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Abstract

In geometry processing and shape analysis, several applications have been addressed through the properties of the spectral
kernels and distances, such as commute-time, biharmonic, diffusion, and wave distances. Our survey is intended to provide
a background on the properties, discretization, computation, and main applications of the Laplace-Beltrami operator, the as-
sociated differential equations (e.g., harmonic equation, Laplacian eigenproblem, diffusion and wave equations), Laplacian
spectral kernels and distances (e.g., commute-time, biharmonic, wave, diffusion distances). While previous work has been fo-
cused mainly on specific applications of the aforementioned topics on surface meshes, we propose a general approach that
allows us to review Laplacian kernels and distances on surfaces and volumes, and for any choice of the Laplacian weights. All
the reviewed numerical schemes for the computation of the Laplacian spectral kernels and distances are discussed in terms of
robustness, approximation accuracy, and computational cost, thus supporting the reader in the selection of the most appropriate
method with respect to shape representation, computational resources, and target application.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Numerical Analysis]: Approximation/Image Generation—
Special function approximations I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling/Curve, surface,
solid, and object representations—I.3.6 [Computer Graphics]: Methodology and Techniques—

Keywords: Laplace-Beltrami operator, Laplacian spectrum, harmonic equation, Laplacian eigenmproblem, heat equation,
diffusion geometry, Laplacian spectral distance and kernels, spectral geometry processing, shape analysis, numerical analysis.

1. Introduction

In geometry processing and shape analysis, several applications
have been addressed through the properties of the spectral ker-
nels and distances, such as commute-time, biharmonic, diffu-
sion, and wave distances. Spectral distances are easily defined
through a filtering of the Laplacian eigenpairs and include ran-
dom walks [FPS05, RS13], heat diffusion [BBK⇤10, BBOG11,
CL06, GBAL09, LKC06, LSW09], biharmonic [LRF10, Rus11b],
and wave kernel [BB11a,ASC11] distances. Laplacian spectral dis-
tances have been applied to shape segmentation [dGGV08] and
comparison [BBOG11,GBAL09,Mem09,OMMG10,SOG09] with
multi-scale and isometry-invariant signatures [DRW10, LKC06,
MS05, Mem11, RBBK10, Rus07, MS09]. In fact, they are intrinsic
to the input shape, invariant to isometries, multi-scale, and robust
to noise and tessellation. Biharmonic [LRF10, Rus11b] distances
provide a trade-off between a nearly geodesic behavior for small
distances and the encoding of global surface properties for large
distances, thus guaranteeing an intrinsic and multi-scale character-
ization of the input shape. The heat kernel [BBG94] is also central
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in diffusion geometry [BN03, CL06, GK06, Sin06], dimensional-
ity reduction with spectral embeddings [BN03, XHW10], and data
classification [SK03]. As main applications, we mention the multi-
scale approximation of functions [PF10] and gradients [LSW09],
shape segmentation and comparison through heat kernel shape de-
scriptors, auto-diffusion functions, and diffusion distances. The dif-
fusion kernel and distance also play a central role in several ap-
plications, such as dimensionality reduction with spectral embed-
dings [BN03, XHW10]; data visualization [BN03, HAvL05, RS00,
TSL00], representation [CWS03, SK03, ZGL03], and classifica-
tion [NJW01, SM00, ST07].

STAR topics and contributions Our survey is intended to provide
a common background on the definition and computation of Lapla-
cian spectral kernels and distances for geometry processing and
shape analysis. All the reviewed numerical schemes are discussed
and compared in terms of robustness, approximation accuracy, and
computational cost, thus supporting the reader in the selection of
the most appropriate with respect to shape representation, computa-
tional resources, and target application. Indeed, our review is com-
plementary to previous work, which has been focused mainly on
specific applications, such as mesh filtering [Tau99], surface coding
and spectral partitioning [KG00], 3D shape deformation based on
differential coordinates [Sor06], spectral methods [ZvKD07] and
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Laplacian eigenfunctions [Lev06] for geometry processing and dif-
fusion shape analysis [BCA12].

Firstly, we define a unified representation of the isotropic and
anisotropic discrete Laplacian on surfaces and volumes (Sect. 2);
then, we introduce the associated differential equations. For the har-
monic equation (Sect. 3) and the Laplacian eigenproblem (Sect. 4),
we focus on the stability and accuracy of numerical solvers, also
presenting their main applications. This discussion provides the
background for a detailed analysis of the heat equation (Sect. 5)
and allows us to identify the main limitations (e.g., computational
cost, storage overhead, selection of user-defined parameters) of pre-
vious work on the approximation of the diffusion distances, which
is based mainly on the evaluation of the Laplacian spectrum and
on linear approximations of the exponential matrix. For the heat
equation, we discuss the selection of the time scale and the main
approaches for the computation of the solution to the heat equa-
tion, such as linear, polynomial, and rational approximations.

Filtering the Laplacian spectrum, we introduce the Laplacian
spectral distances (Sect. 6), which generalize the commute-time,
biharmonic, diffusion and wave distances, and their discretization
in terms of the Laplacian spectrum. The growing interest on these
distances is motivated by their capability of encoding local geomet-
ric properties (e.g., Gaussian curvature, geodesic distance) of the
input shape, their intrinsic and multi-scale definition with respect
to the input shape, their invariance to isometries, shape-awareness,
robustness to noise and tessellation. While previous work has been
focused mainly on surfaces discretized as triangle meshes, we in-
troduce a unified representation of the spectral distances and ker-
nels, which is independent of the selected Laplacian weights, of
the surface or volume representation as polygonal mesh, point set,
tetrahedral or voxel grid. From this general representation, we show
that the main properties of the spectral distances are guided mainly
by the filter that is applied to the Laplacian eigenpairs.

The expensive cost for the computation of the Laplacian spec-
trum and the sensitiveness of multiple Laplacian eigenvalues to sur-
face discretization generally preclude an accurate evaluation of the
spectral kernels and distances on large data sets. To discuss these
problems, we review and compare different methods for the nu-
merical evaluation of the spectral distances and kernels. In partic-
ular, we detail their spectrum-free computation, which is defined
through a polynomial or rational approximation of the filter func-
tion. The resulting computational scheme only requires the solution
of sparse linear systems, is not affected by the Gibbs phenomenon,
is independent of the representation of the input domain, the se-
lected Laplacian weights, and the evaluation of the Laplacian spec-
trum.

As main applications (Sect. 7), we detail the Laplacian smooth-
ing and the definition of basis functions for geometry processing
and shape analysis. Finally (Sect. 8), we conclude our review with
a discussion of open questions and challenges. †

† Additional material is available at http://pers.ge.imati.cnr.
it/patane/EG2016-STAR/EG2016-STAR.html.

(a) (b) (c)

Figure 1: Neighbor and Laplacian stencil for a (a) point set, (b)
triangle and (c) tetrahedral mesh.

2. Laplace-Beltrami operator and related equations

We review the isotropic and anisotropic Laplace-Beltrami operators
and introduce a unified representation of the corresponding Lapla-
cians for surfaces and volumes. Additional results have been pre-
sented in [Sor06, Tau99, KG00, ZvKD07].

Let N be a smooth surface, possibly with boundary, equipped
with a Riemannian metric and let us consider the scalar product
h f ,gi2 :=

R
N f (p)g(p)dp defined on the space L

2(N ) of square
integrable functions on N and the corresponding norm k ·k2. Then,
the intrinsic smooth Laplace-Beltrami operator D :=�div(grad)
satisfies the following properties [Ros97]:

• self-adjointness: hD f ,gi2 = h f ,Dgi2, 8 f ,g;
• positive semi-definiteness: hD f , f i2 � 0, 8 f . In particular, the

Laplacian eigenvalues are positive;
• null eigenvalue: the smallest Laplacian eigenvalue is null and the

corresponding eigenfunction f, Df = 0, is constant;
• locality: the value D f (p) does not depend on f (q), for any cou-

ple of distinct points p, q;
• linear precision: if N is planar and f is linear, then D f = 0.

The anisotropic Laplace-Beltrami operator [ARAC14] is defined
as DD f = div(Dr f ), where D is a 2⇥2 matrix applied to vec-
tors belonging to the tangent plane and controls the direction
and strength of the deviation from the isotropic case. The ten-
sor D := diag(ja(km),ja(kM)) takes into account the directions
and the values km, kM of low and high curvature, where the filter
is ja(s) := (1+a|s|)�1, a > 0. As a ! 0, we get the isotropic
Laplace-Beltrami operator (i.e., D := I). The alternative defini-
tion [KTT13] of the anisotropic Laplace-Beltrami operator applies
a non-linear factor D(v), which modifies the magnitude of D(v)
without changing its direction.

We now introduce a unified representation of the Laplacian ma-
trix on surfaces and volumes, which is independent of the underly-
ing discretization.

Discrete Laplacians and spectral properties Let us consider a
(triangular, polygonal, volumetric) mesh M := (P ,T ), which dis-
cretizes a domain N , where P := {pi}

n
i=1 is the set of n vertices

and T is the connectivity graph (Fig. 1). On M, a piecewise linear
scalar function f : M! R is defined by linearly interpolating the
values f := ( f (pi))

n
i=1 of f at the vertices using barycentric coordi-

nates. For point sets, f is defined only at P and T is the k-nearest
neighbor graph.
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We represent the Laplace-Beltrami operator on surface and vol-
ume meshes in a unified way as L̃ := B

�1
L, where B is a sparse,

symmetric, positive definite matrix (mass matrix) and L is sparse,
symmetric, and positive semi-definite (stiffness matrix). We also
assume that the entries of B are positive and that the sum of each
row of L is null. In particular, we consider the B-scalar product
hf,giB := f

>
Bg and the induced norm kfk

2
B := f

>
Bf. Analogously

to the continuous case, the Laplacian matrix satisfies the following
properties.

• self-adjointness: L̃ is adjoint with respect to the B-scalar prod-
uct; i.e., hL̃f,giB = hf, L̃giB = f

>
Lg. If B := I, then this prop-

erty reduces to the symmetry of L;
• positive semi-definiteness: hL̃f, fiB = f

>
Lf � 0. In particular,

the Laplacian eigenvalues are positive;
• null eigenvalue: by construction, we have that L̃1 = 0;
• locality: since the weight w(i, j) is not null for each edge (i, j),

the value (L̃f)i depends only on the f -values at pi and its 1-star
neighbor N (i) := { j : (i, j) edge}.

For a detailed discussion of these properties with respect to the se-
lected Laplacian weights, we refer the reader to [WMKG07].

Laplacian matrix on graphs, triangle and polygonal meshes

Associating a set {w(i, j)}i, j of positive weights with the edges
(i, j) of T , the entries of the stiffness matrix are defined as
L(i, j) = Âk 6=i w(i,k)�w(i, j). The entries of the mass matrix B are
normalization coefficients that take into account the geometry of
the input domain.

