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Abstract

It has recently been discovered that single neuron stimulation can impact network dynamics in immature and adult
neuronal circuits. Here we report a novel mechanism which can explain in neuronal circuits, at an early stage of
development, the peculiar role played by a few specific neurons in promoting/arresting the population activity. For this
purpose, we consider a standard neuronal network model, with short-term synaptic plasticity, whose population activity is
characterized by bursting behavior. The addition of developmentally inspired constraints and correlations in the distribution
of the neuronal connectivities and excitabilities leads to the emergence of functional hub neurons, whose stimulation/
deletion is critical for the network activity. Functional hubs form a clique, where a precise sequential activation of the
neurons is essential to ignite collective events without any need for a specific topological architecture. Unsupervised time-
lagged firings of supra-threshold cells, in connection with coordinated entrainments of near-threshold neurons, are the key
ingredients to orchestrate population activity.
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Introduction

There is increasing experimental evidence that single neuron

firing can impact brain circuits dynamics [1]. It has been shown

that a single pyramidal cell can trigger whisker deflection [2], drive

sensory perception [3] and modify brain states [4]. Similarly, a

single GABAergic hub cell can affect collective activity within the

developing hippocampal circuitries [5]. In vivo cortical studies

have shown that a single extra action potential (AP) can generate a

few dozens extra spikes in its postsynaptic targets [6]. Further-

more, a burst of APs, evoked in a pyramidal cell, can propagate

through the network activating locally a high fraction of

Somatostatine GABAergic cells (a subset of inhibitory neurons)

and a few excitatory cells [7]. The capability of single neurons to

evoke sparse [6] and network-wide neuronal events [1,4,5] in

brain circuits can be interpreted within the framework of the single

neuron doctrine, firstly postulated on sensorial perception by

Barlow in 1972 [8]. According to this doctrine, the spiking of a

single neuron in a network has a high functional relevance being

able to code very specifically for high level features of abstraction

such as concepts. Face selective cells [9] are a typical example of

sparse object representation in the brain and of putative

grandmother cells [10]. The sensitivity of neuronal networks to

small perturbations, such as those introduced by the firing of a

single cell, can also find an explanation within the self-organized

criticality (SOC) framework [11]. In the last decade, SOC has

widely been proposed as the mechanism underlying power law

distributions, with characteristic exponents, featuring the size and

duration of population events. These distributions have been

measured in-vivo and in-vitro experiments on neuronal networks

from invertebrates, rodents, monkeys and humans [12–15]. The

hypothesis underlying the SOC interpretation is that neuronal

networks self-organize into a critical state where responses, over

temporal and spatial scales of any size (the so-called ‘‘avalanches’’),

can be triggered by small perturbations. Despite the theoretical

frameworks above introduced, one of the main open question is

how and why only specific neurons can affect the global network

dynamics as observed in [2–5]. Two main approaches can be

foreseen: a ‘‘structural-functional’’ approach [16–20], where the

specific topology of the network and the connectivity pattern of the

cells are responsible for the relevance of the single neuron or a

‘‘dynamical’’ approach, where the single neuron becomes relevant

due to the nonlinear evolution of neuronal excitability and

synaptic connectivity in the network [21,22].

A recent computational study on the synchronization properties

of a specific neural circuit [23], has pointed out that the level of

burst synchrony is a function of both the network topology and the

intrinsic dynamics of peculiar neurons, which have a central
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location in the network graph. This led the authors to conclude

that in realistic neuronal systems the choice of a specific topology is

not sufficient to induce an unequivocal dynamical behavior in

network activity. To further deepen the comprehension of the

interplay among cell excitability and synaptic connectivity in

promoting network burst synchrony, in this paper we study the

effect of single neurons perturbations on the collective dynamics of

a network of leaky-integrate-and-fire neurons with short-term

synaptic-plasticity [24]. The relevance of these network models for

neuroscience have been demonstrated in many contexts ranging

from the modelization of working memory [25] to the possibility to

perform computation by ensemble synchronization [26]. Although

these models have extensively been studied for their capability to

generate spontaneous population bursting, little is known about

the influence of single cell perturbations on their global dynamics

[24].

In order to analyze the population dynamics in a neural circuit

at the initial stage of its development, when both mature and

young cells are simultaneously present, we consider a random

diluted network presenting developmentally inspired correlations

between neuronal excitability and connectivity. The presence of

these correlations can render the network sensitive to single

neuron perturbation of a few peculiar neurons. The coherent

activity of the network can be even arrested by removing or

stimulating any of these neurons, which are functional hubs

arranged in a clique regulating the neuronal bursting. We show

that the level of available synaptic resources influences the

reciprocal firing times of the synaptically connected neurons of

the clique. However, the fundamental mechanism responsible for

the burst triggering relies on an unsupervised process leading to a

precise firing sequence between the neurons which are not

structurally connected. Furthermore, frequency locking of the

same neurons led, counter-intuitively, to anti-resonances [27,28],

inducing reduced bursting activity or even complete silence in the

circuit. Notably, although obtained in a developmentally regulated

framework, these results can also be extended to a more general

context where the effective connectivity and excitability of the

neurons are dynamically regulated by the different states of brain

processing.

Results

In this paper we intend to mimic an immature neuronal

network frozen at a certain stage of its initial development, similar

to the one examined in the experimental work on developmental

hippocampal circuits [5] which inspired this work. At early

postnatal stages, the main features characterizing such networks

are the excitatory action of GABAergic transmission (which is

instead the most common inhibitory source in mature circuits) and

the presence of synchronized network events, as largely docu-

mented in central and peripheral nervous circuits [29]. According

to that, we consider a network model composed of only excitatory

neurons and displaying bursting activity.

In particular, we considered a directed random network made

of N leaky-integrate-and-fire (LIF) neurons [30,31] interacting via

excitatory synapses and regulated by short-term-synaptic-plasticity

(see Methods for more details), similarly to the model introduced

by Tsodyks-Uziel-Markram (TUM) [24]. As previously shown in

[24,26,32], these networks exhibit a dynamical behavior charac-

terized by an alternance of short periods of quasi-synchronous

firing (population bursts, PBs) and long time intervals of

asynchronous firing. Notably, the presence of short-term-synap-

tic-plasticity is the crucial ingredient to observe PBs, even without

an inhibitory population [24,26,32]. Therefore, the TUM model

with excitatory synapses can be considered as a minimal model to

mimic the experimentally described stereotypical/characteristic

condition of developing neuronal networks [33].

Furthermore, in developing networks, both mature and young

neurons are present at the same time, and this feature is reflected

in the variability of the structural connectivities and of the intrinsic

excitabilities. Experimental observations indicate that younger

cells have a more pronounced excitability [34,35], while mature

cells exhibit a higher number of synaptic inputs [5,36]. Thus

suggesting that the number of afferent and efferent synaptic

connections [5,36,37] as well as their level of hyperpolarization

[38] are positively correlated with the maturation stage of the cells.

The gradient of excitability - with younger neurons more excitable

than older ones - could be explained by a gradient in the excitatory

action of GABAergic transmission, i.e. older neurons receive a less

depolarizing action by GABAergic input [33].

The presence at the same time of younger and older neurons

can be modeled by considering correlations among the in-degree

and out-degree of each cell as well as among their intrinsic

excitability and connectivity. In particular, in the attempt to find

the network organization which is more sensitive to single neuron

perturbations, we compare the dynamics of networks where none,

one or more of the following correlations have been embedded (for

more details see Methods and Supplementary Information):

N setup T1: positive correlation between the in-degree and out-

degree of each neuron;

N setup T2: negative correlation between the intrinsic neuronal

excitability and the total connectivity (in-degree plus out-

degree);

N setup T3: positive correlation between the intrinsic neuronal

excitability and the total connectivity (in-degree plus out-

degree).

Correlated networks with all possible combinations of the setups

T1-T3 have been examined. However, the paper is mainly

devoted to the comparison of the properties of the network with

Author Summary

To which extent a single neuron can influence brain
circuits/networks dynamics? Why only a few neurons
display such a strong power? These open questions are
inspired by recent experimental observations in develop-
ing and adult neuronal circuits, as well as by classical
debates within the framework of the single neuron
doctrine. In this work we identify and present a mecha-
nism which can explain in neuronal circuits, at some early
stage of their development, how and why only a few
specific neurons can exhibit such power. For this purpose,
we consider a standard neuronal network model whose
population activity is characterized by bursting behavior.
The introduction of a distribution of correlated neuronal
excitabilities and degrees, inspired by the simultaneous
presence of younger and older neurons in the network,
leads to the emergence of functional hub neurons. These
critical cells, whenever perturbed, are capable of suppress-
ing network synchronization. Notably, we show that their
strong influence on the population dynamics is not related
to their structural properties, but to their operational and
structural integration into a clique. These results highlight
how network-wide effects can be induced by single
neurons without any need for a specific topological
architecture.

