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Abstract. Driven by and dependent on ICT, like almost everything
today, railway transportation has become a critical infrastructure and,
as such, is exposed to threats against communication of on-board and
wayside components. The shift to cybersecurity brings up the need to
comply with new security requirements, and once more security software
engineers are confronted with a well-known problem: how to express in-
formal requirements into unambiguous formal expressions that can be
translated into enforceable policies or be used to verify the security of
a system design. We have experience in translating natural language re-
quirements from standards, regulations, and guidelines into Controlled
Natural Language for Data Sharing Agreements (CNL4DSA), a formal-
ism that serves the purpose of bridging natural and formal expressions.
The translation of requirements is challenging, calling for a rigorous pro-
cess of coding agreement between researchers. Following the trend of the
time, in this paper, we question whether AI and, in particular, the novel
Generative Language Models, can help us with this translation exercise.
Previous work shows that AI can help in writing security code, although
not always producing secure code; less studied is the quality of generative
AI’s working with controlled natural languages in writing requirements
for security compliance. Can AI be a valuable tool or companion in this
endeavour too? To answer this question, we engage ChatGPT and Mi-
crosoft 365 Copilot with the same challenges that we faced when trans-
lating cybersecurity requirements for railway systems into CNL4DSA.
Comparing our results from some time ago with those of the machine,
we found surprising insights, showing the high potentiality of using AI
in requirements engineering.
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1 Introduction

The railway industry has always being attentive to safety [9,11]. Ensuring safety
does not only mean caring of customer welfare but also being careful in adopt-
ing potentially vulnerable modern technologies such as computer-based and
communication-based signalling: therefore it should not surprise that even in the
most advanced railway systems, critical decisions are still taken by centralized
units (e.g., the computation of “movement authorities” in Radio Block Centers,
cf. Section 2). However, the modern railway is pressed to be more distributed: its
network has become transnational with a larger capacity and higher availability
demand and it is subject to stricter international resilience requirements. The
vision for a more decentralized, distributed, and highly resilient railway system
—i.e., the vision of the railway system as a Collective Adaptive System (CAS)—
is already latent in the goals of Europe’s Rail Joint Undertaking (EU-Rail).6 It
envisions, by the 2030s, a single European railway area, that could unify and
overcome the different national systems.

This work focuses on a concern already present today, a first step on the
path to realizing such vision: with the adoption of information and communica-
tion technologies, today’s railway industry should not only be safe, but also be
resilient against cyberattacks [27,26]. Safety gets intertwined with security.

To realize appropriate domain-specific security defences and countermea-
sures, engineers have to identify, read, understand, and interpret relevant docu-
ments, regulations, and provisions.7 Eventually, they have to elicit clearly defined
requirements and implement them. These are renowned and challenging tasks.
Requirements are often written in natural language, and their correct interpreta-
tion and implementation into systems, for instance, as policies in access control
mechanisms, is threatened by vagueness and ambiguity (cf., e.g., [10,12]). We
do not expect such problems to be different in the railway sector with respect
to other industries, but because cybersecurity for railway systems is a relatively
young discipline, there may be a lack of evidence that security requirements
engineering tools that have successfully been used in other sectors (e.g., in the
banking sector) can work in railway as well.

Controlled Natural Languages (CNLs) can help write security requirements
in a way that they remain understandable by humans to express themselves
and communicate ideas. CNLs use controlled grammar, precise semantics, and
the possibility to process statements automatically. In previous work [20], it
was shown that one particular CNL, viz., the Controlled Natural Language for
Data Sharing Agreement (CNL4DSA)—originally developed to formally model
legal contracts regulating data sharing [23,6]— could serve to formalize security
requirements about the “ERTMS L3 moving block” next generation railway sig-
nalling systems to increase capacity on railway tracks, reduce costs, and improve
reliability [13,1].

6 https://rail-research.europa.eu/
7 Documents of reference for the implementation of secure-by-design railway systems
are either those of cybersecurity or are domain-specific, e.g., the Technical Specifi-
cations for Interoperability (TSIs).

https://rail-research.europa.eu/
https://www.era.europa.eu/activities/technical-specifications-interoperability_en
https://www.era.europa.eu/activities/technical-specifications-interoperability_en
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However, the work of engineers who translate Natural Language (NL) into
CNL expressions is still based on experience and training. To reduce the risk
of misinterpretation, a team of “coders” must work together, confronting, dis-
cussing, and assessing their translations for quality and expressivity.