On graphs [Chu97], the weights of the stiffness matrix are equal
to 1 for each edge and zero otherwise; each diagonal entry of the
mass matrix is equal to the valence of the corresponding node. On
triangle meshes, the stiffness matrix L and the mass matrix B of the
linear FEM Laplacian weights [RWP06, VL08] are defined as

L(i, j) :=

(
w(i, j) :=�

cot ai j+cot bi j
2 j 2 N(i),

�Âk2N(i) w(i,k) i = j,

B(i, j) :=

( |tr|+|ts|
12 j 2 N(i),

Âk2N(i)|tk|
6 i = j,

where N(i) is the 1-star of the vertex i; ai j, bi j are the angles oppo-
site to the edge (i, j) (Fig. 1b); tr, ts are the triangles that share the
edge (i, j); and |t| is the area of the triangle t. Lumping the mass
matrix B to the diagonal matrix D, D(i, i) = 1

3 Ât2N(i) |t|, whose
entries are the areas of the Voronoi regions, L̃ reduces to the Lapla-
cian matrix D

�1
L with Voronoi-cotangent weights [DMSB99],

which extend the cotangent weights introduced in [PP93] (B := I).
The mean-value weights [Flo03] have been derived from the mean
value theorem for harmonic functions and are always positive.
In [CLB⇤09], the weak formulation of the Laplacian eigenproblem
is achieved by selecting a set of volumetric test functions, which
are defined as k⇥ k⇥ k B-splines (e.g., k := 4) and restricted to the
input shape. For the anisotropic Laplacian [ARAC14], the entries
of L are a variant of the cotangent weights (i.e., with respect to dif-
ferent angles) and the entries of the diagonal mass matrix B are the
areas of the Voronoi regions.

While the Laplace-Beltrami operator depends only on the

Reimannian metric (intrinsic property), its discretization is gen-
erally affected by the quality of the input triangulation [She02,
HPW06]. For instance, two (simplicial) isometric surfaces with
two different triangulations are associated with two different Lapla-
cian matrices. According to [BS07], the cotangent weights are non-
negative if and only if the input triangulation is Delaunay and the
corresponding Laplacian matrix is more accurate than the one eval-
uated on the original mesh. We briefly recall [DZM07, LXH15,
LXFH15] that a triangulation of a piecewise flat surface is a De-
launay triangulation if and only if all its interior edges are locally
Delaunay (i.e., the sum of the angles opposite to an edge in the
adjacent triangles does not exceed p). Furthermore, the minimum
of the Dirichlet energy of a piecewise linear function, on all the
possible triangulations of a piecewise flat surface M, is attained
at the Delaunay triangulation of M and the corresponding discrete
Laplace-Beltrami operator is intrinsic to the input surface.

On polygonal meshes, the Laplacian discretization in [AW11,
HKA15] generalizes the Laplacian matrix with cotangent weights
to surface meshes with non-planar, non-convex faces. Finally, an
approximation of the Laplace-Beltrami operator with point-wise
convergence has been proposed in [BSW08].

Laplacian matrix for point sets In [BN03,BN06,BN08,BSW09],
the Laplace-Beltrami operator on a point set P has been discretized
as the Laplacian matrix

L(i, j) :=
1

nt(4pt)3/2

8
<

:
exp

⇣
�

kpi�p jk2
4t

⌘
i 6= j,

�Âk 6=i exp
⇣
�

kpi�pkk2
4t

⌘
i = j.

To guarantee the sparsity of the Laplacian matrix, for each point pi
we consider only the entries L(i, j) related to the points {p j} j2Npi
that are closest to pi with respect to the Euclidean distance. In this
case, we select either the k-nearest neighbor or the points that be-
long to a sphere centered at pi and with radius s. As described
in [DS05, MN03], the choice of s can be adapted to the local sam-
pling density e := k(ps2)�1 and the curvature of the surface un-
derlying P . The computation of the k- or s-nearest neighbor graph
takes O(n logn)-time [AMN⇤98,Ben75], where n is the number of
input points.

Starting from this approach, a new discretization [LPG12] has
been achieved through a finer approximation of the local geometry
of the surface at each point through its Voronoi cell. More precisely,
as t ! 0 the stiffness and mass matrix are defined as

L(i, j) :=

(
1

4pt2 exp
⇣
�

kpi�p jk2
2

4t

⌘
i 6= j,

�Â j 6=i L(i, j) i = j,
B(i, i) = vi,

and vi is the area of the Voronoi cell associated with the point pi.
The Voronoi cell of pi is approximated by projecting the points of a
neighbor of pi on the estimated tangent plane to M at pi. If B := I,
then this approximation reduces to the previous one and both ap-
proaches converge to the Laplace-Beltrami operator, as t ! 0+.

Laplacian matrix on volumes Representing the input domain as a
tetrahedral mesh [ACSYD05,LTDZ09,TLHD03], the entries of the
stiffness matrix are (Fig. 1c) L(i, j) := w(i, j) := 1

6 Ân
k=1 lk cotak

for each edge (i, j), L(i, i) :=�Â j2N(i) w(i, j), and zero otherwise;
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(a) (1,1,2) (b) (2,2,4) (c) (3,3,6)

Figure 2: Level sets and critical points (m,M,s) of harmonic func-
tions with (a) two, (b) four, and (c) six Dirichlet boundary con-
ditions. The insertion of new initial constraints locally affects the
resulting harmonic function.

the diagonal mass matrix B encodes the tetrahedral volume at each
vertex.

3. Harmonic functions

The harmonic function h : N ! R is the solution of the Laplace
equation Dh = 0 with Dirichlet boundary conditions h|S = h0,
S ⇢N . We recall that a harmonic function

• minimizes the Dirichlet energy E(h) :=
R
N krh(p)k2

2dp;
• satisfies the locality property; i.e., if p and q are two distinct

points, then Dh(p) is not affected by the value of h at q;
• verifies h(p) = (2pR)�1 R

G h(s)ds = (pR2)�1 R
B h(q)dq, where

B ✓N is a disc of center p, radius R, and boundary G (mean-
value theorem).

According to the maximum principle [Ros97], a harmonic func-
tion has no local extrema other than at constrained vertices.
In the case that all constrained minima are assigned the same
global minimum value and all constrained maxima are assigned
the same global maximum value, all the constraints will be ex-
trema in the resulting field. Harmonic and poly-harmonic (i.e.,
Dih = 0) functions have been applied to volumetric parameteriza-
tion [LGW⇤07, LXW⇤10], to the definition of shape descriptors
with pairs of surface points [ZTZX13] and coupled biharmonic
bases [KBB⇤13], to shape approximation [FW12] and deforma-
tion [JMD⇤07, JBPS14, WPG12].

Discrete harmonic functions The harmonic equation is approx-
imated at the vertices of M as the homogeneous linear system
Lf = 0, with initial conditions f (pi) = ai, i 2 I ✓ {1, . . . ,n}. Ac-
cording to the Euler formula c(M) = m� s+M, the number of
minima m, maxima M, and saddles s of a harmonic function de-
pends on the Dirichlet boundary conditions, which determine the
maxima and minima of the resulting harmonic function. In par-
ticular, a harmonic function with one maximum and one mini-
mum has a minimal number of 2g saddles, where g is the genus
of M (Fig. 2). Harmonic functions are efficiently computed in
O(n) time with iterative solvers of sparse linear systems; their
computation is stable for the mean-value weights while negative
Voronoi cotangent weights generally induce local undulations in
the resulting harmonic function. Main applications include surface

f1: (2,2,4) f2: (4,4,8) f3: (5,3,8)

Figure 3: Level sets and number of critical points of different
Laplacian eigenfunctions (linear FEM weights).

quadrangulation [DKG05, NGH04], the definition of volumetric
mappings [LGQ09,LXW⇤10,MCK08,MC10], and biharmonic dis-
tances [OBCS⇤12, LRF10, Rus11b] (Sect. 6.2.2).

In the paper examples, the level sets of a given function, or ker-
nel, or distance are associated with iso-values uniformly sampled
in its range. For spectral distances, the minimum and the maximum
values are depicted in blue and red, respectively. For all the other
functions, colors begin with red, pass through yellow, green, cyan,
blue, and magenta, and return to red. Finally, the color coding rep-
resents the same scale of values for multiple shapes.

4. Laplacian eigenfunctions

We introduce the Laplacian eigenpairs (Sect. 4.1), their discretiza-
tion (Sect. 4.2), and the stability of their computation (Sect. 4.3).

4.1. Laplacian eigenmpas

Since the Laplace-Beltrami operator is self-adjoint and
positive semi-definite, it has an orthonormal eigensystem
B := {(ln,fn)}

+1
n=0 , Dfn = lnfn, in L

2(N ). In the following, we
assume that the Laplacian eigenvalues are increasingly ordered;
in particular l0 = 0. Using the orthonormality and completeness
of the Laplacian eigenfunctions in L

2(N ), any function can
be represented as a linear combination of the eigenfunctions
as f = Â+1

n=0 h f ,fni2fn, where h f ,fni2fn is the projection of f
on fn. Furthermore, the function D f is expressed in terms of the
Laplacian spectrum as (D f )(p) = Â+1

n=0 lnh f ,fni2fn(p) (spectral
decomposition theorem). A deeper discussion of the analogies
between the heat kernel, the Fourier analysis, and wavelets has
been presented in [HVG11, BEKB15].

The Laplacian eigenfunctions are intrinsic to the input shape
and those ones related to smaller eigenvalues correspond to smooth
and slowly-varying functions. Increasing the eigenvalues, the corre-
sponding eigenfunctions generally show rapid oscillations (Fig. 3).
From the Laplacian spectrum, we can estimate geometric and topo-
logical properties of the input shape. For instance, we can com-
pute the surface area, as the sum of the Laplacian eigenvalues; esti-
mate the Euler characteristic of a surface with genus g � 2 through
the relation [Nad88] m j  2 j�2c(M)+3, where m j is the mul-
tiplicity of l j; and evaluate the total Gaussian curvature [RWP06].
If two shapes are isometric, then they have the same Laplacian
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spectrum (iso-spectral property); however, the viceversa does not
hold [GS02,ZGLG12] and we cannot recover the metric of a given
surface.

4.2. Discrete Laplacian eigenpairs

To introduce the discrete Laplcian eigenpairs, the Lapla-
cian eigenproblem is converted to its weak formulation
hDf,yi2 = lhf,yi2 [All07], where y is a test function.
The weak formulation is then discretized as Lx = lBx.
Here, L, L(i, j) := hDyi,y ji2, is the stiffness matrix and B,
B(i, j) := hyi,y ji2, is the mass matrix. The generalized Lapla-
cian eigensystem {(li,xi)}

n
i=1 (l1 = 0) satisfies the identity

Lxi = liBxi and the eigenvectors are orthonormal with re-
spect to the B-scalar product; i.e., hxi,x jiB = x

>
i Bx j = di j .

In particular, the spectral decomposition theorem becomes
L̃f = Ân

i=1 lihf,xiiBxi = XGX
>

Bf, where X is the eigenvectors’
matrix and G is the diagonal matrix of the eigenvalues. The discrete
Laplacian eigenfunctions generally have a global support (i.e.,
they are null only at some isolated points) and eigenfunctions
with a compact support can be calculated by minimizing the
corresponding `1 norm [NVT⇤14].

