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Abstract: We design cylindrical multilayer structures characterized by anisotropy and topologi-
cal features. This provides a new approach to tailor electromagnetic fields into desired patterns
with orbital angular momentum in cylindrical geometries as ring resonators and fibers. We use
transformation optics to deal with anisotropic circular structures, and rigorously define the edge
states. The resulting topologically protected high-localized modes, at the core/cladding interface,
with angular momentum may trigger the developments of new disorder-robust devices and high
Q-microcavities for applications in light transmission, quantum technology, nonlinear optics,
TeraHertz devices, and biophysical sensors.
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1. Introduction

Over the past 20 years a plethora of unusual effects on light propagation has been obtained
designing structures that gain their properties from a given pattern [1]. New and enhanced features
have been achieved with these synthetic materials realizing permittivities and permeabilities not
available in nature, for example implementing anisotropy by design [2,3].

Concurrently, the rapidly grown branch of topological photonics has featured novel fundamental
concepts for a more effective control of light behavior. Through topological metamaterials,
allowing nontrivial wave propagation, many breakthroughs have been achieved as backscattering-
free edge states [4], topological polaritons [5], topological lasing [6—8] and the generation of
synthetic gauge fields in synthetic dimensions [9], to cite a few.

For the description of the combined effects of anisotropy and topology, transformation optics
[10], which exploits the equivalence between media with spatially varying optical response and
curved spacetime, turns out to be a useful technique that we here apply to model topological
optical resonators [11] in cylindrical geometry.

Structures with anisotropic and radial dependent constitutive parameters [12,13] are known to
support Fabry-Perot, cavity and whispering gallery modes. We show that, by a proper modulation
of geometry and refractive index distribution, one can obtain, additionally, radial edge states
protected by topology. We indeed find strongly localized modes, at the core/cladding interface,
with non-vanishing optical angular momentum. In these modes, scattering due to defects or
disorder is inhibited. This property enables a robust and scalable design, and opens the way to
ultra-high Q resonators for many applications from optics to microwaves. Remarkably, the use of
topological concepts and transformation optics enables a rigorous design of the devices. The
proposed resonator, shown schematically in Fig. 1(a), has an homogeneous and isotropic core
and a cladding given by a sequence of pairs of layers "a’ and ’b’ characterized by dielectric and
magnetic tensors ‘€ o and &', with @ = a, b. As a prototypical model, allowing for nontrivial
topological phases, we consider a cosine modulation of its radial geometrical parameters in the
form of the Aubry-Andre-Harper (AAH) model [14]. Specifically, the centers positions of the
’a’ layers, s, wide, are given by p% = d, [n +nol ] where 6 = cos(2ryn + ¢) is the Harper
modulation [14] and 7 is a coefficient that controls its strength. In the p direction, the cladding is
a periodic structure with ¢ ’a’ layers in the unit cell and a period d = gd,,, where d, is the period
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of the unmodulated structure (7 = 0). The phase ¢ € (0, 2x), the topological parameter of the 1D
periodic modulation, adiabatically deforms the system and accounts for the momentum along
the second geometrical dimension of its 2D ancestor lattice [15,16]. This phase then encodes a
synthetic dimension of our system and dictates the trivial or non-trivial character of the gaps
and then the presence of edge modes. The 2D "ancestor" system exhibits broken time inversion
symmetry [16] that can be interpreted as the presence of an effective magnetic field and gives
protection against backscattering.
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Fig. 1. Schematic representation of a) the topological optical resonator and b) a split-ring
resonator(SRR). ¢) Constitutive parameters of the topological optical resonator for ¢ = 0.5,
&, =1/15,&, =1, [, =025, iy, = 0.5, fig, = 2, fig, = 1. The first two periods of the
cladding are shown with s, = 0.5d,, and a core radius p. = 2d,.