Clique of Functional Hubs Orchestrates Neural Bursting
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correlations of type T1 and T2 (as displayed in Fig. S1) with the

completely uncorrelated one, which is a directed Erdös-Rényi

graph (see Figs. S3A, S3B). In order to test the possible influence of

hub neurons on the network dynamics, also few structural hubs

have been added to the network whenever correlations of type T1

were embedded (see Methods and Fig. S1 for more details).

It is important to stress that correlations of type T1 and T2 have

a justification on the fact that we consider networks at their

developmental stage, as explained above. Furthermore, the

correlation of type T2 can also represent a homeostatic regulation

of the neuronal firing to cope with different levels of synaptic

inputs [39].

For clarity reasons, the paper will mainly deal with a specific

realization of a network, made of N~100 neurons and embedding

correlations of type T1 and T2. However, we have verified the

validity of our findings in other five realizations of the network with

correlations T1 and T2: four for N~100 (examined in Text S2) and

one corresponding to N~200 (discussed in details in Text S3).

Single neuron stimulation/deletion impacts population
bursting in developmentally correlated networks

In the developing hippocampus it has been shown how the

stimulation of specific single neurons can drastically reduce the

frequency of the PBs [5,16]. These neurons have been identified as

hub cells for their high degree of functional, effective, and

structural connectivity [40]. Stimulation consisted of phasic or

tonic current injection capable of inducing sustained high firing

regime of the stimulated neuron over a period of a few minutes.

Based on this experimental observations, we tested the impact of

prolonged single neuron stimulation (SNS) on the occurrence of

PBs on our network model. SNS was obtained by adding abruptly

a DC current term to the considered neuron. For illustrative

purpose, we report in Fig. 1 A–B the stimulation protocol for a

specific neuron capable of suppressing the occurrence of PBs for all

the duration of the SNS (in this case limited to 12 s). During the

current stimulation the neuron fired with a frequency of ^36 Hz

well above the average (6+5 Hz) and the maximal (24 Hz) firing

rate of the neurons in the network under control conditions (see

the bottom panel in Fig. 1 C).

The stimulation process was completely reversible and after the

end of the SNS both the firing rate of the cell and the PBs frequency

returned to the pre-stimulation control level. In order to evaluate

the impact of single neuron perturbation on the collective dynamics,

we considered the variation of PB frequency relative to control

conditions (i.e. in absence of any stimulation). In Figs. 1 C,D the

impact of a single neuron stimulation on the PBs frequency is

reported for a classical Erdös-Rényi network (no correlations) and a

network with embedded correlations T1 plus T2. Please notice that

the neurons in Figs. 1C–D are ordered according to their average

firing rate n under control conditions, which covered the interval

½0:03; 24:80� Hz. The comparison of panels C and D in Fig. 1

clearly shows that the correlated network is much more sensitive to

single neuron stimulation. In fact, the SNS was able, for three

neurons, to suppress the occurrence of PBs during their stimulation,

while for approximately another half dozen of neurons the PBs were

halved with respect to control conditions. The three most critical

neurons c1, c2 and c3 were characterized, before stimulation, by

firing frequencies larger than 3.3 Hz, and they lay among the top

33% fastest spiking neurons. On the contrary, in a network where

no correlations were present, the SNS had only extremely marginal

influence on the population activity (see Fig. 1D), although the

firing rate distributions in the correlated and uncorrelated network

were extremely similar (under control conditions) as shown in the

bottom panels of Fig. 1 C and D.

In [24] it was shown that the elimination of a pool of neurons

from an uncorrelated network encompassing short-term synaptic

plasticity caused a strong reduction of the population bursts. In this

work we repeated such numerical experiment with single cell

resolution, i.e. we considered the influence of single neuron
deletion, SND, on the neuronal response of the network (results

reported in Fig. 2). For the network with correlations T1 plus T2,

in four cases the SND led to the complete disappearance of PBs

within the examined time interval, while for five other neurons

their individual removal led to a decrease of the order of

^30{40% in the frequency of occurrence of the PBs (Fig. 2 A).

Three among these four critical neurons (namely, c1, c2 and c3)

were also responsible for silencing the network during the SNS

experiment performed with a stimulation current Istim~15:90
mV, as shown in Fig. 1C and Fig. 2 A. The same SNS experiment

on the fourth critical neuron, labeled c0, reduced the PB frequency

of about 40% with respect to control conditions (Fig. 1C).

However, as we will show in the following, a SNS experiment

performed on c0 with a different injected current can also lead to a

complete silence in the network. Notably, in analogy with the

SNS, also this additional critical neuron c0 impacting the PB

occurrence under SND lays among the top 33% fastest spiking

neurons. Differently from SNS, the removal of neurons with lower

frequencies had almost no impact on the network dynamics. For

uncorrelated networks the effect of SND was almost negligible,

inducing a maximal variation in the bursting activity of the order

of 10–15% with respect to the activity under control conditions

(see Fig. S3C).

Other correlation setups. We have also analyzed the

response to SNS and SND experiments in networks embedding

all the possible combinations of the correlations setups T1-T3. In

particular, we considered networks with positive correlation

between structural in-degree (KI ) and out-degree (KO) (setup T1

shown in Figs. S4A, S4B), with negative correlation between

excitability Ib and total connectivity KT (setup T2 shown in Figs.

S5A, S5B), with only positive correlation between Ib and KT

(setup T3 shown in Figs. S6A, S6B) and finally combining positive

correlations between KI and KO and Ib and KT (setups T1 plus

T3 shown in Figs. S7A, S7B).

As we are looking for strong impacts on the network dynamics,

we identified the network as ‘‘sensitive’’ to SND (or SNS)

whenever the PBs frequency was altered more than 90% with

respect to the corresponding PB activity in control conditions.

Therefore, we considered as significative only the modifications of

the activity which were well beyond the statistical fluctuations in

the population bursting, shown by the shaded gray area in panels

C and D in Figs. S4, S5, S6, and S7.

In all the examined cases, despite the fact that the firing

frequencies distributions were quite similar to the ones measured

in the correlated network embedding setups T1 and T2, we did

not observe significant modifications of the bursting activity by

performing SNS and SND experiments on any neuron of the

network (see panels C and D in Figs. S4,S5,S6,S7). The situation

where SNS and SND had a larger effect on the network activity

was for the correlations of type T2. In that specific case we

observed that SND on 2 neurons (lying among the top 33%

fastest spiking neurons, namely nw5 Hz) halved the bursting

frequency of the network, and SNS on one of these 2 neurons had

a similar effect. In all the other cases the PB activity was never

perturbed more than 20–30%. Only the simultaneous presence of

type T1 and type T2 correlations noticeably enhanced the

sensitivity to SNS and SND, leading to the possibility to silence

the network.

Clique of Functional Hubs Orchestrates Neural Bursting
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Structural and functional properties of the network
In order to gain some insight into the mechanisms underlying

the reported response of the network, with correlations of type T1
plus T2, to SNS and SND experiments, we analyzed the structural

and functional connectivity of the network in relation to the

intrinsic excitability of the neurons. Functional connectivity (FC)

analysis [41] was aimed at revealing time-lagged firing correlations

between neuronal pairs, similarly to what described in [5] for the

developing hippocampus. In particular, for every possible pairs of

neurons (i, j) we cross-correlated their spike time series, with the

exclusion of the spikes occurring within bursts, for which only the

timestamp of the first spike was kept (see Methods). A functional

connection directed from i to j was established whenever the

activation of i reliably preceded the activation of j and viceversa

Figure 1. Single neuron stimulation (SNS) can stop population bursting activity in presence of type T1 plus T2 correlations. A sketch
of a SNS experiment for a network with type T1 plus T2 correlations is reported in (A) and (B): the neuron c3 is stimulated with a DC step for a time
interval Dt~t2{t1 (as shown by the red line on the top panel). Average firing rate of neuron c3 (A) and network activity (B) as measured during the
experiment. (C) and (D) refer to correlated and uncorrelated networks, respectively. Upper panels display the number of population bursts, PBs,
delivered during SNS experiments versus the stimulated neuron, ordered accordingly to their average firing rates n under control conditions (bottom

panels). Each neuron i was stimulated with a DC step (switching its excitability from Ib
i to I stim) for an interval Dt~84 s. The critical neurons are

signaled by red circles. The number of PBs, emitted in control conditions within an interval Dt~84 s, are also displayed: red dashed lines indicate their
averages, while the shaded gray areas correspond to three standard deviations. The data refer to Istim~15:90 mV and N~100 neurons.
doi:10.1371/journal.pcbi.1003823.g001

Figure 2. Comparison between single neuron stimulation (SNS) and deletion (SND) in a network with correlations of type T1 plus
T2. (A) Number of PBs emitted during SND experiments versus the label of the removed neuron. (B) Functional and structural properties of the
network, as measured in control conditions, i.e. in absence of any stimulation/manipulation of the neurons. From top to bottom: functional out-

degree D0 , intrinsic excitability Ib , and total structural connectivity KT . The red dashed line and the gray shaded area in (A) as well as the neuron
labels are as in Fig. 1 C, the blue dashed line denotes Vth~15 mV. (C) Comparison between SNS and SND: the number of PBs occurring during SNS

(resp. SND) is reported as a function of D0 , Ib and KT . In all panels the green (red) circles mark the critical neurons, which under SND (SNS) can silence
the bursting activity of the network. The bursting activity is recorded over an interval Dt~84 s.
doi:10.1371/journal.pcbi.1003823.g002

Clique of Functional Hubs Orchestrates Neural Bursting
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(see Methods). For each cell i, we calculated the functional out-

degree (in-degree) DO
i (DI

i ), i.e. the number of cells which were

reliably activated after (before) its firing.