Now, the question we want to explore in this paper is whether AI tools
can help experts in the task of formalizing (cybersecurity) requirements, and
we choose the railway domain as a use case. We follow the current hype con-
cerning the capability of AI-based tools to interpret NL requirements (e.g., for
inconsistency or ambiguity detection). Indeed, the rise of Large Language Mod-
els (LLMs) and their application in AI-based tools has opened the path to new
in-depth automatic analysis of NL requirements [8,7].

In this regard, we decided to first exploit one of the larger LLMs avail-
able, viz., ChatGPT, the chatbot by OpenAI built on top of OpenAI’s GPT3.5
model [4]. After a first experiment with ChatGPT, we replicate the process with
Microsoft 365 Copilot, the chatbox powered by GPT-4, OpenAI’s LLM. We fol-
lowed a similar line of prompting as with ChatGPT. Then, we compared the
quality of the answers provided by the two tools. The comparison is meant to
gather evidence on the utility of using AI in general for requirement analysis.

Even though one tool might be better suited to the task than the other, we
intend to discuss the experience rather than champion a tool over another. The
aim of the experiment is to exercise the capability of LLMs (ChatGPT, Copilot,
and maybe others in the future) to support the human expert in the task of
formalizing security railway system requirements in CNL4DSA.

2 Translating Railway Requirements into CNL4DSA

The European Railway Traffic Management System (ERTMS) is a set of inter-
national standards for the interoperability, performance, reliability, and safety of
modern European rail transport [17,13]. It relies on the European Train Control
System (ETCS), an automatic train protection system that continuously super-
vises the train, ensuring not to exceed the safety speed and distance. The current
standards distinguish four levels (0–3) of operation of ETCS signalling systems,
depending largely on the role of trackside equipment and on the way information
is transmitted to and from trains, In particular, in the next generation Level 3
signalling systems, the train carries the Location Unit (LU) and OnBoard Unit
(OBU) components, while the Radio Block Center (RBC) is a trackside com-
ponent. The LU receives the train’s location from a Global Navigation Satellite
System (GNSS), and sends this location, together with messages ensuring of the
train’s integrity, to the OBU, which, in turn, sends the location to the RBC.
Upon receiving a train’s location, the RBC sends a Message Authority (MA) to
the OBU (together with speed restrictions and route configurations), indicating
the space the train can safely travel based on the safety distance with preceding
trains. The RBC computes the MA by communicating with neighbouring RBCs
and by exploiting its knowledge of the positions of switches and other trains
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(head and tail position) by communicating with a Route Management System
(RMS) [2].

2.1 ERTMS L3 Signalling System Security Requirements

Work in [3,2] extracts a series of requirements from the general description of the
next generation ERTMS L3 signalling system. We present five of them, below:

Temporal Requirements

# Description

R1 GNSS must send the train location to LU every 5 seconds.

R2
If the train position cannot be received within the maximum time limit, the OBU
must transit to degraded mode.

R3
If the traiz integrity cannot be confirmed within the maximum time limit, OBU
shall order the brake activation.

Alarm Triggering Requirements

# Description

R4 If the connection between the RBC and OBU is lost, OBU must trigger an alarm.

R5 Once OBU receives an alarm, it must send it to RBC.

R1–R5 can be expressed in a Controlled Natural Language. Here, we trans-
late the requirements in Controlled Natural Language for Data Sharing Agree-
ments (CNL4DSA). The language was originally introduced to reduce the barrier
of adoption of contractual agreements in terms of privacy as well as to ensure
the agreement mapping to formal languages that allow its automatic verifica-
tion [23]. A DSA is essentially a contract between two or more parties to agree
on some terms and conditions with respect to data sharing and usage. This
language can also support the enforcement of privacy and security of electronic
data exchange, even in scenarios where multiple users have management rights
on the same set of data [15]. Since its definition, it has been used in various fields,
including healthcare, for expressing and analyzing guidelines related to clinical
data [22], and product lines, to specifying and analyzing product families [16].
The interested reader can find the CNL4DSA syntax in [20].

