HDF5 files). These files are very large,
since changes in the ionic currents are measured many times for each base
while the DNA /RNA molecules pass through the nanopores. So, FASTS5 files
in input are more than 10 times larger than the output FASTA sequences.
After that, each FASTA file is processed to identify bacteria, which produces



in output a tuple as the following:

e Percentage of reads covered by the clade rooted at this taxon;

e Number of reads covered by the clade rooted at this taxon;

Number of reads assigned directly to this taxon;

A rank code, indicating (U)nclassified, (D)omain, (K)ingdom, (P)hylum,
(C)lass, (O)rder, (F)amily, (G)enus, or (S)pecies;

NCBI taxonomy ID;

indented scientific name.

This simple output is the only piece of information produced by the
Fog layer after processing the results of the analysis performed by MinION.
Therefore, only these data will be uploaded to the Cloud infrastructure for
data integration and decision making.

4.1. The Bioinformatics pipeline

A few open source base callers have been developed in academia to com-
pete with the proprietary implementation of Metrichor, such as Nanocall
[37] and DeepNano [38]. According to our analysis, DeepNano is newer,
deals with the last improvements of the Oxford Nanopore technology (chem-
istry version R9) and also provides better results in terms of accuracy. The
reason is that DeepNano relies on deep recurrent neural networks (Figure 4),
which are able to capture long-range dependencies, while the HMMs used by
Nanocall are only able to model short range dependencies. This results in a
significantly improvement of the base calling accuracy achieved by DeepNano
on data from chemistry version R7.3, also compared to the default base caller
supplied by the manufacturer. On chemistry version R9, DeepNano achieves
results comparable to Metrichor [39].

The DeepNano recurrent neural network takes as input a vector consisting
of the mean, standard deviation and length of the signal for each detection
event and produces as output a vector describing the probability distribution
for each called base. A schema of the process is shown in Figure 4. As an op-
timization algorithm, DeepNano uses a stochastic gradient descent approach,
combined with Nesterov momentum [40], to increase the convergence rate.
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Figure 4: The analysis steps performed by DeepNano, which takes as input files in FASTH
format. This information is analysed through a recurrent neural network, which provides
as output a probability distribution of the bases to call.
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Figure 5: From the 2256 RefSeq Genomes available through NCBI, a database of k-mers
(defaulf K=31) is extracted, identifying the lowest common ancestor for each sequence (see
text for more details). Kraken works by segmenting the input sequences in k-mers in order
to identify these fragments in the lowest common ancestor database. From this analysis a
taxonomy tree is identified, which describes the composition of the sample under analysis.

After base calling, we chose Kraken [41] for the identification and quan-
tification of bacteria inside the samples. Kraken is an ultrafast, open source
and highly accurate program for assigning taxonomic labels to metagenomic
DNA sequences. At the core of Kraken is a database that contains millions
of records each one consisting of a k-mer annotated with the lowest common
ancestor of all organisms whose genomes contain that k-mer. This database,
built using a user-specified library of genomes, allows a quick lookup of the
most specific node in the taxonomic tree that can be associated with a given
k-mer. Each read is classified by querying the database for each k-mer in the
sequence and then using the resulting set of lowest common ancestor taxa
to determine an appropriate label for the read. A schema of the process is
shown in Figure 5.
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4.2. Parallel implementation

MinION streams data as a set of files, that can be processed in an in-
dependent way by DeepNano as soon as a new file is available. After base
calling with DeepNano, the identification of which bacteria are present in the
sample and their amount is done with Kraken. Since the operating manual
of the latter software specifies the requirement of a considerable amount of
free memory (at least 75 GB) to hold the database in the RAM and run effi-
ciently, we had to download a reduced standard database, called MiniKraken,
which is supplied specifically for low-memory computing environments. In-
deed, we notice that it is always possible to generate a reduced version of the
database considering only relevant k-mers in a sequence to get the correct
classification, thus not invalidating the analysis.