The radial dependent dielectric and magnetic tensors ‘€ , and %", can be practically
implemented by the use of artificially structured materials. An example [17] is to design the
unitary cell of each layer with, as basic building blocks, split ring resonators (SRRs) [18].
Different geometries, as rings, squares, s-shaped or omega loops, have been proposed but,
essentially, as shown in Fig. 1(b), the basic topology of a SRR consists of a pair of enclosed
metallic loops, w wide, on a dielectric substrate, separated by a gap (g) and with splits (s) in them
at opposite ends. By designing its parameters it is possible to achieve a target operating frequency
[19,20]. Two schematic SRRs are shown in Fig. 1(a) to show the structuring of the annular layers.
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2. Methods

To design the topological structure of Fig. 1(a) we consider Maxwell equations, for diagonal
tensors, in a generalized orthogonal coordinates & system [21]:

1 0 1
W hEy = {Bfl o [6§’<(h' E;) - af,(thk)]"‘
0 1 6 0
_a_g/_,[a_g{( kak)l gk(hjEj)]} 0
2th"Ik = {3§’ ~ [(9fk( i l) 651 (thk)]
01 a 0
NTE [651( «Hi) - Y - (WH)1}

where we have made use of the invariance with respect to transformations conserving simultane-
ously the values for x¢h;h;/he = % with x = €, u and h; the Lamé coefficients.

Specifically, in cylindrical coordinates (¢',£2,&%) = (p,6,z) and (hy,hy, h3) = (1, p, 1).
Moreover, given the invariance of the material properties with respect to the z direction, the
structure’s axis, Eq. (1) reduces to:
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so that the choice:

[xp(0), x0(p), x:(p)] = [%Xp(p), PXe(p), %iz(p)]

for the radial dependence of the dielectric tensors, with X,(p) periodic functions, makes the
differential operator in Eq. (1) invariant under translations of the form p — p + nd.

Writing every field component in the form y/(p, 9, z, 1) = y(p, 9)e'Be) for B = 0 (i.e. atwo
dimensional system), in each of the cladding layers, where X, (p) = Xa;» ONE then has:

62
[% + (wzézjug - —{32):| =0
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They show that a renormalization of the constitutive parameters, represented in Fig. 1(c), allows
to map a region with curvilinear boundaries, filled with a radial dependent anisotropic material,
into an equivalent planar region. Equations (3) then, have plane-wave solutions with dispersion
relations for TE and TM polarizations given by:

2 _ 2. . Hej 5
ki¢, = w"&;tlo; = o 4
& ! )
2 _ 2~ ~ J p2
ki, =W fI;;€9; — g—f
Pj

The electric field inside each layer in the cladding can then be expressed as the sum of a left- and
aright-traveling wave:

o =(Epa+ E b)e'? for pi<p<py (5)
¥4
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where:

— etkite (0=pj-1) 0

n= .
0 ekitm (0=pj-1)

— —_
and £ ,; = E ..

Fields in two consecutive layers are related through the boundary conditions requiring the
continuity of the longitudinal field components (E., H.) and of the transverse one:

i 0., i 8

— E 6

’wﬂejpa_ﬁ’ :

(E) H}) = (-

Moreover, being X, (p) periodic quantities, one can apply Bloch’s theorem to obtain the photonic
band structure. Given the transfer matrix 7()(w) for the single period of the cladding, the
photonic bands are then obtained by: 2cos(Kd) = Tr[T™M(w)].

3. Results

Mode’s dispersions for TE polarization are shown in Fig. 2 for an unmodulated cladding ( = 0);
all the modes with ¢ # 0 have a cut-off frequency. Moreover the optical tensors values define gap
widths and modes reciprocal positions for different £ values.
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Fig. 2. TE dispersion curves for the anisotropic circular resonator with a periodic unmodu-
lated cladding; K is the Bloch wave vector.

w(2rtc/d)