We observe thatR1–R5 express obligations, as they all express some manda-
tory requirement for the L3 signalling system. We name subjects ‘subject‘ and
objects ‘object’ followed by a number (e.g., subject1, subject2), while we name
actions with a phrase, in slanted style, that reminds their doing (hasCategory).
Actions are used in infix (e.g., subject1 Trigger objects1), with the exception of
the action of s sending o to s′, which we write in a mixed prefix-infix form as
s sendTo(s′, o).

R1: IF c1 THEN MUST f1

where c1 is a composite context and f1 is an atomic fragment, defined as follows:

– c1 = IF subject1 hasRole ‘GNSS’ AND subject2 hasRole ‘LU’ AND object1
hasCategory ‘TrainPosition’ AND object1 isProvidedBy subject1 AND ob-
ject2 hasCategory ‘ElapsedTime’ AND object2 hasValue ‘5’.
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– f1 = ⟨subject1, sendTo(subject2), object1⟩

where sendTo(s′) is the action of sending to s′.

R2: IF c1 THEN MUST f1

where c1 is a composite context and f1 is an atomic fragment, defined as follows:

– c1 = subject1 hasRole ‘OBU’ AND object1 hasCategory ‘TrainPosition’
AND NOT object1 isReceivedBy subject1AND object2 hasCategory ‘Elap-
sedTime’ AND object2 hasValue ’maxtimelimit’ AND object3 hasCategory
‘mode’ AND object3 hasValue ‘Degraded’.

– f1 = ⟨subject1 ,Transit, object3⟩

R3: IF c1 THEN MUST f1

where c1 is a composite context and f1 is an atomic fragment, defined as follows:

– c1 = subject1 hasRole ‘train’ AND object1 hasRole ‘Integrity’ AND object1
isRelatedTo subject1 AND NOT object1 hasStatus ‘Confirmed’ AND ob-
ject2 hasCategory ‘ElapsedTime’ AND object2 hasValue ‘MaxTimeLimit’
AND subject2 hasRole ‘OBU’ AND object3 hasCategory ‘OrderToBrake’.

– f1 = ⟨subject2, SentTo(subject1), object3⟩

R4: IF c1 THEN MUST f1

where c1 is a composite context and f1 is an atomic fragment, defined as follows:

– c1 = subject1 hasRole ‘RBC’ AND subject2 hasRole ‘OBU’ AND object1
hasCategory ‘Connection-RBC-OBU’ AND object1 hasStatus ‘Lost’ AND
object2 hasCategory ‘Alarm’.

– f1 = ⟨subject2,Trigger,object2⟩

R5: AFTER f1 THEN MUST f2

where f1 and f2 are atomic fragments, defined as follows:

– f1 = ⟨subject1,Receive,object1⟩, where subject1 hasRole ‘OBU’AND object1
hasCategory ‘alarm’;

– f2 = ⟨subject1,SendTo(subject2),object1⟩, where subject2 hasRole ‘RBC’.

3 Prompting Methodology

The practice of prompting machines (i.e., asking questions to a bot so as to have
meaningful answers back) is relatively old. It can be linked back to the famous
Turing test, where the human’s questions are meant to figure out who is who
behind a door, a person or an intelligent machine.

To refer to a more layman experience with actual human-computer interac-
tion, we can recall Eliza, the bot that was capable of turning statements into
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questions, from the 70s. Its Emacs version (i.e., Emacs doctor), still running
today, offers a service as if it were a Rogerian psychotherapist to whom Emacs
users can playfully chat by asking for advice.

Originally, the practice has gained momentum with the availability of expert
systems [28] but only recently, with the advent of generative AI, it has become
“engineering” (called prompting engineering [24]). The use of AI, and in par-
ticular to LLMs, to explore and generate knowledge is now booming, and the
community has started proposing methodologies to guide engineering to a more
scientifically sound line of prompting. We did not favour one particular strategy
but resorted to a best practice. In fact, computer science researchers have de-
bated mainly common-sense guidelines for effective prompting (cf., e.g., [31,14])
that consider how AI models are trained and what they are good for and good
at. Reasonable suggestions include the following: i) Use Unambiguous Termi-
nology; ii) Ask One Question at a Time; iii) Provide Context and Constraints;
iv) Utilize Prompts and Examples; and v) Review and Refine.