Both DeepNano and (Mini)Kraken are sequential software, but it is pos-
sible to analyse files produced by MinION in a completely data parallel way.
For this reason we implemented a simple application in Python which man-
ages the execution of independent instances of the pipeline DeepNano +
Kraken, one for file (or set of files grouped in different folders). The ap-
plication runs a number of analyses at a time equal to the number of the
available cores of the SoC, because we experimentally determined that the
use of hyper-threading results in lower performance figures. The software we
implemented is available at http://goo.gl/guk7q5. This solution is simpler
compared to the installation of a scheduler for managing a single SoC and
provides good performance figures. After the end of each analysis, the results
are uploaded to the IoT platform, as described below.

4.3, AWS IoT

The IoT platform represents the link to transfer information from the
local part of the system, where data are acquired and pre-processed, to the
centralized part, where they are stored and analysed. Such a platform can
be defined as a software suite that monitors, manages and controls various
types of endpoints via applications built upon it [42].

In this work we considered the use of AWS IoT, because its use is straight-
forward, as we are going to describe, and taking into account the rich inte-
grated environment it enables, as the machine learning platform services
[43]. AWS IoT is a cloud managed platform providing a publish/subscribe
brokering service. It offers out of the box a number of features as security
and the seamless integration with the AWS service ecosystems, like Lambda
functions, DynamoDB, S3 and many more.
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The platform basically enables the bi-directional communication between
Internet-connected things (e.g., sensors and applications) through logical
channels. The communication is based on JSON messages addressing top-
ics like sensor/rain/location_xy. A message broker sends the message to all
clients that have registered to receive messages for a topic. The act of send-
ing the message is referred to as publishing. The act of registering to receive
messages for a topic filter is referred to as subscribing.

The general architecture of the platform is depicted in Figure 6. Hereafter
a brief description of the main components.

Things and Messages

An entity interacting with the AWS IoT platform corresponds to a thing
and it is uniquely identified by an Amazon Resource Name. It is possible
to define thing types to simplify the management of homogeneous devices.
For example they can share a common set of attributes, which describe their
identity and capabilities.

Communications between things and AWS IoT use the TCP protocol
on port 8883 and are protected with of X.509 certificates. Such certificates
can be generated by the platform or provided by the user. Moreover, it is
necessary to define a policy to authorize each thing/thing type to perform
AWS ToT operations, such as subscribing and/or publishing messages. It is
possible to revoke a certificate in any moment, in order to block the access
for a specific device. Therefore, the authentication/authorization system
can address in a flexible and effective way the security problem normally
associated with IoT. The resulting of the registration of a new thing is shown
in Figure 7.

The platform provides also a pre-configured software connection kit of
a few MBs in Java or Python, called NodelJS, that immediately allows to
exploit the device to publish/subscribe messages. Many other SDKs are
available in order to allow different devices to exploit the capability of the
AWS IoT platform, as Javascript, embedded C, C++, C#, Java, PHP, iOS
and Android. For example, the NodeJS code to publish messages is the
following;:

var device = awsIot.device({
keyPath: __dirname+’/myprivate.key’,
certPath: __dirname+’/mycert.pem’,
caPath: __dirname+’/myroot-CA.crt’,

13
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clientId: ’Nanopore_2’,
host: ’xxx.iot.us-east-2.amazonaws.com’});

device.on(’connect’, function() {
console.log(’connect’);
device.subscribe(’air_filter/nanopore_2’);
device.publish(’air_filter/nanopore_2’,
JSON.stringify({"kind": "C", "bp": 36, "fasta_id": "SEQ1",
"kraken_id": 562, "LCA_mapping": "562:6" 1}));

3

The result can be inspected through an integrated client, as shown in
Figure 7. Our application creates a new NodelJS file, based on the above
code containing one publish operation per bacteria identified during each
single analysis by Kraken.

The Device Gateway

The message broker is called Device Gateway. It implements the pub-
lisher /subscriber behaviour using the Message Queue Telemetry Transport
(MQTT) protocol. When a message is published on a topic, the device gate-
way checks for currently connected things with a subscription that map to
the topic of the message. The broker then forwards the messages to all of
them.

Each topic namespace is isolated for each pair (AWS account, region). For
example, the (air_filter/nanopore_2, EU (ireland)) topic for an AWS account
is independent from any other topic or region. It is not possible sending and
receiving messages across accounts and regions.

The simplest architecture that can be implemented with AWS IoT is
composed only by things and the device gateway. In fact, an external Web
Service can register to the device gateway, subscribe to all the topics defined
in the applicative scenario and manage them in an independent way, i.e.,
for storing them on a proprietary repository, for taking actions as sending
alerts, or for monitoring applications. Otherwise the rules engine has to be
activated.