As shown in the top panel of Fig. 2B, the four critical neurons,

c0–c3, identified during the SNS and SND experiments, have very

high functional out-degree, namely 83ƒDO
i ƒ90. In particular,

three of them (c0, c1 and c2) are ranked among the first four

neurons with the highest functional out-degree. Therefore the

critical neurons are reliably preceding the activation of most of the

other neurons in the network. In addition, neurons c0 and c2 were

supra-threshold (Ib
wVth, see Methods) and therefore firing

tonically even if isolated from the network, while neuron c1 was

at threshold and c3 below it (as shown in the central panel of

Fig. 2B).

In contrast to their high functional out-degree, critical neurons

were characterized by a low structural degree KT (total number of

afferent and efferent connections), namely KT
v16 with respect to

an average value 23+13, as shown in the bottom panel of Fig. 2B.

This result was a direct consequence of the anti-correlation

imposed between total degree and excitability and this represented

a crucial aspect for the emergence of the critical neurons.

In Fig. 2 C we report the results of SNS (SND) experiments as a

function of D0, Ib and KT of the stimulated (removed) neurons.

The experiments on the neurons with high KT (the structural

hubs, shown in Fig. S1 A and S1 B) influenced marginally the

network bursting, apart for the single neuron stimulation of the

two principal hubs which led to a moderate increase of the activity

(see the bottom panels in Fig. 2 C). However SND on the same

neurons had no significant effect. On the other hand, neurons with

high functional out-degree D0 (functional hubs) were quite

relevant to sustain the collective dynamics. The removal of

neurons with low D0 (including the structural hubs) seemed almost

not affecting the bursting properties of the network. Altogether,

apart the stressed differences, the SNS and SND experiments

appeared to give quite similar results.

The generality of these findings have been tested by performing

SNS/SND experiments on other five different realizations of the

network with embedded correlations of type T1 and T2, in all

cases a small subset of neurons resulted to be critical in the sense

discussed above (for more details see Text S2 and S3).

Network response during SNS: Dependence on the
injected current

In order to further clarify the impact of varying the intrinsic

excitability of single neurons on the network bursting activity, we

have performed extensive analysis of the network response under

SNS experiments for a wide range of stimulation currents, namely

I stim[½14:7; 18:0� mV. In panels A and B of Fig. 3 it is summarized

the impact on the bursting activity of the SNS for networks with

type T1 and T2 correlations and without any correlations. SNS

had really a minimal effect on the uncorrelated network: in this

case the number of emitted PBs varied only up to a 20% with

respect to control conditions. On the contrary, for the correlated

network, SNS was able to silence the network over a wide range of

currents when c1, c2 and c3 were stimulated. For the other

neurons, SNS with high stimulation currents could also have the

effect of promoting an increase of PBs up to 130–140% with

respect to control conditions. In particular, an increase in the PB

activity has been observed consistently for two structural hubs,

whenever they are brought above the firing threshold, as shown in

Fig. S1 C, and for other two neurons directly connected to these

hubs. This behaviour is expected for an excitatory network

without correlations, where the neurons with higher out-degree

have usually the highest impact on the network [19]. However, the

removal of each of these four neurons from the network did not

influence the PB activity, furthermore they were passively

recruited during bursting events.These results had an explanation

in the fact that in control conditions the structural hubs were well

below threshold, due to the anti-correlation between total degree

and excitability, while by increasing the stimulation on these hubs

we violated such constraint.

As shown in panels D, E, F of Fig. 3, for neurons c1, c2, and c3

the bursting activity survived only in narrow stimulation windows

located around, or just above the firing threshold value. A current

variation DIb^0:1{0:3 mV was, for these three neurons,

sufficient to silence the network. The stimulation of the neuron

c0, the one critical for SND but not for SNS (when I stim~15:90
mV), revealed the existence of very narrow anti-resonance
windows (i.e. minima in the number of emitted PBs), as shown

in Fig. 3 C. For very specific intrinsic excitability this neuron could

effectively silence the network, but for generic excitation its

influence on PBs activity was limited. The anti-resonances

occurred (for Ib
w15:30 mV) at almost regular intervals: initially

of width ^0:2 mV and, at larger intrinsic excitability, of width

^0:4 mV. This point will be further discussed and clarified in

Sect. Time Orchestration.

The functional clique
The results reported above suggest that the four critical neurons

c0,c1,c2,c3, identified in the network with correlations T1 plus T2

should have a key role in the onset of the collective bursting.

Therefore, we focused our analysis on the PB build up, i.e. we

examined the events occurring in a time window of 25 ms

preceding the peak of synchronous activation (for more details see

Methods). In particular, we quantified how many times each single

neuron participated in the build up of a PB. As we have verified,

for the correlated network all the bursts were preceded by the

firing of the four critical neurons, while in absence of correlations

there was no neuron capable of reliably preceding every burst

activation. The cross correlations between the timing of the first

spike emitted by each critical neuron during the PB build up (see

Methods) are shown in Fig. 4 A (blue histograms). This analysis

revealed a precise temporal sequence in the neuronal activation,

respectively c0?c1?c2?c3, as shown also for a few representa-

tive bursts in Fig. 5 A,B (therefore the labeling assigned to these

neurons). Interestingly, the same neurons did not show this precise

temporal activation out of the PBs, as revealed by the red

histograms in Fig. 4 A (see also Methods). Furthermore, the time

sequence of the firing events of the critical neurons during the

build up of the PB was quite well determined: c0 anticipated the

firing of c1 of 3:94+0:5 ms, c1 anticipated c2 of 9:6+3:3 ms and

c2 anticipated c3 of 3:3+1:0 ms. During the inter-burst periods we

observed clear time lagged correlations only for the pair c0?c1,

presenting a direct synaptic connection, and in a weaker manner

also for the pair c2?c3. On the basis of the reported data, we can

safely affirm that the critical neurons form a functional clique
responsible for the onset of the PBs.

The role of plasticity
As clarified in [24], the bursting activity was due to the short-

term-synaptic depression. In particular PB emission could be

related to the evolution of the fraction of synaptic resources in the

recovered state, characterized by the variable X IN
i (X OUT

i ),

averaged over the afferent (efferent) synapses of each neuron i
(see Methods). The authors in [24] have shown that the fraction of

synaptic resources, averaged over all the excitatory synapses, had a

Clique of Functional Hubs Orchestrates Neural Bursting
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Figure 3. Impact of single neuron stimulation on the population activity: dependence on the injected current. Color coded rates of
emission of PBs during SNS experiment performed on each single neuron for a range of injected DC currents Istim (y-axis) in networks with
correlations of type T1 plus T2 (A) and without any correlations (B). The neurons are ordered according to their functional out-degree rank (x-axis) and
the PB rates during SNS are normalized to the PB rate in control conditions. (C–F) Number of PBs emitted during SNS of the critical neurons c0 ,c1 ,c2 , c3

versus the stimulation current Istim . The red arrows indicate Istim employed for the SNS experiments in Fig. 1 C. The blue vertical dashed lines mark
the value of the intrinsic excitability and the horizontal magenta solid line the bursting activity of the network, both measured at rest. The number of
PBs are measured over a time interval Dt~ 84 s.
doi:10.1371/journal.pcbi.1003823.g003

Figure 4. The functional clique. (A) Cross correlation functions C(t) between the spike trains of two critical neurons. tmax has been measured as
the position of the maximum of the cross correlation between the time series of the two considered neurons. The panels refer to all the possible pair
combinations of the critical neurons, furthermore blue (red) histograms refer to the analysis performed during the population burst build up (during
periods out of the bursting activity). For more details see the subsection Functional Connectivity in Methods. The order of activation of each pair is
reported on the top of the corresponding panel, whenever the cross-correlation has a significant maximum at some finite time tmax. Note that during
the PB onset, neurons activate reliably in the following order c0?c1?c2?c3 . During the out-of-burst activity, clear time-lagged activations are
present only among the pairs c0-c1 and c2-c3 . (B) Structural connections among the four critical neurons: the black arrows denote the directed
connections. The data here reported, as well in all the following figures, refer to a network with correlations of type T1 plus T2.
doi:10.1371/journal.pcbi.1003823.g004
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deep minimum in correspondence of the burst event and then

slowly recovered its stationary value over a time scale dictated by

the average recovery time
{
TR. This means that the average

effective strength of the excitatory connections (measured by X IN
i

and X OUT
i ) was strongly depressed after a burst, and this inhibited

the prosecution of the bursting activity, which could restart only

when the strengths of the synapses would return to their stationary

values.