Inspired by these suggestions, we decided to follow one of such best practices,
for instance, to ensure that our tools understood the vocabulary used when
talking of railway systems, as well as, the syntax of expressions in CNL4DSA.
Then we took care of showing a few examples, a post-training phase if we wish to
call it so, for later challenging our tools to provide some preliminary translation
with the aim of correcting answers and letting AI learn by chatting with us.
Eventually, we pose “the question”. This is when we take AI’s output seriously,
and when we assess the AI’s answering quality by comparing the output (i.e.,
CNL4DSA formula and relative explanation) with the formula that we came up
with at the time when we performed the same exercise as expert researchers. It
is the phase where we evaluate the performance of a machine versus that of us
expert humans, so to speak.

To give minimal ecological validity to this research, we independently used
two different AI tools: the free version of ChatGPT (the Italian team) and a
licensed Microsoft 365 Copilot (the Luxembourg team). Then, we compared
the results, devising a more general discussion about AI tools’ helpfulness in
requirements engineering for railway cybersecurity.

Needless to say, our experiment has evident limitations, starting from the
handful number of requirements considered: only five. However, even such a
small number can be sufficient to give us elements to formulate further questions
or hypotheses—following a sort of weak version of the grounded theory used in
qualitative studies in behavioural sciences useful to devise future work to be
pursued with more scientific rigour.

4 Ask ChatGPT!

ChatGPT8 is a chatbot developed by OpenAI and built on top of OpenAI’s
GPT3.5 model [4]. It gathered a lot of attention from both research and indus-

8 https://openai.com/blog/chatgpt

https://openai.com/blog/chatgpt
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trial communities because it can solve a lot of tasks concerning a wide array of
domains of knowledge.

OpenAI’s ChatGPT interacts in a conversational way, by answering both
direct and follow-up questions, highlighting incorrect premises, and rejecting
some inappropriate requests. ChatGPT is based on a Transformer architecture,
which is becoming the preferred model for NL Processing (NLP) problems [29].

Following the methodology introduced in Section 3, we prompt ChatGPT
with some tests that we made to get ChatGPT to translate the security require-
ments shown earlier, first showing it the syntax of the language and trying to
guide it as best as we could.

This investigation is mainly driven by curiosity, a preliminary exploration
into the world of AI, rather than by scientific research defined with rigour. The
purpose is to get an idea of how this version of GPT responded to our simple
queries. However, since we have followed a research process — even if we cannot
call it an established methodology— for the sake of replicability, we point out the
following elements of our process in this phase: (i) The version of ChatGPT used
is the one that is freely available at the time of writing (May 2024), simply by
registering on the OpenAI site (version 3.5);9 (ii) We did not use paid versions of
GPT models, like OpenAI version 4, which, as advertised on their site, is their
most capable model ; (iii) OpenAI itself has let it be known that if we wait a
while, a new, more experienced free version will be available;10 (iv) We did not
train the model specifically to learn semi-formal languages like CNL4DSA. We
did not do any fine-tuning; (v) We did not use strictly defined prompt patterns.

Having said that, to query ChatGPT, we opened a new chat, and all questions
were asked in the same work session.

First, we let ChatGPT know that we have introduced it to the syntax of
a language known as CNL4DSA. Figure 1 shows the prompt we gave to the
LLM, plus its answer. Then, we gave ChatGPT the CNL syntax as input, plus
some contextual information about what fragments, composite fragments, and
contexts are.

Before asking the tool to translate the requirements presented in Section 2.1,
we gave it an example of a translation. Specifically, requirement R1, on the
communication, by GNSS, of the train position to the LU every 5 seconds. We
now describe what we wrote as a prompt.

As we can see from the screenshot in Figure 2, after entering the request in
NL, ChatGPT tried to make a first translation, but it did not take into account
the conditions that trigger the fragment. Let us see what happens when we give
some more information about fragments and contexts constructs and show the
sample translation of R1 (cf. Figures 3 and 4).