For the computation of the Laplacian eigenvectors, numerical
methods generally exploit the sparsity of the Laplacian matrix and
reduce the high-dimensional eigenproblem to one of lower dimen-
sion, by applying a coarsening step. The solution is efficiently
calculated in the low-dimensional space and then mapped back
to the initial dimension through a refinement step. Main exam-
ples include the algebraic multi-grid method [Fal06], Arnoldi it-
erations [LS96, Sor92], and the Nystrom method [FBCM04]. Even
though the eigenvalues and eigenvectors are computed in super-
linear time [VL08], this computational cost and the required O(n2)
storage are expensive for densely sampled domains. Indeed, modi-
fications of the Laplacian eigenproblem are applied to locally com-
pute specific sub-parts of the Laplacian spectrum. For instance,
the shift method evaluates the spectrum (li �l,xi)

n
i=1 of (L̃�lI)

to calculate the eigenpairs associated with a spectral band cen-
tered around a value l. To swap the Laplacian spectrum, the in-
verse method considers the spectrum (l�1

i ,xi)
n
i=2 of the pseudo-

inverse L̃
†. The power method computes the eigenpairs (lk

i ,xi)
n
i=2

of the sequence of matrices (L̃k)k�1 and controls the convergence
speed through the selection of k. Finally, pre-conditioners of the
Laplacian matrix tailored to computer graphics’ applications have
been proposed in [KFS13].

Laplacian eigenfunctions on surfaces In spectral graph theory,
the Laplacian eigenvectors have been applied to graph partition-
ing [Fie73, MP93, Kor03] into sub-graphs, which are handled in
parallel [AKY99], to graph/mesh layout [DPS02, Kor03], to the
reduction of the bandwidth of sparse matrices [BPS93]. In ma-
chine learning, the Laplacian spectrum have been used for cluster-
ing [SS02] (§ 14) and dimensionality reduction [BN03, XHW10]
with spectral embeddings. For instance, a common way to measure
the dissimilarity between two graphs is to compute the correspond-
ing spectral decomposition in their own [LD08] or joint [Ume88,
CK04] eigenspaces.

In geometry processing, the spectral properties of the uni-

form discrete Laplacian have been used to design low-pass fil-
ters [Tau95]. Successively, this formulation has been refined
to include the local geometry of the input surface [DMSB99,
KR05, PP93] and it has been applied to implicit mesh fair-
ing [DMSB99, KR05, ZF03] and to fairing functionals [KCVS98,
Mal89], which optimize the triangles’ shape and/or the surface
smoothness [NISA06]. Further applications include mesh wa-
termarking [OTMM01, OMT02], geometry compression [KG00,
SCOT03], the computation of the gradient [LSW09] and the multi-
scale approximation of functions [Pat13, PS13a, PF09]. The Lapla-
cian eigenvectors have been also used for embedding a surface of
arbitrary genus into the plane [ZSGS04, ZKK02] and mapping a
closed genus zero surface into a spherical domain [GGS03].

In shape analysis, the Laplacian spectrum has been applied
to shape [LZ07, ZL05] segmentation and analysis through nodal
domains [RBG⇤09], correspondence [JZ07, JZvK07], and com-
parison [MPSF11, RWP06, JZ07]. Mesh Laplacian operators are
also associated with a set of differential coordinates for sur-
face deformation [SLCO⇤04] and quadrangulation with Lapla-
cian eigenfunctions [DKG05]. As detailed in Sect. 6, the Lapla-
cian spectrum is also fundamental to define random walks [RS13],
commute-time [BB11a], biharmonic [OBCS⇤12, Rus11b], wave
kernel [BB11a, ASC11], and diffusion distances [BBK⇤10,
BBOG11, CL06, GBAL09, LKC06, LSW09, PS13b].

Laplacian eigenfunctions on volumes Laplacian eigenfunctions
on a discrete volumetric domain M are computed either by diag-
onalizing the corresponding Laplacian matrix or by extending the
values of the eigenfunctions computed on the boundary of M to its
interior with barycentric coordinates or non-linear methods (e.g.,
moving least-squares, radial basis functions) [PSF09, PS12]. The
computational cost, which is generally high in case of volumetric
meshes, is effectively reduced but associated with a lower approx-
imation accuracy. Volumetric Laplacian eigenfunctions have been
applied to shape retrieval [JZ07] and to the definition of volumet-
ric [Rus11a] shape descriptors.

4.3. Stability of the Laplacian spectrum

Theoretical results on the sensitivity of the Laplacian spectrum
against geometry changes, irregular sampling density and connec-
tivity have been presented in [HPW06, Xu07]. Here, we briefly re-
call that the instability of the computation of the Laplacian eigen-
pairs is generally due to repeated or close eigenvalues, with respect
to the numerical accuracy of the solver of the eigen-equation. While
repeated eigenvalues are quite rare, numerically close or switched
eigenvalues can be present in the spectrum and in spite of the regu-
larity of the input discrete surface. The following discussion will be
useful also for the definition of the conditions on the filter function
that induces the spectral distances (Sect. 6.4).

To show that the computation of single eigenvalues is nu-
merically stable, we perturb the Laplacian matrix L̃ by eE,
e ! 0, and compute the eigenpair (l(e),x(e)) of the new prob-
lem (B�1

L+ eE)x(e) = l(e)x(e), with initial conditions x(0) = x,
l(0) = l. The size of the derivative of l(e) indicates the variation
that it undergoes when the matrix L̃ is perturbed in the direction
(E,e). By differentiating the previous equation and evaluating the
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result at e = 0, we obtain that BEx+Lx
0(0) = l0(0)Bx+lBx

0(0).
Multiplying both sides of this last relation with x

>, the perturbed
eigenvalue |l0(0)|= |x

>
BEx| kExkB is bounded by the B-norm

of Ex. Indeed, the computation of the Laplacian eigenvalue with
multiplicity one is stable.

Assuming that lk is an eigenvalue with multiplicity mk and
rewriting the characteristic polynomial as p

L̃
(l) = (l�lk)

mk q(l),
where q(·) is a polynomial of degree n�mk and q(lk) 6= 0, we get

that (l�lk)
mk = O(e)/q(l); i.e., l = lk +O(e

1
mk ). It follows that

a perturbation e := 10�mk produces a change of order 0.1 in lk and
this amplification becomes more and more evident while increas-
ing the multiplicity of the eigenvalue. According to [GV89] (§ 7),
repeated eigenvalues are generally associated with a numerical in-
stability in the computation of the corresponding eigenvectors; in
fact, the `2-norm of the difference between the generalized eigen-
vectors xi, x j related to the eigenvalues li, l j is bounded as

kxi �x jk2  e Â
j 6=i

�����
x
>
i Ex j

li �l j

�����+O(e2).

Indeed, the computation of the eigenvectors related to multiple or
close Laplacian eigenvalues might be unstable. Finally, the Lapla-
cian eigenvalues might be locally switched (i.e., we are not able
to numerically distinguish two consecutive eigenvalues) and this
situation happens independently of the quality of the discretized
surface in terms of point density, angles, and connectivity.

5. Heat and wave equations

We introduce the heat (Sect. 5.1), wave and mean curvature
flow (Sect. 5.2) equations; then, we discuss their discretization
(Sect. 5.3), the selection of the time scale (Sect. 5.4), and the com-
putation of their solution (Sect. 5.5).

5.1. Heat equation

The scale-based representation H : N ⇥R+
! R of the func-

tion h : N ! R is the solution to the heat diffusion equation
(∂t +D)H(p, t) = 0, H(·,0) = h. The function H(p, t) represents
the heat distribution at the point p and at time t, where h is the
initial distribution. The solution to the heat equation is written as

H(p, t) = hKt(p, ·),hi2 =
+1
Â
n=0

exp(�lnt)hh,fni2fn(p), (1)

where Kt(p,q) = Â+1
n=0 exp(�lnt)fn(p)fn(q) is the spectral rep-

resentation of the heat diffusion kernel. The heat diffusion and the
Laplace-Beltrami operators have the same eigenfunctions {fn}

+1
n=0

and (exp(�lnt))+1
n=0 are the eigenvalues of the heat operator. The

heat kernel is invariant to isometries and verifies the semi-group
hKt1 ,Kt2i2 = Kt1+t2 and inversion K�1

t = K�t properties. The spec-
tral representation (1) shows the smoothing effect on the initial
condition h; as the scale increases, the component of h along the
eigenfunctions associated with the larger Laplacian eigenvalue be-
comes null. We also notice that the normalized function A

�1
N H(·, t)

with respect to the surface area AN minimizes the weighted
least-squares error

R
N Kt(p,q)|h(q)�g(p)|2dq on L

2(N ), for a
given h.

Heat equation on surfaces On surfaces, the heat kernel satisfies
the following properties [SOG09, Gri06]:

• for an isometry F : N !Q between two manifolds N , Q,

KN
t (p,q) =K

Q
t (F(p),F(q)), 8p,q 2N ,8t 2 R+; (2)

• if F is surjective and Eq. (2) holds, then F is an isometry;
• if D is a compact set of N , then limt!0 KD

t (p,q) = KN
t (p,q);

• if D1 ✓ D2 ✓N , then KD1
t (p,q) KD2

t (p,q);
• on smooth and polygonal surfaces, the heat kernel fully deter-

mines the Riemannian metric [ZGLG12].

For small values of t [SOG09, Var67], the auto-diffusivity function

Kt(p,p)⇡

(
(4pt)�1(1+1/3tk(p))+O(t2),

(4pt)3/2(1+1/6s(p)),
t ! 0,

encodes the Gaussian k(p) and total s(p) curvature at p. For
large t, Kt(p,q) is dominated by the Fiedler vector f1 [Fie73],
which encodes the global structure of the input shape. According
to [SOG09, dGGV08], the surface N at p can be characterized in
terms of the average squared diffusion distance at p (eccentricity),
which is defined as

ecct(p)=A
�1
N

Z

N
dt(p,q)dq=Kt(p,p)+EN (t)�2A�1

N , t ! 0,

where EN (t) := Â+1
n=0 exp(�lnt) is the sum of the eigenvalues of

the heat kernel. Since the area and trace are independent of the
evaluation point, the functions ecct and Kt(p, ·) have the same level
sets and extrema on N . In particular, for small scales the extrema
of the eccentricity are localized at the curvature extrema.

Heat equation on volumes The analytical representation of the
volumetric heat kernel Kt(p,q) := (4pt)�3/2 exp(�kp�qk

2
2/4t)

allows us to solve the heat equation as F(·, t) = Kt ?h and without
computing the Laplacian spectrum (Sect. 5.5.4).

5.2. Wave equation and mean curvature flow

The heat equation is strictly related to the Schroedinger (wave)
equation (iD+∂t)H(·, t) = 0, with initial condition H(·,0) = h,
which represents the physical model of a quantum particle with
initial energy h. The spectral representation of the solution is
H(·, t) = Â+1

n=0 exp(ilnt)h f ,fni2fn; i.e., a complex wave function
with oscillatory behavior. This periodic effect is due to the real and
complex parts of the filter exp(ilnt) = cos(lnt)+ isin(lnt). The
norm of the solution is the probability Pt(p) to find a point p after
a time t; in fact, the following identity holds

Pt(p) = lim
T!+1

Z T

0
|H(p, t)|2dt

=
+1
Â
n=0

|h f ,fni2|
2
|fn(p)|

2 = kH(p, t)k2
2.