In this Section, we want to address the question whether the

variation of the effective strength of the synapses could be also

responsible for the silencing of the network (with correlations of

type T1 plus T2) during SNS experiments. So far we have clarified

that the removal of any of the four neurons in the functional clique

blocked the bursting activity, however it is not clear why a small

stimulation of c1,c2,c3 was capable also of blocking the PBs. As

reported in Fig. 6 A, B the stimulation of neuron c3 with a large

current Istim~15:9 mV (as in the experiment reported in Fig. 1

A,B) reduced noticeably X OUT
c3

, due to the high firing activity of

the stimulated neuron. Analogous results have been found for all

the other three critical neurons. For neurons c1, c2 and c3 this

stimulation blocked the bursting activity of the network, thus

inducing an almost complete recovery of the available resources of

the afferent synapses, measured by X IN (as shown in Fig. 6 A for

c3). These results could suggest that SNS and SND experiments

are indeed equivalent, since if the efferent synapses are extremely

depressed, this could correspond somehow to remove the neuron

from the network. However, SNS of neuron c0 did not lead

generically to the suppression of the bursting activity even if its

efferent synapses were similarly depressed (as shown in Fig. 3 C).

Furthermore, the synaptic depression could not explain the anti-

resonances in the bursting activity observed for SNS of c0 and c2

with different Istim. Since the time averaged synaptic strength,

SX OUTT, exhibited only a smooth decrease as a function of Istim

for all the four critical neurons (as well as for any generic neuron in

the network), as shown in Fig. 6 C.

Time orchestration
As already mentioned, the roles of the four neurons in the

functional clique of the network with type T1 and T2 correlations

were quite well established, and just a precise firing time sequence

could induce the population avalanche. To better understand the

role of each critical neuron, it is necessary to point out that, under

control conditions, the neurons c0 and c2 could fire even if isolated

(since Ib
c0

~15:07 mV and Ib
c2
~15:30 mV were larger than Vth),

c1 was at threshold (Ib
c1
~14:99 mV) and c3 was the only neuron

below threshold (Ib
c3

~14:89 mV). This clearly explains, given the

existing synaptic connection from c0 to c1 (see Fig. 4 B), the reason

why c0 entrained c1, both during the burst build up as well as

during the inter-burst periods (see Fig. 4). Furthermore, from the

results of the SNS experiments performed on c1 and c3 (Panels D

and F in Fig. 3) one can observe that the network activity arrested

whenever Istim
wIb

c0
~15:07 mV for both these neurons (for

comparison, note that the range of Istim reported in panel C is

different from panel D,E and F). Therefore, whenever these two

neurons fired faster than the clique leader c0, the burst activity,

which should be triggered by a well determined sequence of

events, would be terminated. Thus we can conclude that c1 and c3

could only be the followers of the dynamics dictated by the two

supra-threshold neurons, and in particular by the leader c0.

As clearly shown in Fig. 7 A, exactly before a burst event (i.e. in

the PB build up phase) neuron c1 fired with a precise time lag after

neuron c0 (blue dashed line in the figure). However, the time lag

DTc1,c0
between the firing of c0 and c1 needed some time after

each bursting event to adjust to its pre-burst value. This could be

interpreted also as an effective refractory period needed to the pair

c0-c1 to recover the proper entrainment favorable to the burst

discharge. As shown in Fig. 7 A, the time evolution of the variable

X c1,c0
, which measured the effective strength of the synapse

connecting c0 to c1, is directly connected to the duration of the

time interval DTc1,c0
(or analogously to the effective refractory time

of the entrainment c0-c1). After a burst, X c1,c0
was noticeably

depressed (reaching almost zero) and it slowly recovered its

asymptotic value over a time scale dictated by TR
c1,c0

. Indeed X c1,c0

was strongly oscillating due to the firings of c0, however the

recovery of the pre-burst condition can be assessed by considering

its extreme values (minima and maxima) both slowly increasing

after the burst. The recover of the effective synaptic strength was

associated to the adjustment of DTc1,c0
to the value taken during

the build up of a PB. From Fig. 7 A, it is also evident that the

fulfillment of this condition was not sufficient to induce another

PB, since the PB could occur even a long time after the favorable

pre-burst value was reached by DTc1,c0
.

Similar behaviors had been observed also for the synapse

connecting c2 to c3, although the firing of neuron c2 alone was not

sufficient to bring c3 above threshold and therefore to initiate the

PB. Indeed, the activation of c3, whose firing was fundamental to

trigger the avalanche, was more complex. From a structural point

of view, the neuron c3 received inputs directly from c1 and c2,

while there were no synaptic connections between c1 and c2 (see

Fig. 4 B). The entrained firing of the pair c0{c1 followed by the

firing of c2, within a precise time window, was required to induce

c3 to emit a spike and therefore a PB. This can be clearly

appreciated from Fig. 7 B and C. In particular, in Fig. 7 B is

reported a situation where c2 fired at the right time after c0, but c1

has fired too late to start an avalanche in the network (as

previously explained the firing of c1 was not yet entrained to that

Figure 5. The critical neurons precede the population bursts in
a network with correlations of type T1 plus T2. (A) Raster plot of
the network activity: every dot denotes a firing event. The dashed green
lines and black dots refer to the four critical neurons. (B) Enlargement of
a representative population burst: PBs are anticipated by the ordered
firing sequence c0?c1?c2?c3 . For clarity reasons, in the raster plots, at
variance with all the other figures, the neuronal labels are not ordered
accordingly to their firing rates.
doi:10.1371/journal.pcbi.1003823.g005
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of c0). Much more common is the situation reported in Fig. 7 C,

where c1 fired essentially always at the same time after c0, but

instead the time delayDTc2,c0
in the firing of c2 was extremely

variable ranging from an almost coincidence with c0 to a delay of

100 ms. The PB could occur only when c2 fired in a precise time

window following the activation of c0. Once noticed that the most

part of the PB failures are due to c2 and in a first attempt to

understand the emergence of bursts in the network, we can focus

only on the firing times of neuron c0 and c2.

To get a deeper insight on this issue, let us consider the anti-

resonances (corresponding to minima in the PB activity) observed

during the SNS experiments performed on c0 (see Fig. 3 C). To

interpret such minima we examined the firing periods T0 and T2

of the neuron c0 and c2 once isolated from the network. For the

LIF model [30] these are simply given by T0~tm ln½(I stim{Vr)=

(I stim{Vth)� and T2~tm ln½(Ib
c2
{Vr)=(Ib

c2
{Vth)�, where I stim is

the stimulation current acting on c0 and Ib
c2

the intrinsic

excitability of c2. As shown in Table 1 the PB minima were

associated to rational ratios of these periods. This amounts to exact

frequency locking of the firing of the two neurons [42], whenever

this occurs the bursting activity is depressed or even suppressed.

This because the build up of a burst relies on a precise temporal

mismatch between the firing of neuron c0 and c2, which, in the

case of exact locking, can be achieved quite rarely or even never.

Therefore, given the absence of any structural connection among

these two neurons, the clique functionality relied on unsupervised

coordinated firing of c0 and c2.