The following construct is the answer we were given after showing how we
translated R1. Basically, ChatGPT copied what it was given as our translation:

9 https://chatgpt.com/
10 https://openai.com/index/gpt-4o-and-more-tools-to-chatgpt-free/(accessed 16/5/24)

https://chatgpt.com/
https://openai.com/index/gpt-4o-and-more-tools-to-chatgpt-free/
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Fig. 1: First prompt: explaining the task

Fig. 2: Second prompt: giving an example requirement in NL and a translation
attempt

R1: IF subject1 hasRole ’GNSS’ AND subject2 HASROLE ’LU’ AND
object1 HASCATEGORY ’TrainPosition’ AND object1

ISPROVIDEDBY subject1 AND object2 HASCATEGORY
’ElapsedTime’ AND object2 HASVALUE ’5’ THEN MUST subject1

sendTo(subject2, object1)
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Fig. 3: Third prompt: giving some explanations for the formation of correct con-
ditions

Fig. 4: Fourth prompt: with our translation of the first requirement in CNL4DSA

Let us see what happens if we feed it another requirement, R2, and give it
nothing as a hint. This is the result of the translation:

R2: IF object1 hasCategory ’ElapsedTime’ AND object1 hasValue
’max time limit’ AND NOT MUST GNSS sendTo(OBU, train position)

THEN MUST OBU transitTo(degraded mode)

As we can see, the first two conditions on Elapsed Time and Max Time Limit
have been well expressed. The conditions on the other subjects and objects of
the requirement (i.e., on the fact that the subject that will then perform the
action in the fragment is the OBU, on the fact that there are other entities rep-
resenting the position of the train and the degraded mode) were not instantiated.
Also, a syntax error was made (beyond the unclear semantics of NOT MUST
GNSS sendTo(OBU, train position)): the syntax does not allow NOT before a
fragment, only before a context. We then tried to give ChatGPT a prompt that
explains these things.

There are still a few things that need to be fixed. For instance, we notice that
there was some confusion between the text of the first and second requirement,
in fact, the screenshot in Figure 5 shows the term GNSS, which is correct for
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Fig. 5: Fifth prompt: explaining that there is a syntax error.

Requirement R1, but does not appear in R2. We also point out that in the
syntax there is only one IF with all necessary conditions following, while in the
last translation they fulfill more than one IF. We go on like this for a while,
trying to point out the errors. We do not show all the proofs so as not to bore
the reader.

However, we think it is interesting to show the last attempt that led us to
give up. Among the various correction suggestions, at one point, as a result of the
translation, two entities appear, subject1 and subject2, which have never been
introduced before. At this point, the prompt asks: I still see some problems: You
have never defined who subject1 and subject2 are.

Here is the answer. Basically, the term subject1 was introduced in place of
other terms that were included in one of the first answers, see the first translation
of R2 above.

Fig. 6: Sixth prompt: erroneous replacement

We conclude that simply showing the syntax of a language, with some ex-
planations on the side, does not suffice to get meaningful translations: more
training is needed to evaluate the capability of ChatGPT to perform more ac-
curate translations.
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5 Ask Copilot!

To improve the external validity of our exercise we repeated the exercise with
Microsoft 365 Copilot11, Microsoft’s AI assistant that relies on OpenAI tools,
mainly ChatGPT-4 and DALL-3. It also relies on Bing for scraping text from
the Internet and Azule cloud, as well as on several other utilities developed by
Microsoft for NLP and retrieval augmentation generation. We hold a licence,
giving us access to the full power of the underlying AI models.

An interesting feature of Copilot is that it allows us to choose among three
different tones: “creative”, “balanced”, or “precise”.12 We chose “precise” for
obvious reasons since we intend to handle formal expressions where there is no
room for creativity or hallucinations.

Then, we followed similar steps, engaging the tool in learning the syntax of
CNL4DSA first. That “training” was followed by prompting Copilot with the
first paragraph in Section 2, which contains definitions and terms essential to
build up the terminology used in the remainder of the dialogue. The scope of
this training was to give the tool a context and to verify whether its output was
intuitively meaningful. Copilot replied with a “simplified breakdown” of the text
with keywords in bold, itemised text, and mathematical expressions in italics.
showing that Copilot can process paragraphs that contain a mix of phrases and
formulas. The same happened when we pasted a paragraph with the jargon used
when talking about ERTMS L3 and railway systems. This pre-phase prompting
is known as “context stuffing” We prompt with “knowledge” and vocabulary to
ensure that Copilot, when generating text, relies on the information we gave it
and not on that in its pre-trained model.