Finally, the heat equation is related to the mean curvature
flow [CPS13, KSB12] (∂t +Dt)Ft = 0, where Ft : M! R3 is a
family of immersions and Dt is the Laplace-Beltrami operator as-
sociated with the metric induced by the immersion at time t.
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Figure 4: Anisotropic heat kernel centered at a (black) seed point
on a coarse triangle mesh.

Table 1: Main properties of the discrete heat kernel: sparsity, posi-
tive definiteness, and symmetry. The full • and empty � circle means
that the corresponding property is or is not satisfied, respectively.

Heat Ker. Matrix Kt Sp. Pos. Def. Sym. Cov. Inv.

Std XDt X
> � • • � �

Vor.-cot XDt X
>

D � • � • �
wFEM XDt X

>
B � • � • �

5.3. Discrete heat equation and kernel

We briefly introduce the weak formulation [All07] of the heat equa-
tion; similar results apply to the equations previously introduced.
Chosen a set B := {yi}

n
i=1 of linearly independent functions

on N , we approximate the solution H̃(p, t) := Ân
i=1 ai(t)yi(p) to

the weak heat equation as h∂t H̃(·, t),yii2 + hDH̃(·, t),yii2 = 0,
i = 1, . . . ,n. Introducing the matrices L := (hDyi,y ji2)

n
i, j=1

and B := (hyi,y ji2)
n
i, j=1, the discrete heat equation becomes

(B∂t +L)a(t) = 0, a(t) := (ai(t))n
i=1. An analogous relation can be

derived for the boundary condition H(p,0) = h(p). Since B is the
Gram matrix associated with B, it is invertible and the previous sys-
tem of equations is (∂t +B

�1
L)a(t) = 0. Then, the solution to the

discrete heat equation is expressed as a linear combination of the
Laplacian eigensystem as F(t) = Ân

i=1 exp(�lit)hf,xiiBxi.

Properties The solution to the discrete heat equation is F(t) = Kt f

(Fig. 4), where Kt := XDtX
>

B, Dt := diag(exp(�lit))
n
i=1, is the

heat kernel matrix (Table 1). Lumping the linear FEM mass ma-
trix B, the heat kernel becomes equal to the Voronoi-cotangent
heat kernel K

?
t := XDtX

>
D, LX = XG. Choosing B := I, we get

the heat kernel K̃t := XDtX
> with cotangent weights. Analo-

gously to the results in Sect. 5.1, the heat kernel matrix satisfies
the following relations: Kt1 ⇥Kt2 = Kt2 ⇥Kt1 = Kt1+t2 (commu-
tative and semi-group properties), K

�1
t = K�t (inversion prop-

erty). If B is the linear FEM mass matrix or the diagonal matrix
of the Voronoi areas, then the heat kernel matrix Kt is intrinsi-
cally scale-covariant; i.e., rescaling the points of M by a fac-
tor a, a > 0, and indicating the new surface as aM, we get that
only the time component of the kernel is rescaled. In fact, the
rescaling changes the matrix B and the eigensystem {(li,xi)}

n
i=1

of M into a2
B and {(a�2li,a�1

xi)}
n
i=1, respectively. Indeed,

Kt(aM) = Ka�2t(M) without an a-posteriori normalization. The
scale-covariance of Kt is guaranteed by the mass matrix, which

Figure 5: (c) Selection of the optimal scale (topt = 0.0032) and cor-
responding volumetric diffusion smoothing (a), Padé-Chebyshev
approximation of degree r = 7) on the noisy volumetric model of
a teeth (b).

changes according to the surface rescaling and compensates the
variation of the corresponding Laplacian spectrum. The kernel be-
comes scale-invariant (i.e., Kt(aM) = Kt(M)) by normalizing
each eigenvalue by ln, which is efficiently computed using the
inverse method [GV89, VL08]. Alternatively, the scale-invariance
and covariance of the heat kernel is achieved in the Fourier do-
main [BK10]. In [BBB⇤10, BBC⇤10], the matching performances
of heat kernel descriptors have been tested against shape transfor-
mation, sampling, and noise.

5.4. Selection of the time scale

For shape analysis, the real line is uniformly sampled in or-
der to consider both small and large scales. For geometry pro-
cessing, the optimal time value is defined as the value of t that
provides the best compromise between a small residual error
kF(·, t)� fk2

2 = Â+1
n=0 |1� exp(�2lnt)|2|h f ,fni2|

2 and a low en-
ergy kF(·, t)k2

2 = Â+1
n=0 exp(�2lnt)|h f ,fni2|

2. If t tends to zero,
then the residual becomes null and the energy converges to k fk2.
If t becomes large, then the residual increases until it converges
to |h f ,f0i2| and the solution norm decreases until it converges
to (k fk2

2 � |h f ,f0i2|
2)1/2. According to these properties, the plot

(L-curve) of the energy (y-axis) versus the residual (x-axis) is L-
shaped [HO93] and its minimum provides the optimal time value
(Fig. 5). For the computation of the optimal time value, we men-
tion the corner detection based on cubic B-splines approxima-
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Table 2: Numerical computation of the solution to the heat equation; t(n) is the cost for the solution of a sparse linear system.

Method Numerical scheme Scales Comput. cost References

Linear approximation

Trunc. spec. approx. Fk(t) = Âk
i=1 exp(�lit)hf,xiiBxi Any O(kn) [GV89, VBCG10]

Euler backw. approx. (tL̃+ I)Fk+1(t) = Fk(t) Small O(t(n)) [CDR00, DMSB99, ZH08]
I order Taylor approx. BF(t) = (B� tL)f Small O(t(n)) [CDR00, DMSB99]
Krylov/Schur approx. Projection on Any O(mt(n)), B 6= I [GV89, Saa92, ZH08]

{gi := (B�1
L)i

f}
m
i=1 O(n), B = I

Polynomial approximation

Power approx. F(t) = Âm
i=0 gi/i! Any O(mt(n)), B 6= I

gi := L̃
i
f O(n), B = I [GV89]

Rational approximation

Padé-Cheb. approx. F(t) = a0f+Âr
i=1 gi Any O(rt(n)) [CRV84, Sid98, Saa92]

(tL+qiB)gi =�aiBf [Pat13, Pat14, Pat16]
Contour integral approx. F(t) = Âr

i=1 aigi Any O(rt(n)) [Pus11]
(ai)

r
i=1 quadr. coeff.

tion [HO93], the evaluation of the curvature of the graph of the
L-curve or its adaptive pruning [HO93].

5.5. Computation of the discrete heat kernel

For the computation of the solution to the discrete heat equation and
kernel, we consider linear (Sect. 5.5.1), polynomial (Sect. 5.5.2),
and rational (Sect. 5.5.3) approximations. On volumes (Sect. 5.5.4),
we discuss the solution to the heat equation based on the analytic
representation of the heat kernel. With the exception of the trun-
cated spectral method, all the previous approximations are inde-
pendent of the evaluation of the Laplacian spectrum and reduce to
a set of sparse linear systems (Table 2). The polynomial and ratio-
nal approximations generally provide the best compromise between
approximation accuracy and computational cost.

5.5.1. Linear approximation

For the solution to the heat equation, we review the truncated spec-
tral approximation, the Euler backward method, the first order Tay-
lor approximation, the Krylov and Schur methods.

Truncated spectral approximation and power method The
computational bottleneck for the evaluation of the whole Lapla-
cian spectrum imposes on us to consider only a small subset of the
Laplacian spectrum. Since the decay of the filter factor exp(�lit)
increases with li, in the spectral representation of the solution to
the heat equation we consider only the contribution related to the
first k eigenpairs; i.e., Fk(t) = Âk

i=1 exp(�lit)hf,xiiBxi. The trun-
cated approximation is accurate only if the exponential filter decays
fast (e.g., large values of time) and the effect of the selected eigen-
pairs on the approximation accuracy cannot be estimated without
computing the whole spectrum. The multi-resolution prolongation
operators [VBCG10] prolongate the values of the truncated spec-
tral approximation, computed on a low-resolution representation of
the input shape, to the initial resolution through a hierarchy of sim-
plified meshes. In this case, the number of eigenpairs are heuristi-
cally adapted to the surface resolution and its global/local features.

Euler backward method In [CDR00, DMSB99], the solution to
the heat equation is computed through the Euler backward method
(tL̃+ I)Fk+1(t) = Fk(t), F0 = f. The resulting functions are over-
smoothed and converge to a constant function, as k !+1.

First order Taylor approximation Since the derivative of Kt
at t = 0 equals the Laplacian matrix (i.e., (I�Kt)/t ! B

�1
L,

t ! 0), the heat kernel Kt is approximated by (I� tB�1
L) and

F(t) = Kt f solves the sparse linear system B(Kt f) = (B� tL)f.
This last relation gives an approximation of F(t) that is indepen-
dent of the Laplacian spectrum and is valid only for small val-
ues of t. For an arbitrary value of t, the “power” method ap-
plies the identity (Kt/m)

m = Kt , where m is chosen in such a way
that t/m is sufficiently small to guarantee that the approximation
Kt/m ⇡ (I� t/mL̃) is accurate. However, the selection of m and its
effect on the approximation accuracy cannot be estimated a-priori.

Krylov and Schur approximations The Krylov subspace projec-
tion [GV89, Saa92] computes an approximation of exp(�tA)f in
the space generated by the vectors f,Af, . . . ,Am�1

f, thus process-
ing a m⇥m matrix instead of a n⇥n matrix, where m is much
lower than n (e.g., m ⇡ 20). This approximation [ZH08] becomes
computationally expensive when the dimension of the Krylov space
increases, still remaining much lower than n (e.g., n ⇡ 5K). In
both cases, the vector L̃

i
f = (B�1

L)i
f must be computed without

inverting the mass matrix; to this end, we notice that the vector
gi := (B�1

L)i
f satisfies the linear system Bgi = Lgi�1, Bg1 = Lf.

Since the coefficient matrix B is sparse, symmetric, and positive
definite, the vectors (gi)

m
i=1 are evaluated in linear time by apply-

ing iterative solvers (e.g., conjugate gradient) or pre-factorizing B.

5.5.2. Polynomial approximations

The exponential of a matrix A is defined as the exponential power
series exp(A) = Â+1

n=0 A
n/n!, which converges for any square ma-

trix A. Even though the input matrix A is sparse, its exponential
exp(�tA) is always full (t 6= 0) and can be computed or stored
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Algorithm 1 Padé-Chebyshev approximation of the solution to the
heat equation.
Require: A function f : P ! R, f := ( f (pi))

n
i=1.

Ensure: The approximate solution F(t) = Kt f of f to the heat
equation.

1: Select the value of t (e.g., optimal value, Sect. 5.4).
2: for i = 1, . . . ,r�1 do

3: Compute gi: (tL+qiB)gi =�aiBf.
4: end for

5: Approximate Kt f as a0f+Âr
i=1 gi.