In order to confirm this hypothesis, we developed a simple

model to reproduce the results of the SNS experiment on c0. In

particular, we assumed that c0 and c2 could be considered as two

independently spiking neurons with their own firing periods

determined by the stimulation current Istim for c0 and by the

intrinsic excitability for c2. Furthermore, we assumed that a PB is

emitted with a certain probability (related to the synaptic

depression induced by the stimulation) whenever c0 and c2 fired

in the correct order and with a prescribed time delay (for more

details see Methods). The results are reported in Fig. 8 and in the

Table 1, the agreement is quite surprising due to the limited

ingredients employed in the model. Furthermore, the fact that

more than the 60% of the ‘‘anti-resonances’’ as well as the level of

the PB activity were reproduced was a clear indication that the

simple ingredients at the basis of the model represented the main

mechanisms behind the PB build up process in this network. These

mechanisms could be summarized as follows: the functional clique

can be assumed to be composed of two structurally connected

pairs c0{c1 and c2{c3, where c0 and c2 fired tonically and

independently one from the other. Any spike emission of c0

induced a firing of c1, however to recruit c3 and therefore to

initiate the PB, also c2 should deliver a spike, with the right time

delay after c1. Therefore, if c0 and c2 fired with periods which

were rational multiples one of the other it was unlikely to build up

the PB. Since the synchronism among the two neurons did not

allow c1 to participate to the build up of the PB. The spike

delivered by c1 is fundamental to lead c3 above threshold and to

trigger the avalanche, but it should be emitted at the right

moment, as clearly shown in Fig. 7 B and C.

Discussion

The aim of the present work was to identify neuronal network

arrangements sensitive to single neuron perturbations, such as those

induced by single neuron stimulation or deletion (or forced silencing).

We choose as a benchmark model a random network of excitatory

LIF neurons, connected via depressive synapses regulated by the

TUM mechanism [24]. Such networks displayed spontaneous

bursting activity also in absence of inhibition, as extensively

described in the literature [24,26,32,43]. The choice of random

topology was aimed at revealing the role of developmentally

regulated neuronal excitability and connectivity gradients [5,35–

38], rather than specific topological configurations, in rendering

network organization sensitive to single neuron perturbations.

The introduction of a positive correlation between in- and out-

degree (T1) and a negative correlation between intrinsic neuronal

Figure 6. Effective synaptic strength during single neuron current stimulation. Average synaptic strength of the afferent (A), and efferent
(B) connections of the critical neuron c3 during SNS with Istim~15:90 mV (these data corresponds to the experiment reported in Fig. 1). The output

(input) effective synaptic strength is measured in terms of the average value of the fraction X OUT
c3

(X IN
c3

) of the synaptic transmitters in the recovered

state associated to the efferent (afferent) synapses (see Methods). (C) Time averaged synaptic strengths SX OUT T as measured during SNS
experiments performed on each of the four critical neurons for various stimulation currents I stim. The legend clarifies to which neuron corresponds
the average synaptic strengths displayed in the figure, the averages have been performed over 84 s.
doi:10.1371/journal.pcbi.1003823.g006
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excitability and total degree (T2), besides being justified from a

developmental point of view, favors also the stabilization of the

network activity. This because, as pointed out in [19], in an

excitatory network the sensitivity to fluctuations is mainly due to

cells with a high out-degree. Therefore, to avoid that their

activation during spontaneous activity can cause network desta-

bilization, a possible strategy is to impose an anti-correlation

between their level of excitability and their degree, as done in the

present work, or between in- and out-degree as shown in [19].

Furthermore, when correlations T1 and T2 were embedded in the

network, single neuron deletion/stimulation of a few peculiar

neurons strongly impacted the frequency of occurrence of

population bursts. Most critical neurons, i.e. those capable of

silencing the network when deleted or stimulated, shared common

features: they constantly/reliably participated in the PB build up

(i.e. they were functional hubs) and they had a quite low structural

degree. These functional hubs formed a clique, where their precise

ordered temporal activation was necessary for the burst genera-

tion. In the specific case here described, the clique was composed

by two synaptically connected pairs, each composed of one neuron

above and one below threshold. The burst could be triggered only

when the first three neurons operated at precise time lags and the

last neuron of the clique (which is just below threshold) was led to

fire.

Each population burst caused the depletion of the synaptic

resources, therefore another PB could occur only when the

synaptic resources would be recovered, thus inducing an effective

refractory time between two successive PBs. However, this is only

Figure 7. (A) Synapse strength and firing time delay between the neurons c0 and c1. Time evolution of the effective synaptic strength
X c1,c0

(red solid line and right y-axis) and of the firing time delay DTc1,c0
(black line with dots and left y-axis). (B),(C) Failures and successes in

population burst ignition. Spike time delay DTc1,c0
(top panel) and DTc2,c0

(bottom panel) of neuron c1 and c2, respectively, referred to the last
firing time of c0 . Panels (B) and (C) clearly show that PBs (denoted by green vertical lines) can occur only when the neuron c1 and c2 fire within precise
time windows after the firing of neuron c0 . In (B) a clear failure is indicated by red circles, in this case c2 fired at the right time, but c1 was too slow; in
(C) neuron c1 fires at the right moment several times (black dots are within the gray shaded area in the top panel), but the avalanche is not initiated
until c2 does not emit a spike within a precise time interval after the firing of c0 . In all the figures, the data refer to control conditions. The blue
horizontal dashed lines refer to the average value of DTc2,c0

or DTc1,c0
at the PB onset, while the shaded gray areas indicate the corresponding

standard deviations.
doi:10.1371/journal.pcbi.1003823.g007
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a necessary, but not sufficient condition for PB triggering. The key

element responsible for generating PBs was the unsupervised

occurrence of a precise sequence of firing times of the two supra-

threshold critical neurons, i.e. not mediated by any structural

synaptic connection. On the other hand, the mode locking of the

firing frequencies of these two neurons was instead responsible for

anti-resonances associated to a drastic reduction of the PBs. For

random networks, i.e. with no correlations, or embedding just one

of the correlations of type T1, T2, T3 or the combination of type

T1 and T3, we did not find any evidence of functional cliques and

the mechanisms of network synchronization were much more

robust and immune from single neuron perturbations (see

Supplementary Information).

The activity of random uncorrelated networks has been

previously examined in [24], in particular the authors have shown

that the elimination of a pool of neurons (namely, 30 neurons,

corresponding to the ^8% of the excitatory population) led to the

interruption of the bursting activity. The PBs were suppressed

whenever the removed pool was composed by neurons with an

intermediate firing rate (^ 1:3{2:5 Hz). These neurons were

responsible for triggering the avalanches in the network, due to

their effectively strong excitatory synapses and to their proximity

to the firing threshold. From these findings, it is clear that in an

uncorrelated network the PBs emerge due to a cooperative effect

involving a large portion of neurons. On the contrary, the

introduction of correlations of type T1 and T2 induces single

neuron sensitivity as discussed in this paper.

Furthermore, our results show that the integration into a clique

is the key element that can enable single neurons to impact the

population dynamics, without any further topological require-

ments for the network architecture. The functional hubs forming

and operating within the clique, are actively involved in generating

network synchronizations and, as a consequence, capable to

impact the network dynamics when stimulated. Therefore, without

necessarily being structural or effective hubs, i.e. capable to cause a

direct influence on the activity of many other nodes [40,44], they

operate as operational hubs accordingly to the definition recently

introduced in [45]. Similarly to the hub cells in the developing

hippocampus whose stimulation was capable to drastically reduce

the frequency of spontaneous network synchronization [5], the

critical neurons presented in this paper have a very high functional

connectivity and several of them are close to the firing threshold.

At variance with hippocampal hubs, critical neurons do not

have a high structural degree. This is a consequence of the

correlation imposed on the network where the excitability of the

neurons is anti-correlated to the total structural degree of the cells.

Indeed, in the correlated network studied in this work, the

orchestration of the neuronal activity relies on the coordinated

firing of a few critical ‘‘young’’ neurons (i.e. with a low structural

Table 1. Anti-resonances observed during SNS of c0.