The next step was to show examples of CNL4DSA formula expressing re-
quirements R1–R2. This was a tedious “just listen to me and learn” phase,
where we disregarded the usual Copilot rephrasing. We omit the details.

With R3, we started to test Copilot’s capacity. Copilot’s answer, in Table 1,
merits a discussion. What stands out at first is that Copilot is writing in a
good CNL4DSA syntax and style, similar to the one we used in our exercise.
About the phrasing and the semantics of the formalization, if we compare it to
our formalization of R3 (cf. Section 2), the difference that emerges is in the
selection of subjects. For us, a subject is “the train”: it is the entity whose lack
of integrity is confirmed (by whom is however unclear); another subject is the
‘OBU’, the unit that orders to brake. In Copilot, there is one subject: the ‘OBU’:
when it confirms (to itself) that the property ‘TrainIntegrity’ does not hold, it
gives the order to brake.

The Copilot’s version is reasonable. We also notice that R3’s description
could be clearer: the sentence “the train integrity cannot be confirmed” is, in fact,

11 https://copilot.microsoft.com
12 These parameters can be thought like the variable “temperature” in other LLMs

regulates the degree of randomness used in producing the output, but what really is
behind the scenes is still debated in fora like Reddit. Copilot itself, when questioned
about it, replies as follows: “They are not directly related to an LLM’s “temperature”
but they do affect the output in a somewhat similar way”.

https://copilot.microsoft.com
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ambiguous: the word phrase “train integrity” can be interpreted as a property. To
stress that “train” is a subject, the phrase should written as “train’s integrity”.
Copilot helped us to spot this source ambiguity.

Another remarkable observation is the natural language explanation of the
expression. It may be considered as an explanation provided by Copilot. To
us, it serves as a cross-check for the correctness of the Copilot’s CNL4DSA
expression13. We continued with R4. We are still in the phase in which we

Table 1: Copilot’s output with “R3: If the train integrity cannot be confirmed
within the maximum time limit, OBU shall order the brake activation”

In the CNL4DSA formal language, this requirement can be expressed as fol-
lows: R3: IF c1 THEN MUST f1. Here
- c1 is a composite context defined as follows:

subject1 hasRole ‘OBU’ AND
object1 hasCategory ‘TrainIntegrity’ AND NOT
object1 isConfirmedBy subject1 AND
object2 hasCategory ‘ElapsedTime’ AND
object2 hasValue ‘maxtimelimit’ AND
object3 hasCategory ‘BrakeActivation’.

- f1 is an atomic fragment defined as follows: ⟨subject1, order, object3⟩
In this context, order represents the action of ordering a particular operation.
So, the requirement R3 states that if the conditions in c1 are met (i.e., if
the train integrity cannot be confirmed within the maximum time limit), then
subject1 (the OBU) must order the brake activation. This requirement ensures
that the system can respond appropriately when it encounters issues with
confirming the train’s integrity. ,

intend to teach rather than test Copilot, but Copilot’s answer, this time, is
almost as precise as the one we gave. Table 2a reports the answer. Copilot
correctly recognizes both subjects, ‘OBU’ and ‘RBC’. Copilot models that the
connection is lost as a predicate between the subjects, i.e., the quality of them not
being connected. Our modelling was more convoluted: the connection between
‘OBU’ and ‘RBC’ is an object whose status is ‘Lost’. We think that the version
of Copilot is correct and more concise than ours.

With R5, Copilot shows its remarkable ability. Table 2b reports the output:
although there was no previous example about it, Copilot correctly uses the
modality AFTER to express the causality of two events: “the alarm that is
received by one subject, the ‘OBU’ ”, and “the alarm sent to the other subject,
the ‘RBC’ ”. Copilot wrote in compliance with the CNL4DSA syntax, which
requires AFTER’s being accompanied by two subjects.

We have to admit that Copilot’s formulation is as good as ours, if not slightly
better. It was an astonishing discovery, and it was only after a handful of ex-

13 Also ChatGPT returned an informal explanation of the meaning of the CNL4DSA
expressions it has produced; being these latter incorrect, the explanations were mean-
ingless but still useful to confirm the presence of problems in the translation.
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amples. It suggests that Copilot holds the potential to be used as a support for
‘translation’ checking. More evidence is, of course, necessary in support of this
claim: “one swallow does not make a summer”. But it is an encouraging start.