Figure 6: Conditioning number k2 (y-axis) of the matrices
{(tL+qiB)}

7
i=1, for several values the time parameter t; the in-

dices of the coefficients {qi}
7
i=1 are reported on the x-axis.

only if A has a few hundred rows and columns only. In particu-
lar, for computer graphics applications we can consider 3D shapes
only with a small number of samples (i.e., few hundreds) or evalu-
ate the heat kernel on a set of seed points that are representative of
the geometry and features of the input shape.

5.5.3. Rational approximation

The exponential of an arbitrary matrix A is equal to the com-
plex contour integral exp(tA) = (2pi)�1 R

G exp(z)(zI� tA)�1dz,
where G is a closed contour winding once around the spectrum of
tA [GV89] (§ 11), [Rud87] (§ 10). From this identity, we introduce
two accurate and computationally efficient approximations of the
exponential of the Laplacian matrix.

Padé-Chebyshev approximation The rational approximation of
the exponential function of order (k,k) and with simple poles is
rkk(z) := pk(z)/qk(z) = a0 +Âk

i=1 ai(z�qi)
�1, where pk, qk are

polynomials of order k, a0 = limz!+1 rkk(z), qi is a pole, and ai
is the residual at qi. Applying this last relation to tA, we get
exp(tA) = a0I+Âk

i=1 ai(tA�qiI)
�1. Among the rational approx-

imations of the exponential function, we focus on its best approxi-
mation rkk(·) of order k with respect to the `1 norm; i.e., the unique
rkk(z) = pk(z)/qk(z) that minimizes the error kp(z)� exp(�z)k1

Figure 7: Cost (in seconds, y-axis, log-scale) for the evaluation of
the diffusion distances on 3D shapes with n samples (x-axis), ap-
proximated with k = 500 eigenpairs and the Padé-Chebyshev ap-
proximation. Colors from the source (orange) point vary from blue
(null distance) to red (maximum distance).

in the space Pkk 3 p of rational polynomials of order k. Here, the
main difficulty is the evaluation of the coefficients and poles of the
rational approximation of the exponential function for a given k,
which is generally affected by the ill-conditioned computation of
the polynomial roots. These coefficients and poles have been com-
puted with a different accuracy and for different orders of the ra-
tional polynomial [CRV84, CMV69, MVL03, Sid98, Saa92]. These
approximations are also included in standard numerical libraries
for signal processing. Finally, we recall that in spectral graph the-
ory [OSV12], the Padé-Chebyshev and the Lanczos methods have
been applied to the approximation of exp(�A)f, where A is a sym-
metric and positive semi-definite matrix.

The idea behind the spectrum-free computation [Pat13,Pat14] is
to apply the (r,r)-degree Padé-Chebyshev rational approximation
to the exponential representation F(t) = exp(�tL̃)f of the solution
to the heat equation (∂t + L̃)F(t) = 0, F(0) = f (Algorithm 1). In
this case, the solution F(t) = a0f+Âr

i=1 gi is the sum of the solu-
tions of r sparse linear systems (tL+qiB)gi =�aiBf, i = 1, . . . ,r.
The resulting approximation belongs to the linear space generated
by f and {gi}

r
i=1, which are calculated as a minimum norm residual

solution [GV89], depend on the input domain, the initial condition,
and the selected time value. In comparison, the Laplacian eigen-
functions only encode the domain geometry and it is difficult to
select the number of eigenpairs necessary to achieve a given ap-
proximation of F(t) with respect to t and f.

This approximation is independent of the computation of the
Laplacian spectrum, user-defined parameters, and multi-resolutive
prolongation operators [VBCG10], which heuristically adapt the
number of eigenpairs to the surface resolution. The sparse and well-
conditioned matrices of the previous linear systems have the same
structure and sparsity of the connectivity matrix of the input do-
main, properly encode the local and global features in the heat
kernel, and can be computed for any representation of the input
domain and of the Laplacian weights. Finally, the accuracy of the
Padé-Chebychev approximation is lower than 10�r (e.g., r = 5,7).

The value of t influences the conditioning number of the ma-
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t = 0.1

t = 1

Figure 8: Volumetric heat kernel (r = 7). Level-sets correspond to
iso-values uniformly sampled in the range of the solution restricted
to the volume boundary.

trices (tL+qiB), i = 1, . . . ,r. Experiments (Fig. 6, [Pat14]) have
shown that the linear systems associated with the Padé-Chebyshev
approximation are generally well-conditioned; in any case, pre-
conditioners and regularization techniques [GV89] can be applied
to attenuate numerical instabilities. Finally, timings on surfaces and
volumes (Fig. 7) are reduced from 20 up to 1200 times with respect
to the approximation based on a fixed number of Laplacian eigen-
pairs. Laplacian eigenvectors have been computed with the Arnoldi
iteration method [LS96, Sor92].

Rational approximation from contour integrals Since the
exponential factor rapidly decays to zero as Re(z)!+1,
in [Pus11] the complex contour integral has been efficiently
computed with quadrature rules. In this case, a0 = 0, the
poles qi := f(xi) are evaluated at the quadrature points {xi}i,
ai :=�(2pi)�1hexp(f(xi))f0(xi) are the weights of the quadra-
ture rules, and h is the interval length in the quadrature scheme.
The resulting approximation accuracy is guided by the degree of
the quadrature rule; low degrees (e.g., k = 2, k = 4) generally pro-
vide a satisfactory approximation accuracy.

5.5.4. Special case: heat equation on volumes

On a volume, the function F(t) = Ân
i=1 aiViKt(pi, ·) f (pi) is ap-

proximated as a linear combination of the basis functions
{Kt(pi, ·)}

n
i=1. Here, V = diag(Vi)

n
i=1 is the diagonal matrix of the

volumes Vi at pi, Kt is the Gram matrix for the Gaussian ker-
nel, and the unknowns a = (ai)

n
i=1 are determined by imposing

the condition F(pi,0) = f (pi), i = 1, . . . ,n. To overcome the time-
consuming solution of the n⇥n linear system VKta = f, the num-
ber of conditions is reduced or the coefficient matrix is sparsified
according to the exponential decay of its entries. Alternatively, the
volumetric heat equation is solved by discretizing the Laplace-
Beltrami operator with finite elements [All07, RWSN09], or with
finite differences on a 6-neighborhood stencil [LBB11, LBB12,
RBBK10], or with a geometry-driven approximation of the gradi-
ent field [LTDZ09, TLHD03].

While a discretization of the heat kernel on a voxel grid is ac-
curate enough for the evaluation of diffusion descriptors [LBB11,
RBBK10], which are quantized and clustered in bags-of-features,
the computation of the solution to the volumetric heat equation
generally requires a more accurate discretization of the input do-
main. The prolongation of the Laplacian [Rus11a, Rus11b], har-
monic [LXW⇤10, MCK08], and diffusion functions from the vol-
ume boundary to its interior, through barycentric coordinates or
non-linear approximation, achieves a low accuracy of the solution
in a neighbor of the boundary. The multi-resolution simplification
of the input volume is also time-consuming, and the selection of
the volume resolution with respect to the expected approximation
accuracy are generally guided by heuristics. Indeed, these methods
do not intend to approximate the heat kernel quantitatively, but pro-
vide alternative approaches that qualitatively behave like the heat
kernel on volumes. To improve the accuracy, we consider the volu-
metric Laplacian matrix of the input domain and compute the Padé-
Chebyshev approximation of the induced heat kernel (Fig. 8).

6. Laplacian spectral distances

Distances can be defined directly on the input domain M (e.g.,
geodesic distances) or in the space of functions on M (e.g., ran-
dom walks, biharmonic distances, diffusion and wave distances).
For geometry processing and shape analysis, the distance

• must satisfy the following properties: nullity (d(p,q) = 0 if and
only if p ⌘ q); symmetry (d(p,q) = d(q,p)); triangular inequal-
ity (d(p,q) d(p,r)+d(r,q));

• should be multi-scale and geometry-aware, through the encoding
of local/global features and geometric properties;

• should be isometry-invariant through a proper filtering of the
Laplacian spectrum, robust to noise and domain discretization.

We introduce the spectral distances (Sect. 6.1), by filtering the
Laplacian spectrum and as a generalization of the commute-
time, biharmonic, diffusion and wave distances (Sect. 6.2). Then,
we discuss their spectral discretization (Sect. 6.3), computation
(Sect. 6.4), and comparison (Sect. 6.5).

6.1. Laplacian spectral kernels and distances

Starting from recent work on the geodesic and heat diffusion
distances [CWW13, Pat13], we address the definition of spec-
tral distances on a manifold N by filtering its Laplacian spec-
trum [BB11b, Pat14]. Given a strictly positive filter function
j : R+

! R, let us consider the power series j(s) = Â+1
n=0 ansn.

Noting that Di f = Â+1
n=0 li

nh f ,fni2fn, we define the spectral oper-
ator as

F( f ) =
+1
Â
n=0

anDn f =
+1
Â
n=0

j(ln)h f ,fni2fn. (3)

According to [Pat16], if the function j̃(s) := s1/2j(s) is integrable
on R+ then the spectral operator is well-defined, linear, continu-
ous, and F( f ) = K ? f , where K(p,q) = Â+1

n=0 j(ln)fn(p)fn(q) is
the spectral kernel. Through the spectral operator, in L2(N ) we
introduce the spectral scalar product and distance as
⇢

h f ,gi := hF( f ),F(g)i2 = Â+1
n=0 j2(ln)h f ,fni2hg,fni2

d2( f ,g) = k f �gk2 = Â+1
n=0 j2(ln)|h f �g,fni|

2.
(4)
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jt(s) = s2 jt(s) = exp(ts), t = 10�1 jt(s) = sexp(ts) jt(s) = exp(ts)/s jt(s) = exp(ts)/s2

Biharmonic dist. Harmonic dist.

Figure 9: Level-sets of the spectral distances from a source point (white dot) induced by the filter j and evaluated with the Padé-Chebyshev
approximation (r = 5).

Figure 10: Spectral distances and kernels induced by the filter function j (log-scale on the t- and y-axis) applied to the Laplacian eigenvalues.

Indicating with dp the function that takes value 1 at p and 0 other-
wise, the spectral distance between p, q is (Fig. 9)

d2(p,q) := kdp �dqk
2 =

+1
Â
n=0

j2(ln)|fn(p)�fn(q)|
2

= kK(p, ·)�K(q, ·)k2
2 = K(p,p)�2K(p,q)+K(q,q),

where the first row provides the spectral representation and the sec-
ond row expresses the spectral distances in terms of the correspond-
ing kernel.

Properties Analogously to the diffusion kernel, the spectral ker-
nel satisfies the following properties: non-negativity (K(p,p)� 0),
symmetry (K(p,q) = K(q,p)), and positive semi-definiteness:

0  hF( f ), f i2 =
Z

N⇥N
K(p,q) f (p) f (q)dpdq

=
+1
Â
n=0

j(ln)|h f ,fni2|
2.

We also mention the square integrability kKk
2
2 = Â+1

n=0 |j(ln)|
2,

which is equivalent to the Parseval’s equality and the conserva-
tion:

R
N K(p,q)dp = 1, which is a consequence of the Perron-

Frobenious theorem.