/=0

Adding the modulation, i.e. for a cladding with  # 0, Fig. 3 shows, with blue lines, how
mode’s dispersion modifies. A comparison with the dispersion for the unmodulated cladding
(green curves) indicates the opening of mini-gaps (yellow regions) that, due to the peculiar
modulation 677 of the cladding, are topologically non-trivial i.e. present a twisting of the band
structure. Indeed, as shown in Fig. 4 for the modes / = 0 and [ = 1, states are present bridging
the mini-gaps as the phase ¢ is varied, a sign of the bands swapping. Similarly to the modes of a
planar isotropic structure, these states are localized at the edge of the anisotropic cladding and add
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to the set of possible resonances associated with radial photonic structures [12,13]. Specifically,

the p

rojected dispersions in Fig. 4 show gaps (empty regions) and bands (filled blue regions) for

the anisotropic resonator and, with solid lines, the modes localized at the core/cladding interface.
Given the symmetry of the cladding [22] with respect to the phase y = ¢ + 7/y —7/2, the dashed

lines

give again the modes localized at the core edge but for a structure with an inverted sequence

(x — —x in 617 of the layers in the cladding.

To show the localization we study the electric field pattern specific for each mode. In the
homogeneous and isotropic innermost (j=1) and outermost (j=N+1) layers the longitudinal field
components can be represented by a linear combination of the Hankel functions of the first and
second kind:
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Fig. 3. TE dispersion curves for the anisotropic circular resonator with a periodic unmodu-
lated cladding (green curves) and a periodic modulated cladding (blue curves) for different ¢
values. K is the Bloch wave vector. Yellow colored regions indicate the non-trivial gaps.
for O<p<p,:

E! = H (kip) + H (kip)ric
i . . @)
Hy = —— [H(kip) + HP (kip)rie
WP



Research Article Vol. 11, No. 2/1 February 2021/ Optical Materials Express 430

1alS EXPRESS

1.6
1.5
1.4
~ 1.3
1.2
1.1

1.0 ‘ ‘ 1.0 i
-10 -05 00 05 1.0 -10 -05 00 05 1.0

Xx(77) x(77)

Fig. 4. Projected dispersions showing gaps (empty regions) and bands (filled regions)
for the anisotropic resonator for modes with £ = 0, 1. Full curves give the dispersions of
edge modes localized at the core/cladding interface. Dashed curves give edge modes for a
cladding with an inverted modulation: y — —y in 6,’;] .
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where k; = w+/gu; for i = 1,N + 1 while, r; and f; are the reflectivity and transmittivity
coefficients.

Then the boundary conditions between adjacent cylindrical layers allow to show that, as long
as the modulation strenght 7 is null, possible modes are:

* Fabry-Perot modes, located in the cladding;
* cavity modes existing in the core;
* whispering gallery modes localized at the outer boundary of the structure.

Interestingly, for a modulation strenght n # 0, at the frequencies of edge states an additional
field localization can be obtained at the cladding/core interface.

Fields in the whole structure are obtained by the standard transfer matrix method [23] trough a
product of matrices relating the field amplitudes in consecutive layers. The elements of these
2x2 matrices are obtained by requiring the continuity of the longitudinal and transverse field
components, at the core/cladding interface by using Eq. (7) and at the cladding/external medium
by using Eq. (8). In the N periods of the cladding region, where we can apply the Bloch’s
theorem, the matrix that transfer the field from the first to the last layer is simply given by the
N-th power of the single period matrix 7" (w).

Following Ref. [24], field profiles are shown in Figs. 5(a)-5(d) for a cylindrical resonator
with a multi-annular unmodulated cladding (7 = 0) with the geometrical and optical parameters
given in Fig. 1(c). Specifically, these figures give the profiles for Fabry-Perot, cavity and
whispering-gallery modes. They are the typical resonances of a wave field in a resonator.

The localization of the edge modes at the core/cladding interface is shown in Figs. 5(e)-5(g)
for a structure with a 6,7 -modulated cladding with y = —0.4x, for different / values. The
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Fig. 5. Normalized electric field pattern for the resonant structure: a) whispering-gallery
mode for £ = 0, w(2nc/d) = 0.472 b) Fabry-Perot mode for £ = 1, w(2nc/d) = 0.310
¢) cavity mode for ¢ = 2, w(2nc/d) = 0.316 d) whispering-gallery mode for £ = 3,
w(2nc/d) = 0.944; edge modes for e) £ = 0, w(2nc/d) = 1.23,1) £ = 1, w(2nc/d) = 1.27,
) (=2, w2rc/d) = 1.38.

frequencies of these edge modes lay in non-trivial gaps and, for the value y = —0.4x, are
w2rc/d) =1.23,1.27,1.38 respectively for the different / modes

These figures show that the combined effect of anisotropy and topology may drive cylin-
drical structures into a topological phase, where high-localized modes, at the core/cladding
interface, with angular momentum may trigger the development of new structures with additional
functionalities.