In the CNL4DSA formal language, this requirement can be expressed as follows
R4: IF c1 THEN MUST f1. Here
- c1 is a composite context defined as follows:

subject1 hasRole ‘RBC’ AND
subject2 hasRole ‘OBU’ AND
NOT (subject1 isConnectedTo subject2)
AND object1 hasCategory ‘Alarm’.

- f1 is an atomic fragment defined as: ⟨subject2, trigger, object1⟩
Here ‘trigger’ represents the action of triggering an operation. So, the requirement R4 states
that if the conditions in c1 are met (i.e., if the connection between the RBC and OBU is
lost), then ‘subject2’ (the OBU) must trigger an alarm. This requirement ensures that the
system can respond appropriately when it encounters issues with the connection between
the RBC and OBU. ,

(a) Copilot’s output to R4

In the CNL4DSA formal language, this requirement can be expressed as
follows:R5: AFTER f1 THEN MUST f2. Here:
- f1 is an atomic fragment defined as follows:

⟨subject1,Receive, object1⟩

where subject1 hasRole ‘OBU’ AND
object1 hasCategory ‘Alarm’.

- f2 is an atomic fragment defined as follows:

⟨subject1, SendTo(subject2), object1⟩

where subject2 hasRole ‘RBC’.

Here ‘Receive’ and ‘SendTo(s′)’ represent the actions of receiving an operation and sending
to ‘s′’, respectively. So, the requirement R5 states that once ‘subject1’ (the OBU) receives
‘object1’ (an alarm), it must send ‘object1’ (the alarm) to ‘subject2’ (the RBC). This
requirement ensures that the system can respond appropriately when the OBU receives an
alarm. ,

(b) Copilot’s output for “R5

Table 2: Copilot’s output to R4: “: If the connection between the RBC and OBU
is lost, OBU must trigger an alarm”, and to R5: “Once OBU receives an alarm,
it must send it to RBC” in CNL4DSA”.

6 Related Work

Since LLMs are about interpreting, transforming and generating text, it should
not come as a surprise that an increasing number of researchers have engaged in
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studying the use of LLMs in requirements engineering, a discipline that includes
defining and documenting requirements as concisely and clearly as one can.

The most efficient way to obtain a taste of the current research in this field is
to refer to surveys of the state of the art. The ones we have found by browsing for
“LLMs AND formal requirements” in the Google Scholar search engine discuss
the use of LLMs in support of requirements specification. From different perspec-
tives, they all recall the basic peculiarities and the different architecture of LLMs,
a useful exercise to have realistic expectations about their capabilities. Beyond
that common premise, they diversify their contribution. LLM-based generation
is not always the more appropriate approach than a human-generated require-
ment, and the decision depends on the availability of datasets with which to
train the model [30], and LLMs models (i.e., Llama-2, CodeLlama, ChatGPT-4)
are not equally performant in finding incongruities and ambiguities [8,21]. Rele-
vantly, LLMs’ output can be measured for clarity, conciseness, verifiability, and
understandability [19].

Since the goal is to discuss whether LLMs help analyse unstructured docu-
ments, these works are only partially related to the task of reformulating require-
ments into formal languages. However, the authors of [5] do map requirements
into temporal logic formulas, even if it does so for the sake of spotting linguistic
ambiguities. The authors offer their own framework (called nl2spec) but also
analyse how well other LLMs (i.e., Codex, ChatGPT-3.5-turbo, and Bloom)
translate natural language into logic formulas before and after an interaction
with human coders and with minimal prompting. Their experiment, involving
students as reviewers, shows that only after a round of interactions the ratio of
corrected translations improves from about 30% to about 87%, which suggests
that the task of translation needs humans in the loop to achieve a higher level of
quality. This outcome is consistent with our preliminary test: the translation by
Copilot is superior to that by ChatGPT because of a more elaborate prompting
and because of a round of interactions with the human teams.