Through the selected filter function and the Laplacian spectrum,
we define the spectral embedding E : M! `2, which maps each
point p to the sequence E(p) := (j(ln)fn(p))

+1
n=0 . The equality

d(p,q) = kE(p)�E(q)k2 shows that the spectral distances can be

interpreted as Euclidean distances in the embedding space. Finally,
the spectral shape descriptor SD(p) := Â+1

n=0 |j
2(ln)|f2

n(p) and
signature SE(p) := (j�1/2(ln)fn(p))

+1
n=0 generalize the diffusion

descriptor and signature [DLL⇤10, SOG09] (Sect. 6.2.1).

Selection of the filter function The filter function is learned
from a training data set [ABBK11] or chosen in such a way that
the corresponding spectral distances satisfy the properties intro-
duced at the beginning of Sect. 6. For instance (Fig. 10), selecting
jt(s) := exp(�st), exp(�ist) or j(s) := s�k/2,s�1/2, we get the
heat diffusion, wave, or poly-harmonic, commute-time distances,
respectively. Mexican hat wavelets [HQ12] are generated by the
filter j(s) := s1/2 exp(�s2) and in [BB11a,ASC11] the filter func-
tion j(s) := exp(is), s 2 [0,2p], defines the wave kernel signature.
The spectral distances associated with this periodic filter identify
local shape features by separating the contribution of different fre-
quencies and of the corresponding eigenfunctions.

Similarly to random walks [RS13], we introduce multi-scale
kernels by integrating the moment of order k of the differen-
tial operator Da exp(�tDa). In this case, the filter function is
j(s) = tksa exp(�tsa), where k scales the rate of diffusion and a
controls the decay of the Laplacian eigenvalues to zero. The selec-
tion of the parameters a, k makes the multi-scale kernels more ro-
bust to geometric and topological noise; the integral over time also
avoids the selection of the heat diffusion rate. The filter functions
jt(s) := [cos�1/2(

p
st),s�1/4 sin1/2(

p
st)] and j(s, t) = exp(srt)

are associated with the diffusion equations (∂2
t +D)F(·, t) = 0 and
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Low-resolution shape: biharmonic distances

FEM Voronoi-cot

k = 10 k = 500 k = 10 k = 500
High-resolution shape: biharmonic distances

FEM Voronoi-cot

k = 10 k = 500 k = 10 k = 500

Figure 11: Biharmonic distance on a surface at different resolu-
tions, with different Laplacian weights and k eigenpairs.

(∂t +Dr)F(·, t) = 0, respectively. Finally, the filter function can be
learned from a set of retrieval examples [ABBK11, BMM⇤15].

6.2. Main examples of spectral distances

As special cases, we consider the diffusion (Sect. 6.2.1), commute-
time and biharmonic distances (Sect. 6.2.2), and the approximation
of the geodesic and transportation distances (Sect. 6.2.3).

6.2.1. Diffusion distances

The heat kernel induces the diffusion distances, whose spectral
representation is d2

t (p,q) = Â+1
n=0 exp(�lnt)|fn(p)�fn(q)|

2. Re-
calling that the heat kernel is self-adjoint with respect to the
scalar product induced by the mass matrix B, we define the dif-
fusive scalar product hf,git := hKt f,giB and express the discrete
diffusion distances as dt(pi,p j) = kdpi �dp jkt = kKt(ei � e j)kB,
where kfk

2
t = f

>
XDtX

>
Bf = Ân

i=1 exp(�lit)|hf,xiiB|
2 is the dif-

fusion norm.

Through the heat kernel, a shape is associated with a dif-
fusion metric that measures the rate of connectivity among
its points with paths of length t and characterizes the lo-
cal/global geometric behavior with small/large values of t. This
property has been used to define a multi-scale and isometry-
invariant signatures [BBK⇤10, BK10, BBOG11, CL06, DRW10,
GBAL09, LKC06, MS05, Mem09, Mem11, OMMG10, RBBK10,
Rus07, MS09, SOG09] and to rewrite the shape similarity problem
as the comparison of two metric spaces. Main examples include the
heat kernel signature HKS(p) := Â+1

n=0 exp(�lnt)|fn(p)|
2 and de-

scriptor HKD(p) := (l�1/2
n fn(p))

+1
n=0 , and the wave kernel signa-

ture WKS(p) := Â+1
n=0 exp(�ilnt)|fn(p)|

2. Furthermore, the heat
diffusion distance and kernel have been successfully applied to

(a)
n = 5K n = 10K n = 26K

(b)

(c)

Figure 12: Stability of the biharmonic distance from a source
(black) point with respect to (a) sampling, (b) noise, (c) holes.

shape segmentation [dGGV08]; the computation of the gradient
of discrete functions [LSW09]; and the multi-scale approximation
of functions [PF10]. The diffusion distance and kernel also play
a central role in several applications, such as dimensionality re-
duction with spectral embeddings [BN03, XHW10]; data visual-
ization [BN03, HAvL05, RS00, TSL00], representation [CWS03,
SK03, ZGL03], and classification [NJW01, SM00, ST07].

6.2.2. Commute-time and biharmonic distances

Integrating the diffusion distances with respect to t, we get the
commute-time distance

d2(p,q) =
1
2

Z +1

0
d2

t (p,q)dt =
+1
Â
n=0

l�1
n |fn(p)�fn(q)|

2,

which is induced by the filter j(s) := s1/2 and is scale-invariant.
While the diffusion distance estimates the connection of two points
with respect to any random walk of length t, the commute-time
distance measures this connection with respect to arbitrary ran-
dom walks. The biharmonic distances [OBCS⇤12,LRF10,Rus11b]
are induced by j(s) := s and provide a trade-off between a nearly-
geodesic behavior for small distances and global shape-awareness
for large distances, thus guaranteeing an intrinsic multi-scale char-
acterization of the input shape. In Fig. 11, the approximation of
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Figure 13: `1 error (y-axis) for the diffusion distance approximated with k (x-axis) Laplacian eigenpairs. For the Padé-Chebyshev method
(r = 5) and all the scales, the `1 error with respect to the ground-truth is lower than 8.9⇥10�6.

Figure 14: `1 error (y-axis) between the ground-truth diffusion distances on the cylinder, with a different sampling (x-axis). For different
scales, the accuracy of the Padé-Chebyshev method (r = 5, orange) remains almost unchanged and higher than the truncated approximation
with 100 and 200 eigenpairs (red, blue), the Euler backward (green) and power (black) methods.

the biharmonic kernel and distance with a subset of the Laplacian
spectrum presents local artifacts, which are represented by isolated
level sets and are reduced by increasing the number of eigenpairs
without disappearing. In Fig. 12, the smooth and uniform distribu-
tion of the level sets of the biharmonic distance around the anchor
point (black dot) confirms the stability of the spectrum-free approx-
imation with respect to surface sampling, noise, and missing parts.

6.2.3. Approximating geodesics and transportation distances

with the heat kernel

In [CWW13], the relation dG(p,q) =� limt!0(4t logKt(p,q))
has been applied to compute the geodesic distance dG(p,q)
from the heat kernel values Kt(p,q) as the scale tends to zero.
More precisely, the geodesic distance dG on N is approxi-
mated by computing the solution F(·, t) to the heat equation
(∂t +D)F(·, t) = 0 on N , as t ! 0+, normalizing the correspond-
ing gradient X =rF(·, t)/krF(·, t)k2, and solving the equation
DdG = div(X). This approximation is computationally efficient, ca-
pable of identifying different types of features by selecting differ-
ent diffusion models, and robust to noise. The main difficulty is
the tuning of the time scale with respect to the shape features; in
fact, the selection of a large scale is generally associated with an
over-smoothing of the geodesic values and local details.

In [SdGP⇤15], the optimal transportation distances have been
approximated using the iterative Sinkhorn’s method [Sin64] and the
entropic regularization, thus reducing their computation to the solu-
tion of two sparse matrix equations that involve the heat kernel ma-
trix. Instead of approximating the heat kernel with an implicit Euler
integration [DMSB99], we can apply the Padé-Chebyshev approx-
imation (Sect. 5.5.3) in order to improve the approximation accu-
racy at small scales and without modifying the overall approach.

6.3. Discrete spectral distances

Inserting the generalized eigensystem LX = BXL, with orthonor-
mal eigenvectors X

>
BX = I, in Eq. (3), its discretization is

K = Xj(L)X>
B, j(L) := diag(j(li))

n
i=1, and the corresponding

discrete spectral distances are

d2(pi,p j) = kK(ei � e j)k
2
B =

n

Â
l=1

j2(li)|hxl ,ei � e jiB|
2. (5)

The spectral representation of the kernel provides its link between
the Laplacian matrix; i.e., L̃ and K have the same eigenvectors and
(j(li))

n
i=1 are the (filtered) Laplacian eigenvalues of K.

In previous work, the spectral distances have been discretized as
d(pi,p j) = kK

?(ei � e j)k2 and with respect to the Euclidean scalar
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(a) t = 10�1 (b) t = 10�2 (c) t = 10�3

(d) t = 10�4 (e) t = 10�1 (f) t = 10�2

Figure 15: (a-d) Robustness of the Padé-Chebyshev approximation of the diffusion distances and (e,f) sensitiveness of truncated spectral ap-
proximation to the Gibbs phenomenon. At all scales (a-d), the distance values (red curve) computed with the Padé-Chebyshev approximation
are positive; at large scales (e,f), the truncated spectral approximation is affected by the Gibbs phenomenon, as represented by the part of
the plot below the zero line (black curve).

product, where K
? := Xj(L)X> is the corresponding kernel. This

last discretization does not take into account the intrinsic B-scalar
product, thus disregarding the geometry of the input data and the
underlying generalized eigenproblem. Considering the linear FEM
mass matrix B and noting that B(i, j) = h1pi ,1p j i2, where 1p is the
function that takes value 1 at p and 0 otherwise, the B-scalar prod-
uct is the counterpart of the L2(N ) scalar product on the space of
discrete functions on M. The orthogonality of the Laplacian eigen-
vectors with respect to the B-scalar product is crucial to encode the
geometry of the surface underlying M in the spectral distances and
makes its evaluation robust to surface sampling.

6.4. Computation of the spectral distances

Recalling that the computation of the Laplacian eigenpairs is nu-
merically unstable in case of repeated eigenvalues (Sect. 4.3), the
filter function should be chosen in such a way that the filtered
Laplacian matrix does not have additional (if any) repeated eigen-
values. This condition is generally satisfied by choosing an injec-
tive filter. The selection of periodic filters, the expensive cost of
the computation of the Laplacian spectrum, and the sensitiveness
of multiple Laplacian eigenvalues to surface discretization are the
main motivations for the definition of alternative approaches for the
evaluation of the spectral distances and kernels. Among them, we
discuss the truncated (Sect. 6.4.1) and spectrum-free (Sect. 6.4.2)
approximations.

Algorithm 2 Computation of the spectral distances.
Require: A surface or volume M, a filter function j : R! R.
Ensure: The spectral distance d(pi,p j) in Eq. (5), pi,p j 2M.
1: Compute (L,B), which define the Laplacian L̃ := B

�1
L.