I stim (mV) T0=T2 I stim (mV) (Model)

15.04 2 15.04

15.09 8/5 -

15.31 1 15.30

15.48 4/5 15.53

15.66 2/3 15.65

15.88 0.565 -

16.05 1/2 16.03

16.44 2/5 16.43

16.84 1/3 16.83

17.28 0.282 -

17.73 1/4 17.65

The first column reports the stimulation currents Istim for which pronounced minima (anti-resonances) are observed in the stimulated PB activity during SNS experiment
on c0 (same data as in Fig. 3 C and red curve in Fig. 8), the second column the corresponding T0=T2 ratios. T0 and T2 are the firing periods of the LIF neurons c0 and c2

in isolation, namely, T0~tm ln½(Istim{Vr)=(Istim{Vth)� and T2~tm ln½(Ib
c2

{Vr)=(Ib
c2

{Vth)�. The third column refers to the anti-resonances generated by employing

the simple model for SNS of c0 introduced in the Methods (same data as the black curve in Fig. 8). The reported values correspond to the minima in the PB activity for
this model, the absence of a value means that the model did not display a corresponding minimum. The data refer to SNS experiments performed over a time interval of
duration 84 s.
doi:10.1371/journal.pcbi.1003823.t001

Figure 8. Model based reconstruction of the SNS experiment
for the critical neuron c0. Number of emitted PBs as a function of the

stimulation current I stim applied to the neuron c0 . The red line with dots
refers to the results of the SNS experiment on c0 (same curve as in Fig. 3
C) and the black line to the estimations obtained by measuring the PB
occurrence with the simple model for SNS, described in the Methods.
The measurement were performed in both cases over a time interval
Dt~84 s.
doi:10.1371/journal.pcbi.1003823.g008
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degree) mediated by their inter-connections. However, in real

biological developing networks, it is possible that a further

developmental connectivity regulation is fulfilled, with the chance

of finding synaptic connections in a pair of young cells much lower

compared to a pair composed of a young and a mature cells. This

would be also in line to the rich gets richer rule which can generate

scale-free networks [46]. In such case, the orchestration between

unconnected young neurons would require the presence of a

structural connector or hub, i.e. a more developed neuron,

capable to receive and promptly activate in the presence of a few

synchronized inputs. Therefore, our study supports the hypothesis

that, in developmentally constrained networks, PBs are triggered

by a precise time activation of a few around threshold oscillators.

This is indeed the case of neurons c1 and c3, which are

fundamental for the ignition of the neuronal avalanche, but they

need to be activated by a precise firing sequence involving c0 and

c2. This evidence is even more striking in the example discussed in

Text S3 for N~200 neurons, where the functional clique is

composed of a small group of neurons all just below threshold,

apart the leader who activates the neurons in cascade leading to

the burst.

We have verified that the main ingredients required to observe

strong sensitivity to single neuron stimulation and deletion are,

besides the presence of the correlations of type T1 and T2, a small

number of neurons supra-threshold as well as a strongly diluted

network. This can find an explanation in the fact that by increasing

the degree of the neurons as well as the number of neurons supra-

threshold the network dynamics becomes more cooperative.

Furthermore, the synaptic time scales seem not to be crucial for

the emergence of single neuron sensitivity (for more details see the

subsection Dependence on the Model Parameters in Methods).

Although presented within a developmental framework, our

results can also have elements of interest in the wider context of

brain processing. In fact, in this work we show that the

introduction of an excitability gradient in the network can lead

to the emergence of functional cliques capable to shape the

neuronal population activity. Indeed, different brain states could

dynamically modulate the level of excitability or the gain function

of the neurons within a circuit (as clearly discussed in [47]) and in

this way instantaneously induce the emergence of functional

cliques. Furthermore, functional chains of neural activation have

been reported also in the different framework of feed-forward

networks [48,49]. In this context, in Ref.[20] the authors found

that structural hubs (i.e. highly connected neurons) have a peculiar

role in promoting the signal transmission across sequences of non-

hub sub-networks.

The previously discussed anti-resonance effect leading to the

silence of the bursting activity resembles recent results reported in

literature [28], where the authors have shown that abnormally

synchronous neuronal populations can be desynchronized by

administrating stimulations at resonant frequencies to an ensemble

of spiking neurons. In that context, the desynchronization of the

neuronal activity can be achieved by delivering a periodic

stimulation at few sites, with a period which was an integer

multiple of the fundamental period of the synchronized system.

This is in striking contrast with what usually observed for a

resonant forcing of a population of coupled oscillators [50,51].

Our results, revealing population desynchronization associated to

anti-resonances at the level of single neuron frequencies, are even

more intriguing. On one side these findings suggest the possibility

of extremely non-invasive procedures to treat pathological

neuronal synchronization, which is associated to several neuro-

logical disorders [52,53]. On the other side they reveal the

potentiality of a brain circuit able to adapt to external stimuli on

the basis of unsupervised mechanisms, which can switch the

network activity from coherent to incoherent.

The numerical results here presented predict a primary role for

supra-threshold and near-threshold cells capable to impact

network synchronizations when organized into functional clique.

Probing the existence of such cliques, whose emergence could be

also dynamically regulated by varying the gradient of excitability

in the circuits [47], is experimentally challenging, but surely

feasible in in-vitro biological preparations. Cultured networks

allow for an easier access and probing of the circuits [36,54], while

representing a general model of unsupervised (or self-organized)

spontaneous network synchronization in circuits under develop-

ment, analogously to what observed in central and peripheral

brain circuits [55,56]. In these circuits high functionally connected

neurons (mostly activated at the build up of bursting) and highly

active (i.e. supra-threshold) neurons could be identified by using

both multi-electrode recordings and/or calcium imaging [54,57].

Furthermore, by manipulating the frequency of firing of such cells

through multi-site optical or electrical stimulation [21,36] it is

possible both to disrupt the sequential activation necessary for

triggering network synchronizations (as displayed in Figs. 5 and 4)

and to test the anti-resonance effects, as described in Fig. 8 and

Table 1.

In this work, we considered a deterministic model of short term

synaptic depression based on a trial-averaged representation. In

recent papers, the stochastic processes involved in vesicle release

and synaptic recovery time have been also taken into account to

model short-term synaptic depression [58-60]. In particular, in

Ref. [59] the authors compare deterministic and stochastic model

for short-term plasticity. They found that for supra-threshold

neurons the two setups give essentially the same behavior, while

for sub-threshold neurons, whose spiking activity is fluctuation

driven, the results of the deterministic and stochastic models

essentially coincide for low frequencies (up to ^ 10 Hz). In our

study the functional hubs are found to be or supra-threshold or to

have a relatively low firing rate (see bottom panel in Fig. 1 C).

Therefore we expect that the implementation of stochastic short-

term plasticity would not affect qualitatively our main findings, but

further investigations are required to fully clarify this issue.

Methods

To study the response of bursting neural networks to single

neuron stimulation and removal, we employed the Tsodyks-Uziel-

Markram (TUM) model [24]. Despite being sufficiently simple to

allow for extensive numerical simulations and theoretical analysis,

this model has been fruitfully utilized in neuroscience to interpret

several phenomena [25,26,32]. We have considered such a model,

restricted to excitatory synapses, to somehow mimic the dynamics

of developing brain circuitries, which is characterized by coherent

bursting activities, such as giant depolarizing potentials [5,29].

These coherent oscillations emerge, instead of abnormal synchro-

nization, despite the fact that the GABA transmitter has essentially

an excitatory effect on immature neurons [61]. The model uses

leaky-integrate-and-fire (LIF) neurons with excitatory synapses

displaying short-term synaptic depression [24] arranged in a

directed random network. It should be stressed that we do not

consider a network under topological development, which is

typically characterized by a dynamical evolution (addition/

deletion) of the links among the neurons.

The model
In this paper we consider a network of N excitatory LIF neurons,

interacting via synaptic currents regulated by short-term-plasticity

Clique of Functional Hubs Orchestrates Neural Bursting
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according to the model introduced in [24]. The time evolution of

the membrane potential Vi of each neuron reads as

tm
_VVi~{VizI

syn
i zIb

i ð1Þ

where tm is the membrane time constant, I
syn
i is the synaptic current

received by neuron i from all its presynaptic inputs and Ib
i

represents its level of intrinsic excitability. The membrane input

resistance is incorporated into the currents, which therefore are

measured in voltage units (mV).

Whenever the membrane potential Vi(t) reaches the threshold

value Vth, it is reset to V r, and a spike is sent towards the

postsynaptic neurons. For the sake of simplicity the spike is

assumed to be a d–like function of time. Accordingly, the spike-

train Sj(t) produced by neuron j, is defined as,

Sj(t)~
X

m

d(t{tj(m)), ð2Þ

where tj(m) represent the m-th spike time emission of neuron j.

The transmission of the spike train Sj to the efferent neurons is

mediated by the synaptic evolution. In particular, by following

[62] the state of the synaptic connection between the j-th
presynaptic neuron and the i-th postsynaptic neuron is described

by three adimensional variables, X ij , Y ij , and Zij , which represent

the fractions of synaptic transmitters in the recovered, active, and

inactive state, respectively and which are linked by the constraint

X ijzY ijzZij~1. The evolution equations for these variables

read as

_YY ij~{
Y ij

TI
ij

zuijX ijSj ð3Þ

_ZZij~
Y ij

TI
ij

{
Zij

TR
ij

: ð4Þ

Only the active transmitters react to the incoming spikes Sj : the

adimensional parameters uij tune their effectiveness. Moreover,

fTI
ijg represent the characteristic decay times of the postsynaptic

current, while fTR
ij g are the recovery times from synaptic

depression.