The Rules Engine

The Rules Engine provides users with the ability to process the incoming
messages for automatically performing operations. It is based on rules with
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The following AWS loT resources will be created:
A thing in the AWS IoT registry Nanopore_2

A policy to send and receive messages Nanopore_2-Policy

"Version": "2012-18-17",
"Statement”: [
{
"Effect™: "Allow",
"Action": [
"iot:Publish",
"iot:Subscribe”,
"iot:Connect”,
"iot:Receive”
]

"Resource": [
M

1

The connection kit contains:

A certificate and private key Nanopore_2.cert.pem, Nanopore_2.private.key
AWS loT Device SDK Node.js SDK
A script to send and receive messages start.sh

[P Aws 0T MQTT client

air_filter/nanopore_2 Oct 30, 2017 2:31:54 PM +0100

"kind": "c",
"fasta_id": "SEQl",
"kraken_id": 562,
"bp": 36,

"LCA mapping”: "562:6"

Figure 7: The AWS implementation. In the upper part, the authentication and authoriza-
tion setup for a thing using the AWS IoT platform. Below, an example of message reads
through the integrated subscription client.
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a syntax very similar to an SQL query: it is possible to select only some
attributes of the payload, like an SQL projection; it is possible to choose
the topic from which filter the messages (with supports also for filtering all
messages with a topic that starts with a string); finally, it is possible to
specify one or more conditions, as the where clause of an SQL query.

For example, the following rule:

select * from ’air_filter/#’ where kraken_id = 470

will select all messages where Acinetobacter baumannii has been found
[6].
The resulting messages can than be processed using a set of ready-to-use
actions, such as:

e insert a message into a DynamoDB table;

e send messages to an Amazon Kinesis Stream;

republish messages to (a different) AWS IoT Topic;

invoke a Lambda function passing the message data;
e store messages to an S3 bucket.

The difference of having a web service subscribing a topic or the use of
an action relies on the scalability AWS can provide. In the first case, the
web service has to process every message with the computational capabilities
of the server where it runs, extract only the relevant messages and then it
can takes proper actions. In the second case, a rule can be defined in order
to filter the incoming messages as the one above. The filtered messages,
for example, can be re-published with a new user-defined topic, e.g., alert.
Therefore, the web service can subscribe only the alert topic, levering the
heavy computational part to the AWS capabilities.

The same applies to the storing of messages as time series on AWS oper-
ated databases or Simple Storage Service (S3) instances. Lambda functions
instead represent a piece of code triggered by messages of a topic. The user
can process the data with her/his local web service and interact with further
AWS or external web services and databases.

In our current prototype we exploit the Rules Engine to filter the mes-
sages, while the actual alarm triggering is managed through a dedicated web
services. Also the storing of results was performed with local resources.

17



5. Experimental Results

Given the algorithmic background detailed in Section 3, we cloned the
bitbucket repository of DeepNano (chemistry version R9) on the SoC boards,
which requires Python 2.7 and the Theano library [44] for training neural
networks, and we downloaded and compiled Kraken, written in C++. The
execution of both tools was straightforward, as the use of the AWS IoT SDK
based on NodelS.

Beside assessing the feasibility of the system architecture, we performed
some quantitative tests to evaluate the effectiveness, performance and power
consumptions of some metagenomic experiments.

5.1. Parallel Performance

We assessed the performance of the SoC platforms of the COSA cluster
on data available on public repositories. Unfortunately, only a few datasets
can be found concerning metagenomic experiments, because the technology
is indeed very new. This also because typically users load their data to the
Oxford Nanopore Cloud-based platform and get FASTQ files back, therefore
it is difficult to find raw data. Considering these constrains we selected the
experiments reported in [46]. In particular, we selected 4 datasets among the
available ones, with a different size.

The considered datasets are: ERR1713483 (283,294 bp), ERR1713487
(337,913 bp), ERR1713485 (427,280 bp), and ERR1713486 (517,628 bp),
which correspond to metagenomes generated by mixing sequences from dif-
ferent species. These experiments have been chosen in order to test our
approach on datasets of different sizes, in order to evaluate the impact of the
number of bp on the performance of the pipeline.