Indeed we propose a scheme to create localized modes by the implementation of a topological
interface in a radial structure. In this 2D system the topological interface consists of a boundary
line separating two distinct topologically ordered regions, specifically the core and the cladding,
where non-chiral protected edge modes are located and propagate. Indeed, the +£ modes are
degenerate due to the £ term in Eq. (3).

The peculiar origin of these modes, the bulk-edge correspondence [25], gives them characteristic
properties with respect to other localized modes, as for example whispering gallery modes,
present in the same structure. They include controllable features as the position, the localization
length and the quality factor. First of all, we remind that the general bulk-edge correspondence
states that any interface separating two topologically different regions of space necessarily hosts
topologically protected edge modes.

Our scheme exploits the radial core/cladding interface but suggests the possibility of engineering
a topological interface within the cladding. By spatially varying the cladding modulation, which
indeed split it into topologically distinct regions, one can achieve the possibility of tuning the
edge mode position. Differently, whispering gallery modes (Fig. 5(d)) localize near a geodesic
situated at the resonator boundary and are strongly affected by the external potential confinement.

As shown in Fig. 5, the edge states have a localization length of about four lattice sites for the
parameters chosen in our calculations. This value, as well as the quality factor of the modes,
which are a the order of 103, can be tuned by increasing the number of layers in the cladding, as
happen in photonic crystal structures. Moreover, edge modes dispersions are located in the gap
and this gives them protection against scattering into other modes.
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Actually, the narrowest mode in Fig. 5 appears in panel (d) and it is a whispering gallery mode.
Nevertheless, being a resonant mode supported by continuous total internal reflection off the
ring surface, it suffers from structure imperfections. Its intrinsic quality factor can indeed get
contributions due to losses from many processes as scattering due to imperfections or bending
that entails incomplete total internal reflection.

On the contrary, as they live in the gap’s spectrum, edge states cannot be removed or added
unless a topological transition of the bulk bands happens when the gap closes. This gives them a
topological protection against radial disorder. By introducing a randomized perturbation of the
A layers’ center positions in the form pj; = d, [n +nol + a'f,,] where &, are random variables
chosen in the range (—1; 1), while o is the disorder strength, we observe a frequency variation of
a specific mode of the order of 1072 in reduced units.

Finally, edge states of a given angular momentum exhibit protection by resonant scattering into
the allowed band with another angular momentum as long as coupling effects can be neglected.
Resonant scattering among modes with different angular momentum is generally not present
due to the lack of phase matching. Moreover the optical tensor values allow to tune the cut-off
frequency, the gap widths and modes reciprocal positions for different angular momenta.

4. Conclusions

We have introduced and theoretically studied anisotropic circular structures, which sustain
topological resonances in the form of edge states. Our findings demonstrate that judicious use
of topology and anisotropy may open the way to new classes of devices. We have considered
the cylindrical geometry for its potential impact in the design of waveguides, optical fibers,
and resonators. Other geometries may be analyzed with the help of transformation optics, like
spherical and conical systems. For the cylindrical case, our approach can rigorously define
angular momentum in edge states and engineer the states at target frequencies and spatial
configurations. This result may have an impact on the modern applications of topological
photonics, as in quantum optics, where angular momentum can be used for multi-level quantum
information processing, or in classical systems, for example in particle trapping and spectroscopy.
Also, ring resonators are primarily studied for their many applications in nonlinear optics, as
frequency comb generation for high precision measurements and metrology. We believe that the
introduction of topological ideas, supported by a rigorous theoretical treatment, may introduce
new opportunities because of the new design tools and robustness to disorder.
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