Finally, the synaptic current is expressed as the sum of all the

active transmitters (post-synaptic currents) delivered to neuron i

I
syn
i ~

Gi

KI
i

X

j=i

EijY ij , ð5Þ

where Gi is the coupling strength, while Eij is the connectivity

matrix whose entries are set equal to 1 (0) if the presynaptic neuron

j is connected to (disconnected from) the postsynaptic neuron i. At

variance with [24], we assume that the coupling strengths are the

same for all the synapses afferent to a certain neuron i. We have

verified that this simplification does not alter the main dynamical

features of the TUM model under control conditions.

In this paper we study the case of excitatory coupling between

neurons, i.e. Giw0. Moreover, we consider a diluted network

made of N~100 neurons where the i-th neuron has KI
i (KO

i )

afferent (efferent) synaptic connections distributed as in a directed

Erdös-Rényi graph with average in-degree
{
KI~10, as a matter of

fact also the average out-degree was
{
K0~10. The sum appearing

in (5) is normalized by the input degree KI
i to ensure homeostatic

synaptic inputs [39,63].

The propensity of neuron i to transmit (receive) a spike can be

measured in terms of the average value of the fraction of the

synaptic transmitters X OUT
i (X IN

i ) in the recovered state associated

to its efferent (afferent) synapses, namely

X OUT
i ~

1

KO
i

X

k=i

EkiX ki, X IN
i ~

1

KI
i

X

j=i

EijX ij : ð6Þ

The intrinsic excitabilities of the single neurons fIb
i g are

randomly chosen from a flat distribution of width 0.45 mV

centered around the value Vth~15 mV, with the constraint that

10% of neurons are above threshold. This requirement was

needed to obtain bursting behavior in the network. This choice

ensures under control conditions that the distribution of the single

neuron firing rates is in the range ½0:03; 25� Hz.

For the other parameters, we use the following set of values:

tm~30 ms, Vr~13:5 mV, Vth~15 mV. The synaptic parameters

fTI
ijg, fTR

ij g, fuijg and fGig are Gaussian distributed with

averages TI~3 ms, TR~800 ms, �uu~0:5 and G~45 mV,

respectively, and with standard deviation equal to the half of the

average. These parameter values are analogous to the ones

employed in [24] and have a phenomenological origin.

Correlations
Furthermore, we have considered networks where correlations

of type T1, T2 or T3 are embedded. Correlation T1 is obtained by

generating randomly two pools of N{4 input and output degrees

from an Erdös-Rényi distribution with average degree equal to 10.

The degrees are ordered within each pool and then assigned to

N{4 neurons in order to obtain a positive correlation between

KO
i and KI

i . Finally, four hubs with total degree KT
w50 are

added to this N{4 neurons. The final total degree distribution is

shown in Fig. S1B.

Correlation of type T2 (T3) imposes a negative (positive)

correlation between excitability Ib
i and the total degree of the

single neuron KT
i ~KI

i zKO
i . To generate this kind of correlation

the intrinsic excitabilities are randomly generated, as explained

above, and then assigned to the various neurons accordingly to

their total connectivities KT
i , thus to ensure an inverse (direct)

correlation between Ib
i and KT

i . Correlations of type T2 (T3) are

visualized in Fig. S1 A and Fig. S6 A.

Numerical integration of the model
In order to have an accurate and fast integration scheme, we

transformed the set of ordinary differential equations (1), (3) and (4)

into an event–driven map [64] ruling the evolution of the network

from a spike emission to the next one (see Text S1 for more details

on the implementation of the event–driven map). It is worth to

stress that the event–driven formulation is an exact rewriting of the

dynamical evolution and that it does not involve any approxima-

tion.

Population bursts
In order to identify a population burst we have binned the

spiking activity of the network in time windows of 10 ms. A

population burst is identified whenever the spike count involves

more than 25% of the neural population. In order to study the PB

Clique of Functional Hubs Orchestrates Neural Bursting
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build up, a higher temporal resolution was needed and the spiking

activity was binned in time windows of 1 ms. The peak of the

activation was used as time origin (or center of the PB) and it was

characterized by more than 5% of the neurons firing within a 1 ms

bin. The time window of 25 ms preceding the peak of the PB was

considered as the build up period for the burst. In particular, the

threshold crossing times have been defined via a simple linear

interpolation based on the spike counts measured in successive

time bins.

These PB definitions gave consistent results for all the studied

properties of the network. The employed burst detection

procedure did not depend significantly on the precise choice of

the threshold, since during the inter-burst periods (lasting

hundreds of milliseconds) only 10–15% of neurons were typically

firing, while more than 80% of the neuronal population

contributed to the bursting event (lasting ^30 ms).

The average interburst interval for the network with (without)

correlations under control conditions was 586+183 ms (208+74
ms) for a network made of N~100 neurons, while the burst

duration was 27+3 ms. Doubling the number of neurons in the

correlated network did not affect particularly neither the average

interburst, which became ^500 ms, nor the burst duration (^24
ms). For a more detailed discussion of the dynamics of this larger

network see the Text S3.

Dependence on the model parameters
In this subsection, we summarize the crucial ingredients needed

to observe strong sensitivity to SNS/SND. In particular, we have

checked, for different model parameters, when SNS/SND

experiments were still able to noticeably modify the PB activity

(i.e. more than 90% with respect to control conditions). Firstly, we

considered the sparseness of the network, the reported results refer

to a diluted network with a probability of 10% to have a link

among two neurons. We have observed that the results of the

SNS/SND experiments strongly depend on the level of dilution,

however they can still be effective up to a connection probability of

50%. Another crucial aspect was the small number of neurons

supra-threshold, in the studied case this number corresponded to

the 10% of the neurons. By varying this percentage up to 20% we

still observed that the network can be silenced by single neuron

stimulation/removal. Furthermore, the dependence on the system

size seemed not be crucial, since as described in Text S3 by

doubling the system size a functional clique can still be identified.

We also tested the influence of the synaptic time constants on

the population sensitivity to SND/SNS. As a matter of fact, the

time scale ruling the depletion of the neurotransmitter TI affects

the duration of the PB, while the recovery time from the synaptic

depression TR influences the intervals between consecutive PBs

[24]. By varying TI within the interval ½1:5; 4:5� ms, while keeping

fixed the ratio with TR, we do not observe substantial

modifications on the network dynamics. Furthermore we found

strong response to SNS and SND, leading to the population

silence for several stimulated neurons, both for faster and slower

synaptic time scale than the one actually employed in the studied

example. However, it should be noticed that by increasing T I to

extremely large values (namely, TI
w20{30 ms) this destroys the

bursting behaviour in the network, which is then substituted by an

asynchronous activity [43].

Functional connectivity
In order to highlight statistically significant time-lagged

activations of neurons, for every possible neuronal pair we

measured the cross-correlation between their spike time series.

On the basis of this cross-correlation we eventually assign a

directed functional connection among the two considered neurons,

similarly to what reported in [5,54] for calcium imaging studies.

Let us explain how we proceeded in more details. For every

neuron, the action potentials timestamps were first converted into

a binary time series with one millisecond time resolution, where

ones (zeros) marked the occurrence (absence) of the action

potentials. Given the binary time series of two neurons a and b,

the cross correlation was then calculated as follows:

Cab(t)~

PT{t
t~t atztbt

min(
PT

i~1 ai,
PT

k~1 bk)
ð7Þ

where fatg,fbtg represented the considered time series and T was

their total duration. Whenever Cab(t) presented a maximum at

some finite time value tmax a functional connection was assigned

between the two neurons: for tmaxv0 (tmaxw0) directed from a to

b (from b to a). A directed functional connection cannot be defined

for an uniform cross-correlation corresponding to uncorrelated

neurons or for synchronous firing of the two neurons associated to

a Gaussian Cab(t) centered at zero. To exclude the possibility that

the cross correlation could be described by a Gaussian with zero

mean or by a uniform distribution we employed both the Student’s

t-test and the Kolmogorov-Smirnov test with a level of confidence

of 5%. The functional out-degree DO
i (in-degree DI

i ) of a neuron i
corresponded to the number of neurons which were reliably

activated after (before) its firing.

Time series surrogates. In order to treat as an unique event

multiple spike emissions occurring within a PB, different time

series surrogates were defined for different kind of analysis

according to the following procedures:

1. for the definition of the functional in-degree DI
i and out-degree

DO
i , all the spiking events associated to an inter-spike interval

longer than 35 ms were considered. Since we observed that this

was the minimal duration of an inter-spike outside a PB and it

was larger than the average duration of the PBs. This implies

that for each neuron only the timestamp of the first spike within

a PB was kept;

2. for the description of the PBs build up only the timestamps of

the first action potential emitted within a window of 25 ms

preceding the PB peak was taken into account;

3. for the analysis of the network activity during inter-burst

periods, all action potentials emitted out of the PBs were

considered.