Figures 8 and 9 show the number of bases per seconds processed by Deep-
Nano and Kraken, respectively for the considered datasets and for increasing
number of processing cores in the different SoCs. It is worth to note that
only Avoton and XeonD are equipped with 8 cores, while the other three
SoCs has only 4 cores.

As regards DeepNano, XeonD is able to process 1,600 bases per second,
Avoton about 1,180, N3700 about 580 while J4205 and N3710 only 200.
Higher values - in the order of million bases per second - have been achieved
with Kraken, where the difference between the slowest and the fastest SoC
are lower than with DeepNano.
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Figure 8: Bases per seconds processed by DeepNano for different datasets and for increas-
ing number of processing cores (1, 2, 4, 8 in the x-axis label) in the different SoCs (colour
coded).

The most interesting result has been achieved with DeepNano for the
ERR1713487 dataset, which computations scales much better than the oth-
ers. This can be probably explained with a better quality (less errors) of the
sequences in the datasets, which reduces the number of iterations needed by
the recurrent neural network to converge.

Moreover, Figures 10 and 11 show the scaling of the considered applica-
tions for the different datasets using the widely adopted metric of speedup.

Apart from the Avoton SoC, for which the scaling with the number of
cores is very good, the other platforms exhibit a poor scaling, which might
be ascribable to the high usage of the RAM by DeepNano and Kraken.

To support this hypothesis, we run standard STREAM synthetic bench-
marks to estimate how quickly data can be written to or read from memory
by the processor for simple vector kernels (here we show scale) in all the
SoCs considered here. Results are shown in Figures 12, where the memory
bandwidth is plotted as a function of vector size (left) and as a function of
the number of CPU cores for a fixed array size of 50 MB (right). We can
see that only Avoton does not present lower performance by using all the
available cores. XeonD instead decreases the performance by using 8 cores
with respect to 4 and the other three SoCs present the same behaviour us-
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ing 4 cores instead than 2. Moreover, the sustainable memory bandwidth of
N3700 and N3710 is indeed remarkably low, when compared to that of the
other SoCs.

Furthermore, it is not completely clear why the newer Pentium J4205
performs worse than the older N3700 with DeepNano. The same holds true
with N3710, that has an higher frequency. This aspect is currently under
investigation, particularly for what concerns the management of the Turbo
frequency. A different handling of the Turbo frequency could also be respon-
sible for the Avoton SoC scaling better than the XeonD SoC.

In any case the following considerations hold true:

e the use of all the available cores for running independent analyses re-
sults in an increase of performance with respect to the use of less cores;

e the execution time of DeepNano is higher than Kraken: the former
processes about one thousand bases per second and the latter more
than one million;

e Avoton presents the best scalability results, but XeonD provides the
highest performance most of the times.

5.2. Power Consumption and Data Size in a Real-World Scenario

The focus of the previous Section was to assess the basecalling speeds of
the low-power SoCs of the COSA cluster, which represent the key components
of the Fog layer. Here we consider also the power consumption and, even
more important, the actual size of the data to be sent to AWS IoT in a
real-world scenario.

A full discovery metagenomic experiment can produce up to 2 Gbp per
day of MinION sequencing, resulting in an equivalent amount of GByte (1
base pair - 1 byte). When the experiment performed by MinION has a
monitoring purpose, it is common practice to schedule one analysis per day.
For monitoring purpose this accuracy is usually not necessary, since we want
only to identify the presence of few specific strains. Therefore, the resulting
dataset has a size of about 100 Mbp, corresponding to about 30 minutes of
Minion sequencing.

As dataset for our tests we considered a set of 290 files, with a global
size of 100 MB. They are processed by DeepNano that produces the same
amount of files, but with a global size of 4.6 MB in the FASTA format, further
processed by Kraken. The final result is represented by 790 tuples having
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the format described in Section 4, with a global size of 3.2 MB. Therefore
the proposed system is able to reduce to 1/30 the data stream size to be sent
over the Internet connection subdivided in 790 messages.

Figure 13 (left plot) shows the energy performance of such workload on
low-power boards, i.e., the number of basecalls processed per Joule, while
Figure 13 (right plot) shows the number of bases processed by Kraken per
Joule to perform the bacteria identification.