The ability of LLMs to reason formally has been put to a test in [18]. The
authors tested state-of-the-art LLMs, like ChatGPT 4, to translate natural lan-
guage descriptions of propositional and first-order logic formulas into their formal
form and back. Their experiment shows that accuracy quickly and disappointedly
decreases with the length of formulas. However, their formulas were generated
fully at random, which suggests a speculative hypothesis: contextualizing the
translation into a specific domain (as we did by prompting our LLMS about
railway system engineering jargon) is a necessary pattern to ensure that LLMs
can correctly parse requirements that contain technical terms.

We have to stress that the majority of the works we have found on the sub-
ject of “LLMs and formal requirements” are published in arxiv.org. With the
only exception of [5], published at the Conference on Computer Aided Verifi-
cation (CAV), they do not come with verified and replicable artefacts (which
we believe should be mandatory even for non-peer-reviewed works). Thus, any
conclusion we may draft from this brief analysis of related work is inevitably
partial and temporary. That premised, it seems that investigating LLMs and
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formal requirements is a field of research that is yet unexplored to its full extent.
This encourages us to look into the matter more systematically, starting with
defining a rigorous methodology of prompting, verifying the output for quality,
and building a dataset of annotated samples of translations.

We conclude this section by referring the reader to [21]: it offers a comparative
analysis of works that studied ChatGPT’s efficiency in eliciting requirements,
offering insights into, we quote, “the effectiveness of ChatGPT, the importance of
human feedback, prompt engineering techniques, technological limitations, and
future research directions in using LLMs in software requirements engineering”.

7 Conclusion

In previous work [20] a particular Controlled Natural Language called CNL4DSA
—praised for precision, expressiveness, naturalness, and simplicity— was proved
to be apt to express railway-related cybersecurity properties, such as those found
in a subset of real control rules about the “ERTMS L3 moving block” next-
generation railway signalling systems.

Nevertheless, expressing requirements in a controlled natural language re-
quires specific skills, and years of experience in working with requirements and
formal languages. It was thus a valid question to explore whether AI could help
with the task. In this work, we started collecting evidence to test this hypothesis.
We experimented with the capability of AI, in particular of LLMs, to replace the
human “formalizer” in the task of expressing NL requirements in the CNL4DSA.
We did so through a simple proof-of-concept experiment to get a first idea of
how AI performed when entrusted, i.e., prompted, with the task.

We independently tested two different, yet related, AI tools: ChatGPT, a
free version, and Microsoft 365 Copilot, a licensed version. We fed the models
with some “contextual information” (i.e., the syntax of the CNL4DSA, some
text exemplifying the terminology used in the railway ERTMS jargon) and with
examples of correct translation before testing their quality of translation into
CNL4DSA with five requirements expressed in natural language. Here, quality
is assessed, informally, as structure similarity and semantic consistency when
compared with the translations we came out with as experts. We, human experts
in formal languages and in CNL4DSA, acted as verifiers.

The preliminary results with ChatGPT reveal insights that are somehow
surprising. ChatGPT was asked to provide a translation immediately after the
“contextual information”. The output showed that, despite some basic ability,
ChatGPT apparently needs more supervision to produce accurate translations.

The experiment with Microsoft 365 Copilot, more structured, turned out
promising. After the common prompting about the context, we followed with a
phase where we gave examples one by one, letting the tool learn our translations,
and correcting them when they were inconsistent with ours. Copilot’s quality
of translation improved considerably during the dialogue to a point where we
believe one of its translations was actually superior to ours.
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This sneak-preview exploration into AI’s capabilities to translate require-
ments from NL into CNL has no significant validity to allow us to draw any
solid conclusion. Indeed, we have tested the translation capability on a small
number of security requirements. Other LLMs and their versions, both free and
premium, would need to be evaluated, and one could explore in depth a refine-
ment for the prompt engineering phase. However, our preliminary results suggest
that it is worth setting up some future work to explore up to which point LLMs
can support human “formalizers” in their work. It also suggests, assuming to
have the ability to build up a sufficiently large set of requirements with golden
datasets of correct translations, that a dedicated and personalized AI model
might greatly help the community, considering that already a general-purpose
one has been able to give meaningful suggestions. One of the challenges we fore-
see is quantifying the “quality of translation” as a metric to assess AI’s output
quality: in this work, our assessment was simplistically based on our expert’s yet
subjective judgement. Previous work on measuring AI’s output quality in terms
of false positives and negatives can be referred to as a starting point for this
future work [8,5]. Explainable AI models would help, too [25].
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