A simple model for SNS
The model here reported has been developed to reproduce the

network response during the SNS experiments on c0 for a range of

stimulation current I stim, which is displayed in Fig. 3 C. To mimic

this activity, we only considered the dynamics of the two neurons

of the clique c0 and c2 which were supra-threshold. In particular,

we assumed that these two neurons fired tonically and indepen-

dently as they would be two isolated LIF neurons (oscillators) [30].

Therefore, as a first step we generated two regular spike trains, one

for c0 and one for c2 with constant inter-spike time intervals

T0~tm ln½(Istim{Vr)=(Istim{Vth)� and T2~tm ln½(Ib
c2
{Vr)=

(Ib
c2
{Vth)�, respectively. Successively, by examining the two spike

trains, we assumed that a PB in the network could occur whenever

the neuron c2 fired after c0 with a certain time delay tD.

Clique of Functional Hubs Orchestrates Neural Bursting
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Furthermore, we also assumed that the PB emission was a

probabilistic event with a finite probability P~P(I stim). P is

simply given by the average efferent synaptic strength SX OUT
c0

T
measured during the SNS experiment on c0 suitably rescaled

in order to get probability one for Istim~Vth. This probability

has been introduced to mimic the decrease of the effective

synaptic strength induced by the increasing stimulation, as shown

in Fig. 6 C.

In summary, for each stimulation current Istim we considered

the sequence of the firing times of c0 and c2 and we registered the

occurrence of a PB whenever the two following conditions were

both fulfilled

N c2 fired after c0 within a time window ½tD{sD; tDzsD�,
where tD~14 ms is the average time delay DTc2,c0

measured

immediately before a population burst and sD~4 ms is its

standard deviation, both measured in control conditions;

N a random number r extracted by a flat random distribution

with support ½0 : 1� was smaller than P(I stim).

Furthermore, each time a PB was registered, for the subsequent

27+3 ms (corresponding to the duration of a PB under control

conditions) no further PB could be counted. The results of this

simple model are reported in Fig. 8 and Table 1 together with the

numerical results obtained by the simulation of the network

activity.

Supporting Information

Figure S1 Network of N~100 neurons with negative

correlation between Ib and KT and positive correlation

between KI and KO (Setup T1 plus T2). (A) Negative

correlation between intrinsic excitability Ib and total connectivity

KT . The blue dashed line indicates the threshold value Vth~15

mV. (B) Positive correlation between the in-degree KI and the out-

degree KO. All the parameter values are defined as in Methods.

The red arrows signal the neurons with the highest degrees h1, h2,

h3. (C) Number of PBs emitted during SNS of the neurons h1, h2,

h3 versus the stimulation current Istim. The blue vertical dashed

lines mark the value of the intrinsic excitability in control

condition, while the magenta horizontal solid lines indicate

average number of emitted bursts under control conditions and

the shaded grey area denote the amplitude of the fluctuations

(measured as three standard deviations). The number of PBs are

measured in all reported experiments over a time interval Dt~
84 s.

(EPS)

Figure S2 Network of N~200 neurons with negative

correlation between Ib and KT and positive correlation

between KI and KO (Setup T1 plus T2). (A), (B) Number of

PBs emitted in a time window Dt~84 s during single neuron

deletion (SND) experiments (A) and single neuron stimulation

(SNS) experiments (B) with I stim~15:45 mV. The horizontal

dashed lines refer to the average number of PBs emitted in a time

interval Dt~84 s during a control experiment when no

stimulation is applied (the amplitude of the fluctuations is smaller

than the symbols). Neurons are ordered accordingly to their

average firing rates n as measured during control condition (data

shown in panel (C)). In the figure the green (red) circles mark the

critical neurons b0, b1, b2, which under SND (SNS) can strongly

affect the bursting activity of the network. (D) Impact on the

network dynamics due to SNS of the critical neurons b0, b1, b2

with various stimulation currents in the interval Istim[½14:5 : 16:0�
mV. The blue vertical dashed lines and the magenta horizontal

solid lines mark, resp., the value of the intrinsic excitability and the

bursting activity of the network during control conditions. The

number of PBs are measured over a time interval Dt~ 84 s. (E)

Color coded rates of emission of PBs during SNS experiment

performed for a range of injected DC currents Istim (y-axis). The

PB rates during SNS are normalized to the PB rate in resting

conditions. Neurons are ordered according to their functional out-

degree rank (x-axis). The number of PBs are measured over a time

interval Dt~84 s. (F) Raster plot of the network activity: every dot

denotes a firing event. The (green) dashed lines and (black) dots

refer to the critical neurons. (G) Enlargement of a representative

population burst: PBs are anticipated by the ordered firing

sequence b0?b1?b2. For clarity reasons, in the raster plots, at

variance with all the other figures, the neuronal labels are not

ordered accordingly to their firing rates.

(EPS)

Figure S3 Network of N~100 without any correlation.

(A) Distribution of the intrinsic excitabilities Ib versus the

corresponding total degrees KT . (B) Distribution of the in-degrees

KI versus out-degrees KO for each neuron in the network. (C)

Number of population bursts, PBs, computed over the time

interval Dt = 84 s in simulations where neurons are one by one

removed by the network (SND). The horizontal dashed line refers

to the average number of PBs emitted within the same time

interval during the control experiment, while the shaded grey area

around the line denotes the amplitude of the fluctuations

(measured as three standard deviations). Here and in the following

figures the data refer to N~100 and all the parameter values are

reported in Methods.

(EPS)

Figure S4 Network with positive correlation between in-
degree and out-degree (Setup T1). (A) Distribution of the

intrinsic excitabilities Ib versus the corresponding total degrees

KT . (B) Distribution of the in-degrees KI versus out-degrees KO

for each neuron in the network. (C) Number of population bursts,

PBs, measured during SND experiments where neurons are one

by one taken out from the network. (D) PBs emitted during SNS

with a stimulation current Istim~15:9 mV.(E) Single neuron

frequencies n measured in a control experiment. In (C) and (D) the

horizontal dashed lines and the shaded grey areas around the lines

have the same meaning as in Fig. S2. All the reported data have

been measured over a time window Dt = 84 s.

(EPS)

Figure S5 Network with anticorrelation between intrin-
sic excitability and total degree (Setup T2). (A) Distribution

of the intrinsic excitabilities Ib versus the corresponding total

degrees KT . (B) Distribution of the in-degrees KI versus out-

degrees KO for each neuron in the network. (C) Number of

population bursts, PBs, measured during SND experiments where

neurons are one by one removed from the network. (D) PBs

emitted during SNS with a stimulation current Istim~15:9 mV.

(E) Single neuron frequencies n as measured during the control

experiment. In (C) and (D) the horizontal dashed lines and the

shaded grey areas around the lines have the same meaning as in

Fig. S2. All the reported data have been measured over a time

window Dt = 84 s.

(EPS)

Figure S6 Network with positive correlation between
excitability and total degree (Setup T3). (A) Distribution of

Clique of Functional Hubs Orchestrates Neural Bursting
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the intrinsic excitabilities Ib versus the corresponding total degrees

KT . (B) Distribution of the in-degrees KI versus out-degrees KO

for each neuron in the network. (C) Number of population bursts,

PBs, emitted during SND experiments where neurons are

removed from the network one by one. (D) PBs emitted during

SNS with a stimulation current Istim~15:9 mV. (E) Single neuron

frequencies n measured during a control experiment. In (C) and

(D) the horizontal dashed lines and the shaded grey areas around

the lines have the same meaning as in Fig. S2. All the reported

data have been measured over a time window Dt = 84 s.

(EPS)

Figure S7 Network with positive correlation between
intrinsic excitability and total degree and positive
correlation between in-degree and out-degree (Setup

T1 plus T3). (A) Distribution of the intrinsic excitabilities Ib

versus the corresponding total degrees KT . (B) Distribution of the

in-degrees KI versus out-degrees KO for each neuron in the

network. (C) Number of population bursts, PBs, measured during

SND experiments where neurons are one by one removed from

the network. (D) PBs emitted during SNS with a stimulation

current Istim~15:9 mV. (E) Single neuron frequencies n measured

in control conditions. In (C) and (D) the horizontal dashed lines

and the shaded grey areas around the lines have the same meaning

as in Fig. S2. All the reported data have been measured over a

time window Dt = 84 s.

(EPS)

Text S1 Event driven map.

(PDF)

Text S2 Dependence on different network realizations.

(PDF)

Text S3 Dependence on the network size.

(PDF)
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