2: Define the vector f = ei � e j .
3: CASE I - Arbitrary filter: polynomial approximation
4: Compute the polynomial approx. pr(s) = Âr

i=0 aisi of j.
5: Compute g1: Bg1 = Lf.
6: for i = 1, . . . , r�1 do

7: Compute gi+1: Bgi+1 = Lgi
8: end for

9: Compute u = Kf ⇡ pr(L̃) = a0f+Âr
i=1 aigi (c.f., Eq. (6)).

10: Compute the distance d(pi,p j) = kukB.
11: CASE II - Arbitrary filter: Padé-Chebyshev approximation
12: Compute the P.C. approx. pr(s) = Âr

i=1 ai(1+bis)�1 of j.
13: for i = 1, . . . , r do

14: Compute gi: (B+biL)gi = Bf (c.f., Eq. (7))
15: end for

16: Compute u = Kf ⇡ pr(L̃)f = Âr
i=1 aigi.

17: Compute the distance d(pi,p j) = kukB.

6.4.1. Truncated approximation

The computational limits for the evaluation of the whole Laplacian
spectrum and the decay of the coefficients in Eq. (4) are the main
reasons behind the approximation of the solution to the spectral
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(a)

(b)

Figure 16: Trade-off between accuracy (y-axis) and time (x-axis)
for the Padé-Chebyshev (r = 5,7) and truncated approximations
(k = 50 eigenpairs) on the (a) sphere and (b) cylinder.

distances as a truncated sum; i.e.,
⇢

Fkf = Âk
i=1 j(li)hf,xiiBxi

d2(pi,p j) = Âk
l=1 j2(ll)|x

>
l Bei �x

>
l Be j|

2,

where k is the number of selected eigenpairs. Even though the first k
Laplacian eigenpairs are computed in super-linear time [VL08], the
evaluation of the whole Laplacian spectrum is unfeasible for stor-
age and computational cost, which are quadratic in the number of
surface samples. Furthermore, the selection of filters that are pe-
riodic or do not decrease to zero motivates the need of defining a
spectrum-free computation of the corresponding kernels and dis-
tances, which cannot be accurately approximated with the contri-
bution of only a subpart of the Laplacian spectrum. The number
of selected eigenpairs is heuristically adapted to the decay of the
filter function and the approximation accuracy cannot be estimated
without computing the whole spectrum.

Figure 17: Timings (in seconds) for the evaluation of the heat ker-
nel on a domain with n points, approximated with k = 100, 500
eigenpairs (Eigs) and the Padé-Chebyshev approximation (r = 7).

6.4.2. Spectrum-free approximation

We now introduce the spectrum-free evaluation of the spectral dis-
tances, which is based on a polynomial or rational approximation
of the filter.

Arbitrary filter: polynomial approximation For an arbitrary fil-
ter j, the matrix j(A) is approximated by selecting a new func-
tion g such that the matrix Ã = g(A) approximates A and can be
easily calculated. One of the main approaches for the approxima-
tion of a matrix function is through the truncated Taylor approxima-
tion [GV89]. More precisely, given the power series representation
j(s) = Â+1

n=0 ansn defined on an open disk containing the spectrum
of A, we have that j(A) = Â+1

n=0 anA
n. In this case, it is enough

to consider the contribution of the first k terms in the sum and to
compute the powers (Ai)k

i=1, through a binary powering [VL79].

Let [0,l] be an interval that contains the spectrum of L̃, where l
is the maximum eigenvalue, which is computed by the Arnoldi
method [GV89], or is set equal to the upper bound [LS96, Sor92]
ln  min{maxi{Â j L̃(i, j)},max j{Âi L̃(i, j)}}. Applying the Tay-
lor approximation j(s)⇡ pr(s) := Âr

n=0 ansn to the Laplacian ma-

c� 2016 The Author(s)
Computer Graphics Forum c� 2016 The Eurographics Association and John Wiley & Sons Ltd.

Giuseppe Patane'



G. Patané / STAR - Laplacian Spectral Kernels and Distances

Almost isometric deformation

Local re-scaling

Sampling density

Noise

Figure 18: Robustness of the computation of the linear FEM heat
kernel from a seed point placed on the spike of the tail. The trans-
formation strength increases from left to right.

trix in [0,l], Kei is evaluated as (Algorithm 2)

Kei ⇡
r

Â
n=0

an(B
�1

L)n
ei = a0ei +

r

Â
n=1

angn, (6)

where gn satisfies the linear system Bgn+1 = Lgn, Bg1 = Lei.

From the upper bound [Pat14]
�����j(L̃)�

r

Â
n=0

anL̃
n

�����
2


n

(r+1)!


lmax(L)
lmin(B)

�r+1
kj(r+1)(L̃)k2,

it follows that the approximation accuracy is mainly controlled by
the degree of the Taylor approximation and the variation of the
ratio between the maximum eigenvalue of L and the minimum
eigenvalue of B. If necessary, a higher approximation accuracy is
achieved by slightly increasing the degree r. Finally, this computa-
tion of both the spectral kernel and distance is independent of the
discretization of the input surface as a polygonal mesh or a point
cloud. In case of a complex kernel, it is enough to apply the previ-
ous discussion to its real and imagery parts; e.g., for the wave kernel
we consider the series sin(L̃) = Â+1

n=0 (�1)n
L̃

2n+1/(2n+1)! and
cos(L̃) = Â+1

n=0 (�1)n
L̃

2n/(2n)!.

Arbitrary filter: Padé-Chebyshev approximation For an arbi-
trary filter, we consider the rational Padé-Chebyshev approxima-
tion pr(s) = ar(s)

br(s)
of j [GV89] (Ch. 11) with respect to the L1

norm. Here, ar(·) and br(·) are polynomials of degree equal to or
lower than r. Let pr(s) = Âr

i=1 ai(1+bis)�1 be the partial form of
the Padé-Chebyshev approximation, where (ai)

r
i=1 are the weights

and (bi)
r
i=1 are the nodes of the r-point Gauss-Legendre quadra-

ture rule [GV89] (Ch. 11). The weights and nodes are precomputed

(a) t = 0.1 (b) t = 1

(c) t = 0.1 (d) t = 1

Figure 19: Level sets of the linear FEM diffusion distance, com-
puted using the Padé-Chebyshev approximation (r := 7), from a
source point (black dot), with different values of t, on a (a,b) smooth
and (c,d) noisy surface.

for any degree of the rational polynomial [CRV84]. Applying this
approximation to the spectral kernel, we get that

u = Kf ⇡ pr(L̃)f =
r

Â
i=1

ai
�
I+biL̃

��1
f =

r

Â
i=1

aigi,

where gi solves the symmetric and sparse linear system

(B+biL)gi = Bf, i = 1, . . . ,r. (7)

The Padé-Chebyshev approximation generally provides an accu-
racy higher than the polynomial approximation, as a matter of its
uniform convergence to the filter.

Properties According to [MVL03], the approximation of the ma-
trix j(L̃) might be numerically unstable if kL̃k2 is large. From
the bound kB

�1
Lk2  l�1

min(B)lmax(L), a well-conditioned mass
matrix B guarantees that kB

�1
Lk2 is bounded. Recalling that

X
>(B+biL)X = (I+biL), {1+bil j}

n
j=1 are the eigenvalues of

(B+biL) and its conditioning number is bounded by the con-
stant (1+bmaxln), bmax := maxi=1,...,n |bi|. Indeed, the coefficient
matrices in Eq. (6) are well-conditioned and specialized pre-
conditioners [KFS13] can be applied to further attenuate numerical
instabilities.

Approximating an arbitrary filter function with a rational or a
polynomial function of degree r, the evaluation of the correspond-
ing spectral distance between two points is reduced to solve r
sparse, symmetric, linear systems (c.f., Eq. (6)), whose coefficient
matrices have the same structure and sparsity of the connectiv-
ity matrix of the input triangle mesh or of the k-nearest neighbor
graph for a point set. Applying iterative solvers, such as the Jacobi,
Gauss-Seidel, minimum residual methods [GV89], and without ex-
tracting the Laplacian spectrum, the computational cost is Ort(n),
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t = 10�1 t = 10�2

(a) (b)

(c) (d)

Figure 20: Robustness of the Padé-Chebyshev approximation
(r = 7) of the (a,c) diffusion kernel Ktei and (b,d) distance at pi
(black dot) on a smooth and noisy triangulated surface.

where t(n) is the cost for the solution of a sparse linear system,
which varies from O(n) to O(n2), according to the sparsity of the
coefficient matrix, and it is O(n logn) in the average case.

The spectrum-free computation of the one-to-all distances
{d(pi,p j)}

n
j=1 takes O(rnt(n)) time; in fact, we solve the sparse

linear system (6) with n different right-hand vectors (ei � e j),
j = 1, . . . ,n. Computing a fixed number k of eigenpairs in O(kn2)
time, the truncated spectral approximation of the one-to-all distance
is evaluated in constant time for any filter. Indeed, the spectrum-free
approach is competitive with respect to the truncated spectral ap-
proximation with k(n)� rt(n)/n Laplacian eigenpairs. In the av-
erage case, t(n)⇡ n logn and k(n)� kn, kn = r logn. For instance,
for a surface with n = 104,105,106 points and a degree r = 5, the
number of eigenpairs is kn = 46,58,69; in particular, this growth
of kn with respect to n is slow, as a matter of the logarithm in kn.

6.5. Comparison and discussion

Fig. 13 reports the `1 discrepancy (y-axis) between the diffu-
sion distance on the sphere/cylinder and its approximation com-
puted with the Padé-Chebyshev method and the truncated spec-
tral approximation. In this case, the analytical expression of the
Laplacian eigenfunctions on the sphere and cylinder has been used
to compute the ground-truth distances [Pat16]. For small scales
(e.g., t = 10�2, 10�3), the approximation error remains higher
than 10�2, with k  280 eigenpairs; in fact, local shape features
encoded by the heat kernel are recovered for a small t using the
eigenvectors associated with high frequencies, thus requiring the
computation of a large part of the Laplacian spectrum. For large
scales (e.g., t = 1, 10�1), increasing k strongly reduces the approx-
imation error until it becomes almost constant and close to zero.

(a) n = 5K, n = 20K

(b) n = 5K, t = 10�1 t = 10�2

(c) n = 20K, t = 10�1 t = 10�2

Figure 21: (b,c) Robustness of the Padé-Chebyshev approximation
(r = 5) of the heat kernel at different scales (t = 10�1, 10�2) with
respect to (a) surface sampling (n = 5K, 20K).

In this case, the behavior of the heat kernel is mainly influenced
by the Laplacian eigenvectors related to the smaller eigenvalues.
Indeed, the truncated spectral representation generally requires a
high number of eigenpairs and does not achieve the approximation
accuracy of our approach, which remains lower than 8.9⇥10�6

for all the scales. According to [VBCG10], there are no theoret-
ical guarantees on the approximation accuracy of the heat kernel
provided by multi-resolution prolongation operators. Furthermore,
a low-resolution sampling of the input surface might affect the re-
sulting accuracy.