We can see that N3700 presents the best result. Surprisingly, the most
most powerful SoCs are not the most power hungry for DeepNano, while this
is true for Kraken.

5.3. Discussion

As stated before, the proposed system is a feasible solution to manage the
data stream produced by MinlON devices, because on average it reduces to
1/30 the data stream size to be sent over the Internet connection subdivided
in about 800 messages.

As regards the execution times, the measurements described above indi-
cate the following capacities with DeepNano for each board:

e XeonD can process around 157 Mbp/day using 4.2 MJ,

e Avoton around 106 Mbp/day using 2.2 MJ,
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e N3700 around 53 Mbp/day using 0.5 MJ,

e N3710 and J4205 around 20 Mbp/day using 0.8 MJ.

For all the considered SoCs, instead, Kraken is able to process hundreds of
Gbp per day with little energy consumption. Therefore, the bottleneck of the
system is represented by the DeepNano application. Only devices equipped
with a single XeonD or Avoton are able to process an analysis per day, while
for the other tested platforms there is the need to include 2-5 boards to get
results in time. To provide a comparison figure, the Xeon E5-2683 v3 CPU
(14 Cores, 28 Threads, 2.0GHz, 3.0GHz Turbo, 35MB Cache, 120W), used
in a High Performance Computing (HPC) cluster representing the reference
for the COSA project, is able to process about 1,000 bp per second with a
single core with respect to the 400 of the XeonD. Therefore, using all its 14
physical cores, it is able to scale up to 1 Gbp/day, which means that there
is the need to use at least two Xeon E5 cpus for processing the theoretical 2
Gbp produced by a full discovery metagenomic experiment with MinION.

In a realistic scenario, MinION produces 30 bp per second per pore: con-
sidering 512 pores, the data stream is of 15,360 bp per second, i.e., 55 Mbp per
hour, i.e., 2.64 Gbp in 48h [47]. Therefore, considering the best-performing
SoCs, i.e., the XeonD and Avoton, 9 and 13 boards respectively are needed
in order to achieve real time computations. Many more boards would be
required for real-time computations using different SoCs, e.g. J4205.

However, while its computing performances are overall superior, the XeonD
SoC is by far the most power-hungry of the considered SoCs. This means
that it cannot be battery-powered (although it can be probably powered by
solar panels) and a box containing 9 mini-ITX motherboards (15 cm size
each) would resemble the size of a shoebox. This approach can be used in
scenarios where timeliness is extremely important.

If time is not a problem, computations can be performed using a flash
storage to temporary store data. In this scenario a single XeonD or Avoton
SoC can support the throughput of a single day analysis and the whole
system can be battery-powered. This configuration is more than enough for
monitoring the bacterial composition of cultivated soils and animal samples
for keeping a set point in the microbioma composition.

On the other hand, the less power-hungry architectures represent a suit-
able solution when real-time computations are not mandatory, since the other
SoCs, and in particular the Pentium processors, are available on the market
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in remarkably smaller form factors, e.g., as small as credit cards, and can be
battery powered.

6. Conclusions and Future Directions

Metagenomic studies are becoming increasingly widespread, yielding im-
portant insights into microbial communities covering diverse environments
from terrestrial and aquatic ecosystems. With the advent of high-throughput
sequencing platforms, the use of large scale shotgun sequencing approaches
is now commonplace.

While portable sequencing machine can be used for monitoring bacterial
communities on the field, also in remote regions of the world, their actual
exploitation is partially impaired by the need of always-on network connec-
tions for heavy data streaming. We presented a system based on the Fog
computing paradigm representing an effective solution to fully exploit the
huge potentiality of these devices.

In particular, experimental results show how System-on-Chip low-power
devices can be used to analyse the data stream of the Oxford Nanopore
Minion, both in real-time or in predefined time intervals, accordingly to the
requirements of the considered scenario, by using local storage capabilities.
Our experience discusses also energy consumption requirements.

We plan to extend this work to manage a dynamic scenarios. For exam-
ple, if dangerous bacteria are identified in an air filter, the analysis can be
performed more frequently. In this case, we will analyse the trade-off between
putting more computational capabilities on the local device and transferring
more data to the Cloud infrastructure.
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