For all the scales (Fig. 14), the accuracy of the Padé-Chebyshev
method is higher than the truncated approximation with k eigen-
pairs, k = 1, . . . ,103, the Euler backward method, and the power
method. Reducing the scale, the accuracy of the Padé-Chebyshev
remains almost unchanged while the other methods are affected
by a larger discrepancy and tend to have an analogous behav-
ior (t = 10�4). Finally, the Euler backward method tends to over-
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j(s) = s3

(a) e1 = 1.2⇥10�5 (b) e1 = 9.1⇥10�4

j(s) = sexp(s)

(c) e1 = 2.3⇥10�5 (d) e1 = 4.2⇥10�4

j(s) = sexp(s)

(e) e1 = 1.2⇥10�5 (f) e1 = 2.1⇥10�4

Figure 22: Distances computed with the Padé-Chebyshev method (r = 5) on (a,c,e) regularly-sampled and (b,d,f) irregularly-sampled (left)
meshes and (right) point sets with holes. To improve the visualization, points are represented as spheres.

smooth the solution, which converges to a constant as k !+1,
and the selection of the power m is guided by heuristics.

The truncated spectra1 approximation of the diffusion distance
is generally affected by the Gibbs phenomenon; i.e., small negative
distance values. This phenomenon is more evident at small cases,
which induce diffusion distances that decrease fast to zero and that
are largely affected by small negative values. In fact, at small scales
the diffusion distances decrease fast to zero and the negative values
are no more compensated by the Laplacian eigenvectors related to
smaller eigenvalues, as they are not included in the approximation
(Fig. 15(e,f)). For the Padé-Chebyshev approximation (Fig. 15(a-
d)), the distance values are positive at all the scales; in fact, we
approximate the filter function without selecting a sub-part of the
Laplacian spectrum.

Results in Figs. 16, 17 confirm that the diffusion distances at
small scales generally require a number of eigenpairs that is much
higher than the estimated value kn. All tests have been performed
on a 2.7 GHz Intel Core i7 Processor, with 8 GB memory. This

case makes our computation of the one-to-all distance competitive
with respect to its truncated approximation and useful to evalu-
ate the distances for slowly-increasing (e.g., diffusion distances at
small scales) or periodic filters or among seed points, as if hap-
pens for the evaluation of shape descriptors [OFCD02] and bags-
of-features [BB11a, BBOG11]. Here, the number of seeds is much
lower than the number of samples and the higher accuracy of our
computation improves the discrimination capabilities of descriptors
based on spectral distances.

In our experiments, the analogous behavior of the level-sets of
the heat kernel and diffusion distance confirm the robustness of the
Padé-Chebyshev of the approximation with respect to sampling,
discrretization (Figs. 18, 19) and noise (Figs. 20, 21). A higher res-
olution of M improves the quality of the level-sets, which are al-
ways uniformly distributed and an increase of the noise magnitude
does not affect the shape and distribution of the level sets.

Fixing the number of Laplacian eigenpairs makes the truncated
spectral approximation of the one-to-all distances faster than ours
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(a) t = 0.1

(b) t = 0.001 t = 0.05 t = 0.1

(c) t = 0.001 t = 0.05 t = 0.1

Figure 23: Robustness of the Padé-Chebyshev approximation of the
linear FEM (a) diffusion distance on partially-sampled surfaces
and (b,c) heat kernel on smooth and topologically noisy surfaces
(cut on the kitten tail), respectively.

but generally provides a lower approximation accuracy. Slowly-
increasing filters and small scales for the diffusion distances also
require the computation of a large number of Laplacian eigenpairs,
thus reducing the gap between the computational cost of the pro-
posed approximation of the one-to-all distances and previous work.
An analogous discussion applies to prolongation operators, which
compute the truncated spectral approximation on a lower resolution
of the input shape. Furthermore, previous work has not addressed
methods for the selection of the proper number of eigenpairs with
respect to the target approximation accuracy, which cannot be es-
timated without computing the whole Laplacian spectrum. Finally,
Figs. 22, 23 show the robustness of the spectrum-free computa-
tion with respect to a different shape discretization, non-manifold
and bordered surfaces, topological noise. At large scales only (e.g.,
t = 1), the shape of the level sets of the heat kernel changes in a
neighbor of the topological cut.

(a)

(b)

(c)

Figure 24: (a) Noisy (m = 127, M = 57, s = 188) and (b) smoothed
scalar function (m = 12, M = 14, s = 30). (c) Zoom-in on the level
sets of the input (left) and smoothed (right) function.

7. Applications

We now show how the Laplacian spectral properties and kernels
have been used for smoothing in geometry processing (Sect. 7.1)
and the definition of geometric basis functions (Sect. 7.2).

7.1. Smoothing

In real applications, the noisy component of the input data is due
to a low quality of the discrete representations, unstable computa-
tions, and numerical approximations. Smoothing typically works in
the function space and applies isotropic Laplacian filters [DBG⇤06,
NGH04, Tau95] or bilateral smoothing operators to the function it-
self [LZ07]. The isotropy of the Laplacian matrix indiscriminately
smooths noise and topological features [DBG⇤06, NGH04, Tau95]
without constraints on their relocations or cancellations. Con-
strained least-squares techniques [SCOIT05] have been efficiently

c� 2016 The Author(s)
Computer Graphics Forum c� 2016 The Eurographics Association and John Wiley & Sons Ltd.

Giuseppe Patane'



G. Patané / STAR - Laplacian Spectral Kernels and Distances

Figure 25: Smoothing with interpolating constraints. The level sets
and critical points of the input and smoothed scalar function are
shown in the first and second row. The L1-error is 0.08.

used to define compression schemes based on the selection of a
set of anchors. While in [SCOIT05] the choice of the constrained
vertices is guided by the final approximation accuracy of the re-
constructed surface, in [PF09] the emphasis is on the preservation
of the differential properties of f through the simplification of its
critical points.

Unconstrained Laplacian smoothing According to [PF09], the
smooth approximation f̃ of a noisy scalar function f : M! R
can be computed as the compromise between approximation
accuracy and smoothness of the solution, we minimize the
energy F(f̃) := ekf̃� fk

2
B +kLf̃k

2
2, whose normal equation is

(L>
L+ eB)f̃ = eBf. Since the coefficient matrix is sparse and pos-

itive definite, f̃ is uniquely defined and it is efficiently computed
through direct or iterative solvers of sparse linear systems [GV89].
Finally, the spectral representation is f̃ = Ân

i=1(l
2
i + e)�1

hf,xiiBxi,
where the smoothing term (l2

i + e)�1 filters out the contributions
to the solution corresponding to the high eigenvalues (Fig. 24).

Laplacian smoothing with interpolating constraints According
to [PSF07], we can include a set of constraints on the topological
features of f to be preserved (Fig. 25). In this case, we define the
smooth scalar function f̃ as the solution of the constrained mini-
mization problem min

f̃2Rn kLf̃k2, f̃ (pi) := f (pi), i 2 I. This prob-
lem is equivalent to minimizing the least-squares error kL̃x�bk2,
x 2 Rn�k. Here, L̃ is the (n� k)⇥ (n� k) matrix achieved by re-
moving the ith-row and ith-column of L, i 2 I, and the entries of
the constant term b 2 Rn�k are Â j2N(i)\I li j f (p j), i 2 I

C.

Smoothing medical data In medical applications, the heat kernel
is central in diffusion filtering and smoothing of images [ALM92,
FCC92, PM90, SKS07, TWBO02, Wit83], 3D shapes [BX02,
GSS99], and anatomical surfaces [CRD⇤05, KCS⇤12, WZS⇤13,
Pat15]. Fig. 26 compares the diffusion smoothing of a noisy data
set computed with the Padé-Chebyshev approximation of degree
r = 7 and the truncated approximation with k Laplacian eigenparis.
A low number of eigenpairs does not preserve shape details; in-
creasing k reconstructs the surface noise. The `1 error between (a)
and the smooth approximation of (b) is lower than 1% for (c) the

Figure 26: (a) Input mesh and L-curve of the approximation ac-
curacy (y-axis) versus the solution smoothness (x-axis). (b) Data
set achieved by adding a Gaussian noise to (a). Diffusion smooth-
ing computed with (c) the Padé-Chebyshev approximation (r = 7)
and (d) the truncated approximation with k Laplacian eigenparis. A
lower number of eigenpairs smooths local details; increasing k re-
constructs the noisy component. The `1 error between the ground-
truth (a) and the smooth approximation of (b) is lower than 1% for
the Padé-Chebyshev method (c) and varies from 12% (k = 100) to
13% (k = 1K) for the truncated approximation (d).

Padé-Chebyshev method and (d) varies from 12% (k = 100) up to
13% (k = 1K) for the truncated spectral approximation.

7.2. Laplacian and diffusion basis functions

Even though the Laplacian eigenvectors are intrinsic to the input
surface, they can be computed only for a small set of eigenvalues
and do not provide a flexible alignment of the function behavior to
specific shape features. The geometry-aware functions [SCOIT05]
provide a computationally efficient way to encode the local geo-
metric information of M; and a similar approach can be applied
to define more general classes of basis functions on a given shape.
Applying the heat kernel matrix, we can define the diffusion ba-
sis B := {Ktei}

n
i=1, whose elements have a smooth behavior on M

and are intrinsically defined by M (Fig. 18). To define a set of
shape-driven canonical basis functions, as feature points {pi}i2A
of a 3D shape we select the maxima and minima of the Laplacian
eigenfunctions related to the smallest eigenvalues [RPSS10] or of
the auto-diffusion functions [GBAL09]. Finally, the definition of
different basis function is also fundamental to define functions be-
tween shapes [GCO06, GMGP05, HK03, LG05, MS05, OFCD02,
OBCS⇤12, RPSS10].

8. Conclusions

Our survey provides a common background on the definition and
numerical computation of Laplacian spectral kernels and distances
for geometry processing and shape analysis, as a generalization of
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the well-known biharmonic, diffusion, and wave distances. To sup-
port the reader in the selection of the most appropriate with respect
to shape representation, computational resources, and target appli-
cation, all the reviewed numerical schemes have been discussed
and compared in terms of robustness, approximation accuracy, and
computational cost.

From the numerical point of view, the evaluation of full shape
descriptors (e.g., heat kernel values among all the input points) is
partially limited in case of densely sampled shapes, due to the ex-
pensive computational time and storage overhead. Indeed, the ap-
propriate selection of seed points on the input domain and the con-
version of the spectral descriptor to a sparse approximation are still
crucial steps for the evaluation of full shape descriptors. Further-
more, the robustness of the spectrum-free computation to sampling
and missing parts suggests the use of the spectral distances and de-
scriptor for partial shape matching.

From the point of view of the definition of the spectral kernels
and distances, we have discussed the general properties of the filter
that guarantee their well-posedness, intrinsic and invariance prop-
erties. A deeper analysis of the filter properties with respect to the
induced spectral distances would be beneficial to improve current
results on surface watermarking and shape comparison. Finally,
learning the filter from the geometric properties of a given class of
data is an efficient, but partially unexplored, way to address shape
segmentation, comparison, and more generally manifold learning.
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